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Abstract. We present a method for developing machine-readable cyber-
risk assessment algorithms based on graphical risk models, along with a
framework that can automatically collect the input, execute the algo-
rithms, and present the assessment results to a decision maker. This
facilitates continuous monitoring of cyber-risk. The intended users of
the method are professionals and practitioners interested in developing
new algorithms for a specific organization, system or attack type, such as
consultants or dedicated cyber-risk experts in larger organizations. For
the assessment results, the intended users are decision makers in charge
of countermeasure selection from an overall business perspective.

Keywords: Cyber Risk, Security, Risk Modelling, Risk Assessment,
Risk Monitoring.

1 Introduction

Cybersecurity is of critical importance for small businesses, large companies,
public administrations and everyone involved in the digital economy. Millions of
euros are lost to cyber-crime each year. Online security is a growing concern for
businesses, with attacks increasing against large corporate business and critical
infrastructures, but also against small enterprises that lack the time, money and
human resources to dedicate to consolidating their cyber-risk management.

There are currently a number of tools available to support cyber-risk man-
agement. Most such tools focus on the technical aspects of detecting vulnera-
bilities and attacks, without relating these to the wider business context of the
organization. This may provide useful support for IT administrators. However,
managers and decision makers need to understand the impact of cyber-risks on
their business objectives in order to determine how to deal with them from a
more strategic perspective. This impact can be expressed either quantitatively
or qualitatively. Quantitative estimates of the likelihood of incidents and the
consequence in terms of money allow risks to be weighed against the cost of



2 Černivec et al.

available countermeasures. Unfortunately, providing trustworthy numbers can
be very difficult, as this requires access to good empirical data and statistics to
serve as a foundation for quantified estimates. Such data is often unavailable.
Even if we can obtain the data, analyzing it to understand its impact on the as-
sessment is a major challenge [32]. This means that providing good quantitative
assessments is not always feasible. In such cases, a qualitative approach can be a
good alternative. By qualitative, we mean that we use ordinal scales, for which
the standard arithmetic operators are not defined, to provide assessments. Each
step is usually described by text, such as {Very low; Low; Medium; High; Very
high}. More informative descriptions of each step can of course be given. Ordi-
nal scales imply that values are ordered, thereby making it possible to monitor
trends.

Cyber-risks depend on many different factors, many of which are highly tech-
nical. Moreover, the risks are continuously changing due to updates in the target
ICT infrastructure or the way it supports the business, discovery of new vulnera-
bilities, and a rapidly evolving threat landscape. Therefore, rather than providing
a snapshot representing one point in time, we want to facilitate monitoring by
providing automated updates of risk level assessments based on dynamic input
that captures vulnerabilities, events observed in the target ICT infrastructure, as
well as the business configuration. To achieve this, we need executable algorithms
that define how the risk level assessments change as a result of changes in the
dynamic input, as well as an assessment infrastructure that can automatically
collect the input, execute the algorithms, and present the results.

Developing risk level assessment algorithms requires a good understanding of
the relevant threats, threat scenarios, vulnerabilities, incidents and assets. The
CORAS risk modelling approach has proved to be well suited for establishing
such an understanding and supporting risk level assessments [21, 35]. However,
the CORAS approach was created to perform manual assessments represent-
ing a single point in time, rather than establishing algorithms for automated
assessments.

In this paper, we present a method for developing quantitative and qualitative
cyber-risk assessment algorithms by exploiting the structure of CORAS risk
models, together with a cyber-risk monitoring framework that automatically
collects the dynamic input, executes the algorithms, and presents the results.
The method and framework were developed in the WISER project [39].

In the following, we start by presenting the cyber-risk monitoring framework
in Sect. 2. We then give an overview of the method for risk modelling, which
includes the algorithm development, in Sect. 3. The method consists of two
main steps. Section 4 and Sect. 5 presents each step in more detail. In Sect. 6
we present related work, before discussing and concluding in Sect. 7.
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2 Cyber-Risk Monitoring Framework

In this section, we present the framework developed in the WISER project to
assess and monitor cyber-risk for companies from the business perspective. Fig-
ure 1 shows an overview of the essential components in the framework.

Risk Assessment 

Engine

Cyber-Risk Models

Decision Maker

Events,

alarms

Risk assessment algorithms

Risk assessment,

mitigation optionsNetwork and 

Application Monitor

Business Configurator

Vulnerability Scanner

Fig. 1. Overview of the WISER framework.

