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Anticipating Emission-Sensitive

Traffic Management Strategies

for Dynamic Delivery Routing

- Revision-

Felix Köster, Marlin W. Ulmer, Dirk C. Mattfeld, Geir Hasle
m.ulmer@tu-braunschweig.de

Dear Editors:
we thank you for the opportunity to revise our paper. In the new version, we
have addressed the concerns of Reviewer 1 with respect to practical problem
and benchmark policies. Please find the review and our detailed responses
in the following.

Reviewer 1

Review

Synopsis

This paper has formulated a dynamic vehicle routing problem with stochas-
tic changes of travel time matrices (DVRPMC). The authors have treated
the problem as a Markov decision process model and applied a heuristic
based policy selection (both fleet dispatching and path selection) with the
objective of minimizing overall travel time.
This paper is a resubmission of a previous version of the same paper after
addressing some of the corrections from the reviewers of the first round. I
can see that most of the stated modifications has been performed.

General Technical Comments

My primary concern with this paper lies in the applicability of the solution
at hand. Although the authors have acknowledged in Page 9 Line 480-
482 that the Traffic Management Strategies (TMS) may have unintended
consequence on the output capacities, they have failed to express a major
limitation of such TMSs in reducing the emissions hotspots. Thus, the basis
for the problem at hand is questionable. I would like to see a concrete ex-
ample in the paper which describes a practical way of implementing a TMS
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where the travel time is increased without increasing the externalities e.g.
higher emissions at the bottlenecks created at the periphery of the metered
cordon. If diversion of vehicles from central business districts (CBD) hap-
pens globally using variable message signs (VMS) or telematics, then the
routing problem is similar to what is stated in Huang et al. (2017). I see
that the authors have compared a static policy with their optimized policy.
However, I would like to see a comparison provided by Huang et al. (2017)
and the proposed algorithm. Also, the way authors have argued that se-
quencing of customers is separate from path selection is not clear to me. I
would like to see a better explanation on this issue.

Response

We thank the reviewer for the generally positive assessment of our work.
The reviewer has two major concerns:

1. The assumptions made in the paper about TMS’s decisions and the
impact on emissions need to be justified more clearly.

2. Even though the problem addressed is stochastic and dynamic, the
determination of initial routes is one part of the problem. This sub-
problem is related to the work by Huang et al. (2017). A comparison
with the approach in Huang et al. (2017) would further strengthen the
contribution of the work.

In the new version, we address both remarks. We give a clearer justification
for our assumption made. We further highlight that our static policies are
in fact similar to the methods proposed in Huang et al. (2017). Please find
our detailed response to the two remarks in the following.

1. The assumptions we make about the TMS base on well-known mea-
sures such as traffic light coordination. These measures have been
established in the traffic research community as well as in practice for
a long time. As we describe in the paper, the particular measures
for our case study of Braunschweig are directly taken from Braun-
schweig’s TMS project. We give one example in Figure 8(b) of our
paper. For all details of the project, we refer to UVM (2015a,b) and
to http://www.uvm-bs.de/.

Another interesting question, the reviewer raises, is whether the TMS’s
decisions do not lead to increased overall emissions because vehicles
are redirected. Our response is twofold:

• First, the TMS focuses mainly on nitrogen oxides (NOx). Differ-
ent than for example CO2, NOx is not easily distributed by wind
but accumulates in local hot spots. Furthermore, NOx in high
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concentration is a major health risk. Thus, the TMS’ objective
is to avoid high local NOx concentrations. We compare in Figure
9 and in Figure 11 the traffic in hot spots during times of critical
concentration. We show that vehicles avoid these areas leading
to a more leveled emission.

• Second, we agree that the reviewer’s concern could be valid, that
reducing emissions in a small area of the city may it may signif-
icantly increase overall emissions. To show that this is not the
case, we analyze the impact on CO2 in Section A3 in the Ap-
pendix. We calculate the CO2 emissions based on assumption of
Ehmke et al. (2016), Huang et al. (2017) and show that we are
able to reduce emissions even though the objective of the logistic
service provider is not the reduction in emissions.