The brain of the WISER framework is the Risk Assessment Engine. It pro-
duces an assessment of the risk the company faces, based on a cyber-risk model
with an associated risk assessment algorithm. As illustrated by the left-hand side
of Fig. 1, there are three different types of dynamic input to this algorithm. By
“dynamic” we mean that the input values may change between each execution
of the algorithm. The first input type is provided by the user configuring the
framework for the company via a business configuration interface. The second
input type is events and alarms obtained from monitoring the network and appli-
cation layers of the ICT infrastructure, while the third input type is information
about detected vulnerabilities provided by vulnerability scanners. We use the
term indicator to denote the inputs to the algorithm. The output of the Risk
Assessment Engine is an assessment of quantitative and/or qualitative risk lev-
els. In addition, a proposal for mitigation options will also be triggered if risk
levels exceeds a set threshold. However, mitigation options are beyond the scope
of this paper. The reader is referred to [31] for further details on this.

In the remainder of this section, we explain how the input to the assessment
algorithms, i.e. the indicator values, are obtained.

2.1 Business Configurator

As already noted, the first input type in Fig. 1 is provided by the user configuring
the framework for a client/organization. This is done through a Business Config-
uration interface by answering general questions about the business, ICT profile
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and security management of the organization. Furthermore, the user is asked to
provide information about the machines and applications to be protected, which
we refer to as the targets of analysis.

For each target of analysis, the user assigns a level of importance with respect
to confidentiality, integrity, and availability, which will depend on the way in
which this target supports the business processes. The user also characterizes
each target based on the ACM Computing Classification System [1], which serves
as the de facto standard classification system for the computing field.

Finally, for clients who wish to obtain quantitative cyber-risk assessments,
the user configuring the framework is asked to provide, for each target of analysis,
a typical and worst-case loss potentially resulting from a successful cyber-attack.
If these values are not provided, the framework resorts to using default values de-
fined for a typical European SME, as estimated by the WISER Consortium [31].

2.2 Network and Application Monitor

The Network and Application Monitor module in the WISER framework pro-
vides the most dynamic input to the cyber-risk assessment, as the monitoring
occurs in real time. The module consists of sensors which generate events (mes-
sages announcing unusual activity or values of observed metrics) and a Monitor-
ing Engine, which generates alarms by correlating and combining several events.
Various sensors, installed on the client’s infrastructure, continuously observe nu-
merous network and application-level parameters to provide input values for risk
assessment indicators. Both events and alarms are fed into the Risk Assessment
Engine. Alarms can also be used independently from the Risk Assessment En-
gine to notify the responsible users about ongoing attacks or emerging security
threats.

The monitoring architecture incorporates two layers: the Resource Layer and
the Provider Layer. The Resource Layer consists of WISER Agents and sensors
installed on the client’s infrastructure, providing data about the infrastructure
to the Provider Layer. The Provider Layer supports the monitoring capabilities
with back-end core services for event aggregation and correlation and a central
data storage facility, serving monitoring data to the Risk Assessment Engine.

Monitoring sensors are able to detect several types of attacks and anomalies
in the network infrastructure as well as in applications installed on the client’s
premises. The following sensors, which are further described in [36], are employed
by WISER:

– DNS Traffic Sensor: monitors DNS requests to detect patterns of traffic that
potentially belong to botnets.

– Snort: a network-based intrusion detection system, detecting network recon-
naissance attempts, malware signatures and denial of service attacks.

– OSSEC: a host-based intrusion detection system, monitoring application-
level activity and detecting anomalies in operation of core operating system
services and user applications, recognizing viruses and attackers.
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– Cowrie: an SSH-based honeypot used to attract attackers and detect their
presence while averting attacks from other machines on the network.

The WISER Agents are responsible for the collection, normalization and transfer
of data of the events to the provider layer. The Agents gather the data from
sensors installed on the same network through encrypted syslog channels, adds
common information about the organization, and forwards the messages in a
common format to the provider layer communication bus, supported by the
AMQP-based RabbitMQ server. RabbitMQ is responsible for message queuing
and distribution to other components on the monitoring provider layer.

The Monitoring Engine, part of the Provider layer, is composed of a SIEM
(Security Information and Event Management) solution and a correlation engine
that provides continuous analysis of security-related events, aggregating data
from the sensors and generating reports and alarms, taking a predefined set of
correlation rules and security directives into consideration.

For each generated alarm, the Monitoring Engine computes a risk score,
which combines measures of potential attack damage, likelihood of the attack
and the value of assets compromised. If the risk score is high enough, the WISER
Framework can automatically notify a responsible person. Notice that these risk
scores should not be confused with the risk level assessments provided by the
Risk Assessment Engine when executing the algorithms addressed in Sects. 3–5.
The former provides low-level assessments according to fixed rules to facilitate
a quick response by an ICT administrator. The latter provides more high-level
assessments, where several events and alarms from the Monitoring Engine can
be considered in conjunction with other types of indicators to provide more ICT
and business context, and where the algorithms can be tailored to a specific
organization or system.