2. We thank the author for this helpful remark. Even though the focus
of our work is on dynamic real-time control of vehicles during the day,
determining initial tentative routes is one part of the algorithm. A
suitable determination is also important because we use a static pol-
icy as a benchmark to evaluate the impact of dynamic control. As
indicated in the previous version of the paper, we follow Huang et al.
(2017) in the determination of the static routes. We have now clarified
this in the new version of the paper. Huang et al. (2017) address a
static and deterministic problem with time dependent travel times as
well as a static and stochastic extension. The sequence of customers
is static (A-B-C-D), but the paths can differ. More specific, they al-
low different paths between the customers A and B, B and C, C and
D based on the time-dependent or stochastic travel times. To this
end, they used a modified Dijkstra-algorithm to determine the short-
est paths. They do not allow the change of the customer sequence,
for example A-C-B-D. In our work, we allow both: In every decision
point, we allow reordering the sequence of remaining customers and
we consider path flexibility between customers. In our case, the short-
est path between two customers can change due to a change of the
travel time matrix. As Huang et al. (2017), we incorporate this path
flexibility by using the modified Dijkstra-algorithm.

Huang et al. (2017) extend their work by incorporating stochastic
travel times. Again, their solution is a static route but with flexible
paths between the customers. They solve small instances with a two-
stage stochastic program and develop a “Route-First, Path Second”-
heuristic. In this heuristic, they determine the best route based on
expected travel time values. In their evaluation, the path is then se-
lected based on the travel time realization. This heuristic achieves
optimal solutions in 9 of 10 cases. In our paper, we use the same idea
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for our static policies. We fix the sequence of customers but allow
path flexibility. However, calculating the expected travel time values
is challenging because of the connection between travel times and the
stochastic emissions. Thus, we sample travel time realizations and de-
termine our paths on the sampled values. As Huang et al. (2017), we
allow path flexibility in our evaluation.

In the new version of the paper, we updated the literature review and
now discuss this relationship in more detail. We also refer to it in the
motivation and definition of our benchmark policies. We thank the
reviewer for this remark. It helps to further embed our work in the
literature and to strengthen the contribution.

Specific Comments

1. Abstract: The abstract contains more information than necessary es-
pecially on how TMS works. The authors need to clearly state what
is done in the paper, how it was done, some numeric results, and some
clear implications.

2. Page 2 Line 97: Strange use of the phrase “coordinated traffic light
interval”. Suggested phrase “improved coordination of traffic signals”

3. Page 7 Line 366: “. . . trajectory of has a peak above action level . . . .”
missing word/s between ’of’ and ’has’

4. Figure 3 and 4: Needs more description in the figure caption rather
than the main text.

5. Page 22 lines 1190-1196: Consider revising. Speed does not decrease
monotonically with capacity, neither does emissions. Please be cog-
nizant of these basic non-linear relationships throughout the paper.

6. Figure 9: Add descriptions of C and F in the caption. Need more
discussion on why the travel time did not reduce in “Polluted” areas
under static policies. It may not be this intuitive for the readers.

7. Figure 10: consider revising caption- “Reduction of (?) with respect
to . . . .”

Responses:

1. We updated the abstract with respect to your recommendations.

2. Thank you. We changed it to “coordinately changing the traffic light
intervals in the affected area.”

3. Thank you. We removed the “of”.
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4. Thank you. We followed your suggestion and extended the description
of the figures.

5. We are unsure about the remark. We do not assume linearity in our
speeds and/or emissions. As we state throughout the paper, we an-
alyze a variety of different speed patterns based on the TM-decision.
Our emissions follow a stochastic Gaussian process based on historical
observations.

6. Thank you. We followed your suggestion and extended the description
of the figure.

7. Thank you. We followed your suggestion and extended the description
of the figure.

References

Ehmke JF, Campbell AM, Thomas BW (2016) Optimizing for costs and emissions
in vehicle routing in urban areas. Submitted .

Huang Y, Zhao L, Van Woensel T, Gross JP (2017) Time-dependent vehicle routing
problem with path flexibility. Transportation Research Part B: Methodological
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UVM (2015a) Abschlussbericht der Phase 1. http://uvm-bs.de/sites/default/
files/UVM_Stufe_1_Schlussbericht.pdf, accessed: 2015-09-10.

UVM (2015b) Abschlussbericht der Phase 2. http://uvm-bs.de/sites/default/
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Highlights for Anticipating Emission-Sensitive Traffic Management Strategies for Dynamic Delivery 

Routing 

- First paper considering traffic management decisions in dynamic vehicle routing 

- Comprehensive Markov decision process model allowing the consideration of stochastic and 

correlated travel times 

- Dynamic routing policies anticipating potential future traffic management decisions 

- Comprehensive case study for the city of Braunschweig based on a real-world street 

network, realistic traffic management, and historic emission developments  

- High quality solution with benefits for logistic service providers and traffic management 
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Abstract

Traffic pollution is an increasing challenge for cities. Emissions such as nitrogen

dioxides pose a major health threat to the city’s inhabitants. These emissions

often accumulate to critical levels in local areas of the city. To react to these

critical emission levels, cities start implementing dynamic traffic management10

systems (TMS). These systems dynamically redirect traffic flows away from crit-

ical areas. These measures impact the travel speeds within the city. This is of

particular importance for parcel delivery companies. These companies deliver

goods to customers in the city. To avoid long delivery times and higher costs,

companies already adapt their routing with respect to changing traffic condi-15

tions. Still, a communication with the TMS may allow anticipatory planning to

avoid potentially critical areas in the city. In this paper, we show how communi-

cation between TMS and delivery companies results in benefits for both parties.

To exploit the provided information, we develop a dynamic routing policy an-

ticipating potential future measures of the TMS. We analyze our algorithm in20

a comprehensive case study for the TMS of the city of Braunschweig, Germany,

a city often used as reference for a typical European city layout. We show that

for the delivery company, integrating the TMS’ information in their routing al-

gorithms reduces the driving times significantly. For the TMS, providing the

information results in less traffic in the polluted areas.25

Keywords: Dynamic Vehicle Routing, Emissions, Traffic Management,
Stochastic and Correlated Travel Times
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1. Introduction

The demand for city transportation, individual and freight, is increasing

through continuous growing e-commerce and urbanization. This general in-30

crease in transportation has led to substantial challenges for both urban munic-

ipalities and logistic service providers. Both parties operate within the urban

traffic environment and an information exchange suggests itself. However, a

communication has not been established yet. In this research, we analyze how

the exchange of information, more specific, the provision of traffic control infor-35

mation from the urban municipalities to the service providers leads to benefits

for both parties’ objectives.

Urban municipalities need to enable effective and efficient transportation.

Still, they also need to provide a livable environment for the citizens without

pollutions (Zhou et al. 2015). As an example, an EU regulation limits the yearly40

average air pollution in cities to 40 µg/m3 of NO2 (EU 2015). To enforce these

regulations, many German cities like Braunschweig or Potsdam install emission-

sensitive online traffic management systems (TMS) to dynamically control traf-

fic flows based on current and expected emission levels (Diegmann et al. 2010).

The city’s TMS constantly monitors the pollution levels in hot-spot areas, where45

the emissions tend to be critical (Boltze and Kohoutek 2010, Celikkaya et al.

2016). If the emission levels exceed a threshold, the TMS changes the traffic

strategy (Han et al. 2015). These changes reduce and/or increase traffic capacity

in certain areas of the city by adapting traffic light programs and speed controls.

In essence, access to polluted areas is limited while traffic around and out of the50

hot-spots areas is accelerated by coordinately changing the traffic light intervals

in the affected area. These traffic strategies are dynamically changed during

the day with respect to emission levels. Furthermore, the emissions are subject

to stochastic elements like weather conditions and congestion. In many cases,

reliable predictions of future emission levels are possible only for a limited time55

horizon.