2.3 Vulnerability Scanner

The Vulnerability Scanner module automatically identifies security vulnerabili-
ties in the client’s web applications. The Vulnerability Scanner acts similarly as
a monitoring sensor, installed at the clients premises. It scans specified target
websites periodically (in a configured time interval) and reports the results to
the Risk Assessment Engine, like monitoring sensors. The vulnerabilities found
by each scan can also be seen in the WISER Dashboard along with their mitiga-
tion suggestions. The vulnerability scanner in this mode of operation can scan
public websites as well as web applications that are only accessible from inside
the organization’s network. This means that it can be used to test specialized
web applications and also websites during their development process.

The Vulnerability Scanner is based on combining results from several tools
for vulnerability scanning, such as W3af [38] and OWASP ZAP [29]. These tools
automatically gather responses from the targeted website and compare them to
their databases of known vulnerabilities to find which vulnerabilities might be
present in the web application. The vulnerability databases contain explanations
of the vulnerabilities and their mitigation proposals, which are included in the
reports.
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3 Method for Cyber-Risk Modelling

In this section, we explain the overall method for risk modelling. The risk mod-
elling described here will typically be a part of a wider risk management process,
such as ISO 31000 [17], and can be “plugged into” any such process. We focus
on the methodological aspects that are special in our context, which are the
following:

– For risk level assessment, the goal is not to perform an assessment repre-
senting a snapshot of one particular point or period in time, but rather to
develop algorithms for automated assessment. The algorithms can be either
qualitative or quantitative.

– Identification of threats, vulnerabilities, threat scenarios, incidents and risks
is done using CORAS diagrams (models).

– For the elements of a risk model described above, we also identify the dy-
namic factors that can be provided by the framework, i.e. the indicators,
as explained in Sect. 2. The indicators serve as input for the assessment
algorithms.

Figure 2 shows the overall method used for cyber-risk modelling, considering
these aspects. The outcome of the first step is a validated CORAS diagram with

Step 1: Establish and document understanding 

of the risk picture

1.1: Create CORAS diagram with indicators

1.2: Validate CORAS diagram with indicators

Step 2: Provide machine-readable algorithm

2.1a: Define quantitative 

assessment algorithm

2.2: Validate assessment algorithm

2.1b: Define qualitative 

assessment algorithm
or

Validated cyber risk 

assessment algorithm

Validated CORAS 

diagram with indicators

Fig. 2. Method for cyber-risk modelling.

indicators. This diagram captures the relevant assets, risks, the ways in which
these risks may materialize, and the relation between these elements and the
available business configuration indicators, vulnerability scan indicators, net-
work monitoring indicators and application monitoring indicators that can be
employed to assess the risk and the involved threats, vulnerabilities and threat
scenarios.
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The outcome of the second step is a machine-readable algorithm for risk
level assessment (and mitigation proposals) that can be automatically executed
by the Risk Assessment Engine. The dynamic input for this assessment algorithm
consists of the indicators identified in the first step. In the next two sections, we
explain the steps in further detail.

4 Step 1: Establish and Document Understanding of the
Risk Picture

4.1 Step 1.1: Create CORAS diagram with indicators

As illustrated by Fig. 2, this step is the same irrespective of whether the aim is
to develop a qualitative or a quantitative assessment algorithm. The reason is
that the purpose of this particular step is not to assess risk levels or define an
assessment algorithm, but to identify the potential chains of events that may lead
to risks materializing. This includes identifying all the threats, vulnerabilities,
threat scenarios and incidents involved in such chains. Moreover, we identify the
indicators that can provide information about all risk elements that can serve
as useful input for the assessment algorithm to be developed in Step 2.

For creating security risk models, we use CORAS [21], which is a graphi-
cal risk modeling language that has been empirically shown to be intuitively
simple for stakeholders with very different backgrounds [35]. Moreover, CORAS
comes with a method that builds on established approaches (in particular ISO
31000 [17]), and includes detailed guidelines for creating CORAS models, which
can be applied to carry out Step 1.

Figure 3 gives an overview of the CORAS notation. Threats, threat scenar-
ios, unwanted incidents, assets, relations and vulnerabilities are collectively used
to create CORAS risk models, which document risks as well as events and cir-
cumstances that can cause risks. Notice that the different relations are used to
connect different nodes: the initiates relation goes from a threat to a threat
scenario or an unwanted incident. The leads-to relation goes from a threat sce-
nario or an unwanted incident to a threat scenario or an unwanted incident.
The impacts relation goes from an unwanted incident to an asset. The indicator
construct, which is not part of the standard CORAS notation, is introduced to
capture dynamic factors that are obtained by the framework, as explained in
Section 2.

Relation
VulnerabilityIndicator

Threat
Node

Name
Name

[Likelihood]

Name

[Likelihood]
Name

Name
Name

[cp]

Threat scenario Unwanted incident Asset Initiates Leads-to Impacts

[Conse-

quence]

Fig. 3. CORAS notation. cp=conditional probability.
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To support risk estimation, CORAS uses likelihood values, conditional prob-
abilities, and consequence values (enclosed in brackets) on certain nodes and
relations, as illustrated in Fig. 3. These will be represented by variables in the
risk assessment algorithms. It is therefore useful to establish a naming conven-
tion for the variables, as well as for the nodes and indicators in the diagram.
Table 1 shows our naming convention.

Table 1. Naming conventions for defining likelihood and consequence variables. The
letters x and y represent integers.

Name Meaning

Ax Asset x

Sx Scenario x (“S” means threat scenario)

Ux Incident x (“U” means unwanted incident)

IN-x Indicator x

l Ux Likelihood of Ux

l Sx Likelihood of Sx

c Ux Ay Consequence of Ux for Ay

cp Sx to Sy Conditional probability of Sx leading to Sy

cp Sx to Uy Conditional probability of Sx leading to Uy

Figure 4 shows a CORAS risk model for a session hijacking in the context
of web-applications. This risk model is (a slightly simplified version of) one of
10 risk models we developed in the WISER project [39]. These risk models were
not developed for a particular target of analysis, but primarily intended for an
arbitrary European SME. Notice that some of the indicators appear more than
once, as they are attached to more than one element.

Indicators are normally identified after the assets, threats, threat scenarios,
unwanted incidents and vulnerabilities. Indicator identification is not covered
by the standard CORAS method [21]. We therefore present here the guiding
questions used for this purpose:

– What observable events at the network layer could give useful information
about the likelihood/frequency of attacks? (Network monitoring indicators.)
This question should be asked for each identified threat scenario and incident.

– What observable events at the application layer could give useful informa-
tion about the likelihood/frequency of successful or unsuccessful attacks?
(Application monitoring indicators.) This question should be asked for each
identified threat scenario and incident.

– What information can we get from vulnerability scanners or security tests?
(Test result indicators). This question should be asked for each identified
vulnerability.

– What do we otherwise know about the threats, vulnerabilities, threat sce-
narios, incidents or assets that could help us assess the level of cyber-risk?
(Business configuration indicators.) These questions should be asked for each
element of the risk model.
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S1: Carry out 

session fixation 
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Fig. 4. CORAS risk model for Session hijacking. IN-34 and IN-35 are vulnerability
scan indicators. IN-30 and IN-C1 are business configuration indicators. IN-41, IN-42,
IN-51, and IN-52 are application monitoring indicators.

4.2 Step 1.2: Validate CORAS Diagram with Indicators

The CORAS diagram provided in Step 1.1 serves as the basis for developing the
machine-readable algorithm in Step 2. Therefore, before moving on, it is essen-
tial to ensure that the CORAS diagram reflects, as far as possible, the actual
reality with respect to potential threats, vulnerabilities, threat scenarios and
risks. Of course, as risk assessments concern what might happen in the future,
there is no way we could ensure that a CORAS diagram (or any other form
of risk model) is objectively correct and complete with respect to reality. In-
stead, what we aim for here is a convincing argument that the diagram reflects
available knowledge and beliefs among qualified cybersecurity experts. Such an
argument can be established, for example, by showing that the CORAS diagram
faithfully captures information available from well-reputed standards, reposito-
ries, text books, research papers or similar sources; some examples include ISO
27001 [15], ISO 27005 [18], ISO 27032 [16], CAPEC [23] and OWASP [28]. If
possible, the validation of the CORAS diagram should be carried out by a group
of cybersecurity experts who, after relevant information sources have been iden-
tified and obtained, go through each part of the diagram in a systematic manner
to identify elements that need to be added, removed, or otherwise improved. The
validation terminates when no such elements are found.
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5 Step 2: Provide Machine-Readable Algorithm

In the following, we explain how to define quantitative (Sect. 5.1) and qualita-
tive (Sect. 5.2) assessment algorithms based on a CORAS model, before briefly
discussing how to validate the results (Sect. 5.3). Notice that the two types of
algorithms are independent alternatives, and readers who are only interested in
one type can skip the other section. For both alternatives, our focus here is on
establishing the algorithm structure. Therefore, we do not go into details re-
garding estimations that must be done in order to complete the algorithms, but
provide references where further information can be found where relevant.

5.1 Step 2.1, alt. a: Define quantitative assessment algorithm

For defining quantitative assessment algorithms we follow an actuarial approach,
where the likelihood (frequency) and consequence (economic loss) of unwanted
incidents are modelled separately through the probabilistic framework of Bayesian
Networks (BN) [25]. More specifically, we use hybrid BNs [24], which means that
the random variables are not bound to be discrete or (conditionally) Gaussian.