Major producer of urban emissions is the freight transport sector, especially
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Courier, Express and Parcel companies (CEPs). According to the US Environ-

mental Protection Agency, CEPs account for about 20% of the CO2 emissions

of all mobile sources, and for about 50% of the NOx and nearly 40% of the60

PMx emissions (Inventory 2005). Recently, CEPs initiate eco-friendly programs

(DHL 2016, UPS 2016). Nevertheless, in practice, CEPs often ignore emissions

in their transport activities due to the high cost-pressure keeping in mind that

last-mile delivery is responsible for more than 50% of the overall delivery costs

(Bernau et al. 2016). Hence, CEPs optimize and update their delivery routes65

with respect to delivery costs (Ehmke et al. 2016a). One of the main costs fac-

tors are the drivers’ working times. Because TMS decisions impact the travel

times within the city, these costs indirectly depend also on emissions. More

specific, a traffic strategy may change an individual shortest path and/or the

travel time between two customers. Each traffic strategy induces an individual70

travel time matrix and a change in the traffic strategy may render a current

routing plan inefficient. Furthermore, a mere reaction to new information may

be insufficient. Anticipation of potential future changes is necessary. There are

two measures to avoid inefficient planning by anticipation. The TMS can com-

municate the next planned decisions to the service provider and the provider75

can estimate potential future decisions based on current information by means

of predictive analytics. The derived information needs then to be integrated in

the planning algorithm.

In this research, we present dynamic routing policies for CEPs anticipating

potential traffic strategy changes. We focus on a CEP-routing problem where80

the TMS provides information about the current and the near-future traffic

strategy. The problem under consideration can be defined as dynamic vehicle

routing problem with stochastic changes of travel time matrices (DVRPMC).

A fleet of vehicles delivers goods to a set of customers. A set of travel time

matrices is given, each representing a traffic strategy. Initially, the goods are85

assigned to the vehicles. While the vehicles are on the road, the traffic strategy

and, therefore, the travel time matrix changes based on stochastic emission

developments. At any point of time, the dispatcher has access to the current
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and near-future traffic strategy as well as the current emission levels. Based on

this information, the dispatcher can dynamically adapt the planned routes for90

each vehicle of the fleet. The objective is to minimize the expected travel times

for delivery.

In the according Markov decision process model of the DVRPMC, we expe-

rience curses of dimensionality in all capacities. The number of states is vast

because of the exponential increase with respect to the number of customers.95

The information space models the potential emission changes and is therefore

continuous. Finally, the action space is large since it incorporates routing deci-

sions. To account for the large state and information space, in every decision

point, we apply a heuristic policy sampling emissions and evaluating current

decisions with potential future developments. To account for the large action100

space, our policy identifies critical areas in the matrix with potentially long

travel times. We incorporate these areas in the travel time matrix in such as

way that we can solve the resulting model with state of the art routing software

for delivery planning. The solution determines the current routing plan and the

next customer to visit.105

We evaluate our method for a case study for the City of Braunschweig,

Germany. Braunschweig represents the layout of a “standard” medium-sized

city and is therefore often used as reference city in mobility research (DLR 2017).

We draw on historical emission observations and test the policy for instance

settings varying in the number of vehicles and the TMS’s impact. We compare110

our policy with static routing and dynamic routing on current information. Our

analysis provides two main managerial implications:

1. Our anticipatory dynamic routing method reduces travel times for the

CEP on average by 6.8% and up to 16.0%. The reduction is particularly

high if the number of deliveries per vehicle is large and the impact of the115

TMS’s decisions is high.

2. A cooperation between city’s TMS and CEP leads to an average reduction

of CEP-traffic in polluted areas by 54.6%. The cooperation is therefore

4
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highly beneficial for both parties.

Our contributions are as follows. This paper is the first quantifying and120

analyzing how a cooperation of traffic management and CEP lead to benefits

for both. With the DVRPMC, we provide a new and relevant dynamic routing

problem reflecting emissions and TMS in the decision making. We further pro-

vide a comprehensive Markov decision process model enabling the depiction of

stochastic correlated travel times, a feature generally neglected in the literature.125

Our work is similar to the recent suggestion by Gendreau et al. (2016) to draw

on a “set of suitable designed scenarios” for different travel time patterns.1 Our

presented solution method is able to incorporate correlation and significantly

improves solutions with respect to the objectives of CEP and TMS.

This paper is outlined as follows. We present TMS in §2. In §3, we model130

the DVRPMC as a Markov decision process. We present our policy and the

benchmark heuristics in §4. In §5, we compare the policies for a case study of

the City of Braunschweig. The paper concludes with a summary and an outlook

in §6.