The algorithm is implemented using the R programming language [34] for
statistical computing. The underlying calculations are performed by Markov-
Chain-Monte-Carlo simulation. However, in this paper we focus on the exploita-
tion of CORAS diagrams to establish the BN structure. Understanding this does
not require prior knowledge about the R programming language, hence we do
not show any R code. Detailed guidelines on how to create an R script from a
CORAS model are provided in [31].

BN skeleton The first step is to define a BN skeleton based on the structure
of the CORAS model. Figure 5 shows the BN skeleton reflecting the CORAS
model in Fig. 4. A risk captured in a CORAS diagram (by an impacts relation
from an unwanted incident to an asset) is represented by a childless node in the
BN (R1 in Fig. 5). The overall goal is to compute a risk level for risk nodes, as a
function of indicators. Any risk node has two parent nodes: one representing the
frequency of the unwanted incident and another representing the consequence
for the asset. In our example, the risk node R1 has the parent nodes l U1 and
c U1 A1, representing the frequency of the incident U1 and its consequence for
the asset A1, respectively.

Nodes representing the frequency of an unwanted incident The fre-
quency of unwanted incidents is calculated following the underlying logic of the
CORAS model. The frequency node of an unwanted incident has a parent node
for each incoming leads-to relation to the incident in the CORAS diagram, rep-
resenting the likelihood contribution from each incoming relation. For example,
node l U1 in Fig. 5 has two parent nodes: l U1S1 and l U1S2.

The likelihood contribution from each leads-to relation depends on the like-
lihood of its threat scenario (the source node) and the conditional probability
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Fig. 5. BN skeleton for CORAS model in Fig. 4.

that an occurrence of this threat scenario will lead to the unwanted incident.
Therefore, the node l U1S1 depends on the parentless nodes l S1 (likelihood of
scenario S1 ) and cp S1 to U1 (the conditional probability that an occurrence
of S1 will lead to U1 ). Similarly, l U1S2 depends on l S2 and cp S2 to U1. In
our example, the probability distribution of the frequency node l U1 is defined
as follows5:

l U1 = l U1S1 + l U1S2

= l S1 · cp S1 to U1 + l S2 · cp S2 to U1

Notice that node l U1 is deterministic, since its value at each step of the simu-
lation is calculated by a formula from the values of its parent nodes.

The indicators, which represent the input to the final algorithm, are not
included in the BN structure. They will be used to compute the values for the
parentless ancestor nodes of l U1 (l S1, l S2, cp S1 to U1 and cp S2 to U1 in
Fig. 5). These nodes are represented by uniform distributions whose extremes
depend on the indicators affecting the nodes. The functions from indicator values
to the extremes of the distributions are defined based on expert estimates and
available empirical data. We chose uniform distributions in order to ease the
estimate elicitation. CORAS uses intervals for the same reason. Since our focus
here is on the algorithm structure, we refer to [13] for further details on the
estimation.

Nodes representing the consequence of an unwanted incident Conse-
quence nodes model the consequence, in terms of economic loss per occurrence

5 This formula assumes that the scenarios for the incoming leads-to relation are sep-
arate, as further explained in [21, p. 224].
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of an unwanted incident (node c U1 to A1 in Fig. 5). Here we follow an ap-
proach typically adopted in scenario analysis for operational risk management.
For a given risk, a two-parameter distribution is chosen for the consequence,
and experts are requested to provide a typical case loss and a worst case loss.
This provides the minimal amount of information required to describe the main
features of the distribution, that is a value which is experienced frequently and
a value which is extreme (experienced rarely). Usually, the typical case loss is
identified with a location index, such as the median of the distribution. The
worst case loss is identified with a suitably large quantile of the distribution.
This gives a nonlinear system of two equations in two variables (the parameters
of the distribution), which can be solved by a Newton-like numerical approxi-
mation method [10, 2, 26]. We adopted the lognormal distribution for modeling
consequence nodes. In modelling loss data, the lognormal distribution is observed
to provide good fits in many cases; for this reason it is often used for modelling
consequence in operational risk and particularly for the scenario analysis com-
ponent, see e.g. [19, 11].

Nodes representing risk level Risk level nodes model the yearly aggregate
loss distribution, which depend on the frequency and consequence of the un-
wanted incident. In our example, the risk level is represented by node R1 in the
BN. The probability distribution assigned to R1 is defined as follows:

R1 = l U1 · c U1 to A1

5.2 Step 2.1, alt. b: Define qualitative assessment algorithm

For defining qualitative assessment algorithms we use DEXi [12], which is a
computer program for development of multi-criteria decision models and the
evaluation of options. We briefly present DEXi before explaining how to create
a DEXi model from a CORAS diagram. For a detailed description, we refer to
the DEXi User Manual [6].