2. Traffic Management135

In this section, we describe how the TMS changes their strategies and how a

strategy changes the travel times within the city. The TMS controls the urban

traffic flows with respect to many different influencing factors such as commuter

travel, accidents, and congestion. Recently, TMS additionally considers the

emission levels within the city which are often highly volatile and require short-140

term reactions. In this paper, we focus on the TMS’ decision making with

respect to these emissions. We first depict how the TMS monitors the emissions

at hot-spots within the city. We then show how these emissions impact the

traffic strategy.

1For a comprehensive literature review, we refer to §A.1 in the Appendix.
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Figure 1: Three different NO2 trajectories

2.1. Emission Monitoring145

In the city area, a set of hot-spot stations is given: S = {σ1, . . . , σm}, each

monitoring an individual local emissions behavior N(σ) ∈ R+. The emissions

are monitored at certain measurement times I = {I1, . . . , Imax}. In Braun-

schweig, the emissions are measured every hour.

The values of NO2 over the day show a stochastic behavior. To display150

the volatility and stochasticity, we analyze three consecutive Wednesdays for

Braunschweig along with the average of the data set in Figure 1. The graph

shows the NO2 pollution in µg/m3 on the y-axis and the time of the day on

the x-axis. The threshold forcing a reaction of the TMS is τ = 60, indicated

by the dotted horizontal line. In two out of three trajectories, we observe a155

morning peak at 8 a.m., followed by a drop around noon and a rise in the later

afternoon to evening. This roughly corresponds to commuting traffic. However,

we observe major differences for all three trajectories. The trajectories of the

6th of August shows high emission levels the entire day. One week later, the
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Figure 2: Emission Forecast and Three Potential Emission Developments

pollution is low with about 25 µg/m3. On the 20th of August, the trajectory160

has a peak above action level from 10 a.m. to 2 p.m. Thus, each individual

trajectory may lead to a significantly different reactions of the TMS.

Usually, the TMS is able to forecast the emission developments NF for a

certain horizon F . That means that within this horizon, the emission devel-

opment can be estimated with high accuracy. After this horizon, the emission165

development is uncertain.

Figure 2 shows an example of this forecast and three potential later emission

developments at one station. The current point of time is 8 in the morning. The

current emission level is 40. In this example, a forecast horizon of 3 hours is

assumed. That means that until 11 a.m., the development of the emissions is170

known. This is indicated by the solid line. In the example, the emission level

rises above the threshold at 10 a.m. At this point of time, the TMS needs

to react. After 11 a.m., the development is uncertain. Figure 2 shows three

potential realizations, each leading to different reactions by the TMS. The first
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development indicated by the dashed line leads to two additional reactions. The175

second development indicated by the dotted line leads to no further reactions

(at least no changes induced by this station). The third development leads to a

change from active to inactive again.

If the emission level N(σ) at station σ exceeds the threshold level τ , the

status of this area is set to “active”. This status change forces a reaction to avoid180

further pollution in this area. If the emission level drops under the threshold

value, the status is set to “inactive” again. Consequently, each hot-spot has two

statuses.

2.2. Traffic Strategy

In case the threshold for one or several hot-spots is exceeded, the traffic185

management reacts. Each reaction activates a specific traffic strategy. A traffic

strategy is an orchestrated set of traffic actions such as traffic light or speed

control. The aim of a traffic strategy in to allow a steady flow out of a critical

area and to avoid further flows into this area.

The statuses of all hotspots can be modeled as an m-dimensional binary190

vector. Each vector results in an individual traffic strategy. Thus, the overall

set of strategies is at most 2m. In the following, we describe in a small example

how a status-change of a hot-spot changes the traffic strategy. Figure 3 shows

a network with only one hot-spot station and therefore two potential strategies.