A multi-attribute model decomposes a decision problem into a tree (or graph)
structure where each node in the tree represents an attribute. The overall prob-
lem is represented by the top attribute, also called the root. All other attributes
represent sub-problems, which are smaller and less complex than the overall
problem. Each attribute is assigned a value. The set of values that an attribute
can take is called the scale of the attribute. DEXi supports definition of ordinal
scales; typically, each step consists of a textual description.

Every attribute is either a basic attribute or an aggregate attribute. Basic
attributes have no child attributes. This means that a basic attribute represents
an input to the DEXi model, as its value is assigned directly, rather than being
computed from child attributes.

Aggregate attributes are characterized by having child attributes. The value
of an aggregate attribute is a function of the values of its child attributes. This
function is called the utility function of the attribute. The utility function of each
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aggregate attribute is defined by stating, for each possible combination of its child
attribute values, what is the corresponding value of the aggregate attribute.
The DEXi tool automatically computes the value of all aggregate attributes
as soon as values have been assigned to the basic attributes. Hence, a DEXi
model can be viewed as an algorithm where the basic attribute values constitute
the input and the values of the aggregate attributes constitute the output. A
java library and a command-line utility program for DEXi model execution is
available [12], meaning that functionality for executing DEXi algorithms can be
easily integrated in software systems. This, combined with the fact that DEXi has
been designed to produce models that are comprehensible to end users [9], was
our reason for choosing DEXi. Its comprehensibility seems to be confirmed by its
application in several different domains, involving a wide range of stakeholders
[7–9].

Figure 6 shows an example of a DEXi model which consists of three aggre-
gate attributes and three basic attributes; the latter are shown as triangles. The
top attribute, which is an aggregate attribute, is named Risk and has two child
attributes (Likelihood and Consequence) that are also aggregate attributes. The
Likelihood attribute has in turn two basic attributes as child attributes (Likeli-
hood indicator 1 and Likelihood indicator 2 ), while the Consequence attribute
has one basic attribute as child attribute (Consequence indicator 1 ).

Aggregate

attribute

Basic

attribute

Fig. 6. DEXi model.

We now show how to build a security risk assessment algorithm, in the form
of a DEXi model, based on a CORAS model. We use the model in Fig. 4 as an
example. This means that the decision problem represented by the top attribute
in the DEXi model concerns deciding the risk level. We start by explaining how
each fragment of the CORAS model can be schematically translated to a corre-
sponding fragment of the DEXi model. Since our focus here is on the algorithm
structure, we do not address the definition of scales and utility functions, but
refer to [14] for further discussion on this.

Risk In the CORAS model, a risk corresponds to an impacts relation from an
unwanted incident to an asset. The risk level depends on the likelihood of the
incident and its consequence for the asset, as represented by l U1 and c U1 A1
in Fig. 4. In the DEXi model, a risk is therefore represented as a top (i.e. or-
phan) attribute that has two child attributes, one representing the likelihood
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(a)

(b)

(c) (d)

Fig. 7. Screenshots from the DEXi tool.

of the incident and one representing its consequence for the asset. Figure 7(a)
shows the DEXi-representation of the (only) risk shown in Fig. 4. The value of
the top attribute R1 represents the risk level. Notice that R1 does not occur as
a separate name in the CORAS diagram, as a risk is represented by the combi-
nation of the incident, the asset, and the relation between them, rather than by
a separate node.

Node with incoming leads-to relations In a CORAS model, the likelihood
of a node with incoming leads-to relations6 depends on the likelihood contribu-
tions from each relation. In the DEXi model, such a node is therefore represented
by an attribute with one child attribute for every incoming leads-to relation. The
attribute l U1 in Fig. 7(b), which represents the likelihood of U1, therefore has
two child attributes, l S1 to U1 and l S2 to U1, representing the likelihood con-
tributions from S1 and S2 via their outgoing leads-to relations.

Node with outgoing leads-to relation The contribution from a leads-to
relation to its target node depends on the likelihood of the source node and the
conditional probability that an occurrence of the source node will lead to an
occurrence of the target node. The latter is assigned to the leads-to relation in

6 Recall from Sect. 4 that threat scenarios and unwanted incidents are the only node
types that may have incoming leads-to relations.
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a CORAS model. In the DEXi model, a source node with an outgoing leads-
to relation is therefore represented by an attribute with two child attributes,
one representing the likelihood of the source node and one representing the
conditional probability that an occurrence of the source node will lead to the
target node. As illustrated in Fig. 7(c), the attribute l S1 to U1 representing the
likelihood contribution from S1 to U1 therefore has two child attributes, l S1
representing the likelihood of S1 and cp S1 to U1 representing the conditional
probability of S1 leading to U1 (and similarly for l S2 to U1 ).