The network in this example is a Manhattan-style-grid of overall 40 segments.195

The hot-spot station is located in the center of the grid and is indicated by

the triangle. This one hot-spot station leads to two potential strategies. These

strategies vary in the travel time on each segment. The travel time is either 5

, 10, or 20 minutes per segment, indicated by the solid black, solid grey, and

dashed black line. The “inactive” Strategy 1 allows the same travel time of 10200

minutes on all segments of the network indicated by the grey lines. The sec-

ond, “active” strategy leads to heterogeneous travel times within the city. This

strategy aims on avoiding downtown traffic around the hot-spot. Thus, around

the hot-spot, the travel times per segment is increased to 20 minutes while at
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Strategy 1 Strategy 2

5	min 10 min 20	min

Figure 3: Example of a Hot-Spot Station and two Strategies: The example depicts a
Manhattan-grid network. The hot-spot is indicated by the triangle in the center. The line
types indicate different travel times for different segments of the network.

the outskirts of the network, the travel times are reduced. A communication205

of this information by the TMS incentivizes drivers to avoid downtown and use

the fast alternative segments.

For the purpose of presentation, Figure 3 is a simplified depiction. The

traffic strategies are more complex than depicted in the example. First of all,

the example ignores that the flow capacity out of the critical central area is210

usually increased while the capacity into the area is decreased. Second, there

are usually several hot-spot stations distributed in the city.

3. The DVRPMC

In this section, we define the dynamic vehicle routing problem with stochastic

changes of travel time matrices (DVRPMC). We first give a problem statement.215

We then define the problem as a route-based Markov decision process (MDP,

Ulmer et al. 2016). We end this section with an example of the MDP.
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3.1. Dynamic Vehicle Routing Problem

The problem under consideration is a parcel delivery problem where a fleet

of vehicles delivers parcels to a set of customers. Initially, the parcels are dis-220

tributed to the vehicles. Over the day, the parcels are delivered. For each

vehicle, the route may be dynamically adapted due to newly revealed travel

time information.

Mathematically, a fleet of o vehicles V = {v1, . . . , vo} delivers goods to a set

of known customers C = {C1, . . . , Cn}. (In the case study in §5, a customer225

represents a district within the city.) The network is defined as a complete

Graph G = (ν, ε) consisting out of nodes ν and edges ε. The customers C

are located on a subset of the nodes. Node D represents the depot. Each

customer has the same service time ts. The travel time matrix M between the

customers is stochastic and depends on the traffic strategies introduced in §2.230

Each strategy induces a travel time matrix. In the event that a vehicle is on the

road during a strategy change, the remaining travel time is determined by the

function ∆. Function ∆(Mold,Mnew, Corigin, Cdestination, δ) bases on the old and

new matrices Mold,Mnew, the corresponding customers the vehicle traverses

between Corigin, Cdestination, and the time already spent on the connection δ.235

This function ∆ may be chosen freely. In our computational experiments, we

model this function by considering the current position of the vehicle in the city’s

street segments. We then draw on the Dijkstra-procedure for time-varying travel

times from Fleischmann et al. (2004).

There are two types of decision making. First, the dispatcher decides about240

the initial assignment of goods to vehicles. This assignment is permanent be-

cause the goods are loaded to the vehicles. Second, for each vehicle, the dis-

patcher dynamically routes the vehicles. To this end, the dispatcher initially

determines a route θ = (D,Cθ1 , . . . , D) serving all assigned customers and re-

turning to the depot. Over the day, the matrix M may change several times.245

This instantly changes the travel times for all vehicles. This change also im-

pacts a vehicle currently traversing between two customers. The sequence of

customers of a vehicle can only be changed when arriving at a customer. Be-
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cause dispatcher and drivers usually communicate via mobile phones, we do

not allow diversions. When the vehicle arrives at a customer, this customer is250

serviced and, therefore, neglected in future considerations. At this point, the

dispatcher can update the route of this vehicle. The objective is to minimize

the expected sum of travel times for all vehicles.

3.2. Markov Decision Process

The DVRPMC is a stochastic and dynamic vehicle routing problem and can255

be modeled as a route-based Markov decision process. In a Markov decision

process, decision states are connected by decisions and stochastic transitions.

In each decision state, a decision is determined and the revelation of stochastic

information leads to the next decision state.