Node with attached indicators In a CORAS model, indicators can be at-
tached to a node to show that the indicators are used as input for assessing
the likelihood of the node. In the DEXi model, indicators attached to a node
are therefore represented as basic attributes under the attribute representing
the node. Figure 7(d) shows the complete DEXi tree structure derived from the
CORAS risk model in Fig. 4. The basic attributes in Fig. 7(d) correspond to the
indicators in Fig. 4. Here we see that l S1 has a child attribute for each of the
indicators IN-34, IN-41, IN-42, IN-51 and IN-52 attached to S1 in Fig. 4, while
l S2 has child attributes representing the indicators IN-41 and IN-42, which are
attached to S2 in Fig. 4.

Notice that we may have cases where a node has incoming leads-to relations
in addition to attached indicators, although this is not the case in the example.
In such cases, the attribute representing the node can have child attributes rep-
resenting the incoming branches in addition to the child attributes representing
indicators.

Leads-to relation with attached indicators In a CORAS model, indica-
tors can be attached to a leads-to relation from one node to another, or on a
vulnerability attached to such a relation, to show that the indicators are used
as input for assessing the conditional probability of an occurrence of the source
node leading to the target node. In the DEXi model, indicators attached to a
leads-to relation (or vulnerability) are therefore represented by basic attributes
under the attribute representing the conditional probability assigned to the re-
lation. Therefore, in Fig. 7(d) we see that cp S1 to U1 has a child attribute for
each of the indicators IN-30, IN-34 and IN-35, while cp S2 to U1 has one child
attribute representing IN-52.

Other CORAS model fragments We have not provided separate guidelines
for threats, initiates relations, and indicators attached to impacts relations. For
the latter, the reason is that a CORAS model does not provide any support for
consequence assessment beyond the assignment of a consequence value to the
impacts relation from an unwanted incident to an asset. All indicators relevant
for consequence assessments are therefore represented as basic attributes directly
under the attribute representing the consequence, as illustrated by c U1 A1 in
Fig. 7(d). In our example, the single indicator IN-C1 attached to the impacts
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relation from U1 actually provides the consequence value directly, which means
that the IN-C1 attribute could have been attached directly under R1, without
the intermediate c U1 A1 attribute. We chose to include c U1 A1 to illustrate
the general structure.

Concerning threats and initiates relations, we rarely assign likelihoods to
these CORAS elements in practice, as estimating threat behavior is very difficult.
Instead, we assign a likelihood directly to the target node of the initiates relation.
An indicator assigned to a threat or to an initiates relation can therefore be
handled as if it was assigned directly to the target node.

5.3 Step 2.2: Validate Assessment Algorithm

Before putting the algorithm in operation, it should be validated to verify that
its output can reasonably be expected to reflect reality. When dealing with the
kind of cyber-risk assessment addressed in this paper, we typically need to rely
on expert judgment for this. We first select a set of validation scenarios and
then validate the output from the algorithm for each scenario with a team of
experts. As the CORAS model does not provide any support for consequence
assessment beyond annotation on impacts relations, we focus here primarily on
the likelihood assessment.

A validation scenario is a set of indicator values representing one possible
snapshot of the dynamic factors that influence the likelihood assessment (and
hence also the risk level). Thus, the number of possible scenarios is the product
of the number of possible values for each such indicator. This often results in
many possible scenarios, which may be infeasible to validate. Our example in
Fig. 4 includes 7 different Boolean indicators affecting the likelihood assessment
(as well as one affecting the consequence). This gives 128 possible scenarios.

We therefore need to select a reasonable number of scenarios depending on the
available effort. As a minimum, we suggest selecting validation scenarios based
on the following two criteria: (1) cover the extreme scenarios where none or all
of the indicators are triggered (yielding the minimum and maximum frequency
values), and (2) cover each path in the CORAS risk model, meaning that for
each path p (from the threat to the unwanted incident) in the risk model, there
must be a scenario where one or more indicators along the path is triggered and
the indicators for all other paths are not triggered unless these indicators also
affect path p. By triggered, we mean that the indicator value contributes to the
increase of likelihood. For example, for IN-34 (Are idle sessions destroyed?), the
value False (=No) would imply a higher likelihood than True (=Yes), since idle
sessions can be exploited by an attacker.

For validating the output of the algorithm with the experts, we recommend
using a well-established approach, such as the Wide-band Delphi method [4].
This is a forecasting technique used to collect expert opinion in an objective way,
and arrive at consensus conclusion based on that. Another similar estimation
approach is the Constructive Cost Model (COCOMO) [5].
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6 Related Work

Most security risk approaches aim to provide either quantitative or qualitative
assessments capturing the risk level at a single point in time, rather than con-
tinuous monitoring. However, there are also approaches that address dynamic
aspects and offer support for updating assessments based on new information.

Poolsappasit et al. [30] propose an approach for dynamic security risk man-
agement using Bayesian Attack Graphs (BAGs). This approach is dynamic in
the sense that it allows system administrators to tweak the probability of events
captured by a BAG in order to see how this propagates in the complete risk
picture. While their approach facilitates manual update of probability of events,
our method facilitates both manual and automatic update of the likelihood of
events indirectly through the different types of indicators. The manual update
in our method is based on input provided by representatives of the target under
analysis (business configuration indicators), while the automatic update is based
on input collected from vulnerability scanning, application-layer monitoring, and
network-layer monitoring.

The first use of measurable indicators as dynamic input to provide risk level
assessments based on CORAS was presented in [33]. This is a quantitative ap-
proach where indicators are represented by variables in arithmetic formulas for
computing risk levels, without using distributions or BNs. As argued by Neil et
al. [25] BNs provide a flexible and attractive solution to the problem of model-
ing (operational) risk. In particular, BNs enable an analyst to combine quantita-
tive information (e.g. available historical data) with qualitative information (e.g.
subjective judgments) regarding the loss-generating processes. In the context of
cyber-risk, BNs have been used for a variety of purposes, such as to model attack
graphs or loss event frequencies [30, 20].

The consequence assessment for the quantitative version of our approach is
based on the Loss Distribution Approach (LDA), which is typically used to model
operational risk and its insurability [22], provided that a sufficient amount of
data is available. In the LDA, the temporal occurrence of the losses is frequently
modeled by a Poisson process, while various families of distributions (Gamma,
Generalized Pareto, Lognormal, etc.) might be used to model the severity of
the losses. Biener et al. [3] study whether models which prove to be useful for
operational risk can also be applied to an analysis of cyber-risk. They conclude
that the LDA approach is suitable to model cyber-risk and that it provides useful
insights regarding, e.g., the distinct characteristics of cyber-risk with respect to
operational risk in general.

For the qualitative version of our method, we chose DEXi due to its sim-
plicity and ease of integration in the WISER framework. DEXi is one of many
approaches within the field of multi-criteria decision making (on which there is a
huge literature [37]), and has been tried out in a wide range of domains, such as
health care, finance, construction, cropping systems, waste treatment systems,
medicine, tourism, banking, manufacturing of electric motors, and energy [9,
12]. To the best of our knowledge, DEXi has not been used for security risk
assessment. However, it has been applied to assess safety risks within highway
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traffic [27] and ski resorts [8]. Although they focus on safety risks, the approaches
provided by Omerčević et al. [27] and Bohanec et al. [8] are similar to our ap-
proach in the sense that they use DEXi models as the underlying algorithm to
compute an advice based on relevant indicators. Unlike our approach, they do
not employ any dedicated risk modeling language to provide a basis for devel-
oping the DEXi models.

7 Discussion and Conclusion

The framework presented in Sect. 2 has been successfully demonstrated in three
different pilot organizations, using quantitative and qualitative algorithms based
on 10 different CORAS models, all developed following the method outlined in
Sect. 3. Due to the structure of a CORAS model and the simple relationship to
the algorithm structure, we believe that most cyber-risk practitioners who are
familiar with CORAS and the chosen algorithm language (R or DEXi) will have
little problems establishing the algorithm structure from a CORAS model.

Having established the structure of an algorithm, the remaining challenge is
to fill in the details, in particular deciding the impact of the indicators. This
amounts to defining the functions from indicators to the parentless nodes in the
BN skeleton (in the quantitative approach) or defining the scales and utility
functions for the attributes (in the qualitative approach). We provide further
guidelines for this in [13] and [14], respectively.

An inherent limitation of the approach is that new and unforeseen threats,
vulnerabilities and attack types can only be addressed by updating the relevant
risk models and algorithms (or creating new ones) manually. The only dynamic
changes automatically covered by the monitoring are those captured by changing
indicator values. Periodic evaluations are therefore needed to decide whether new
or updated models and algorithms are required. Of course, this limitation applies
to all methods that rely on human experts for risk identification.

Although our own experiences from applying the method and framework are
promising, further empirical studies are needed to evaluate them in a wider con-
text. In particular, we hope to investigate to what degree cyber-risk practitioners
outside the WISER consortium are able to establish algorithms that are suffi-
ciently correct to provide useful decision support for those in charge of dealing
with cyber-risk for an organization.
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