For the DVRPMC, the initial state S0 consists of the set of customers C260

and the current travel time matrix M0 ∈ M of the overall set of travel time

matrices M. In the initial decision, the goods of the customers are distributed

to the vehicles. After that, the assignment of customers is permanent. Thus,

the MDPs for the vehicles are independent and we can consider each vehicle

individually.265

A vehicle starts and ends its tours at the depot D. A decision point k occurs

if the vehicle is located at a customer. A state Sk = (tk, lk, Ck, θk,Mk, Nk)

consists of the point of time tk, the vehicle’s current location lk, the customers

still to visit Ck ⊆ C, the current planned tour θk, the active travel time matrix

Mk ∈ M, and the vector Nk representing the current emission levels for every270

station σ ∈ S. Decisions xk ∈ X (Sk) are made on the routing update θxk and

therefore the next customer to visit Cnext. The costs of the decision is the

travel time R(Sk, x) to the next customer Cnext. Notably, R(Sk, x) is a random

variable due to possible matrix changes. The stochastic transition ωk consists of

the vehicle traveling to the next customer, serving the customer, and a potential275

change of the active travel time matrix. Thus, ωk changes the time tk+1 to the

point of time the vehicle is located at location lk+1 of the now served customer

Cnext. The new planned route θk+1 is set as θxk without Cnext. The point of
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time tk+1 is uncertain due to potential stochastic matrix changes. It further

changes the emission levels of vector Nk and the according matrix Mk to Mk+1280

and Nk+1. The new state is then Sk+1 = (tk+1, lk+1, Ck+1, θk+1,Mk+1, Nk+1).

A termination state SK = (tK , D, ∅, θK ,MK) is given in case CK = θK = ∅ and

lK = D.

A solution for the DVRPMC is a decision policy π ∈ Π. A policy π =

(Xπ
0 , . . . , X

π
K−1) is a sequence of decision rules Xπ

k . For a state Sk, a decision285

rule determines the according decision x = Xπ
k (Sk) to take. The objective of the

DVRPMC is to find an optimal policy π∗ that minimizes the expected overall

travel time as depicted in Equation 1.

π∗ = arg min
π∈Π

E

[
K∑
k=0

R(Sk, X
π
k (Sk))|S0

]
(1)

3.3. Example

In the following, we give an example for the MDP. We draw on the same290

network introduced in §2. In the example, we consider one vehicle and two

customers still to serve. The locations of the vehicle, customers, the depot, and

the current planned tour are depicted in Figure 4. The vehicle is indicated by

the grey circle, the customers by the black circles, and the depot by the square.

The state is depicted on the left. For the purpose of presentation, we omit295

further state information such as point of time or emissions. As we can see,

the current traffic strategy is Strategy 1 from the example in Figure 3. This

strategy results in homogeneous travel times for each segment. In the center

and on the right side of Figure 4, two potential decisions are shown. Decision

x1 determines the visit of Customer 2 followed by the visit of Customer 1. The300

planned tour leads through the city center. Decision x2 reverses the sequence

of visits. The planned tour avoids the city center. Once a decision is made,

the vehicle starts traveling to the first customer of the tour. During travel, the

traffic strategy and thus the arrival time and travel time matrix may change.

The next decision point occurs when the vehicle has served the next customer.305
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Customer Depot

State Decision Decision 

1

2

Vehicle

1

2

1

2

Next Visit Planned Tour

Figure 4: Example of the Markov Decision Process: The figure depicts a decision state and
two potential routing decisions.

4. Method

In this section, we describe our method. We first give a brief motivation

why anticipation is beneficial. We then present the steps of the method process

in one decision point as well as the algorithmic procedure. Finally, we describe

the tuning of the algorithm and the benchmark policies.310

4.1. Motivation

Solving the MDP by recursion is hardly possible due to the curses of dimen-

sionality. The state space is vast because a state contains the set of customers

to visit as well as the (continuous) emission levels at all stations. The number

of decisions is large because decisions are made about the update of route θk.315

Finally, the transitions reveal new emission levels. Thus, the number of poten-

tial transitions is nearly infinite and the expected travel times are difficult to

calculate. Instead of solving the MDP, we present a heuristic method. This

method aims on minimizing the expected travel time while avoiding “critical”

areas likely to be impacted by changes in the emission level and the travel time320

matrices, respectively. Revisiting the examples in Figure 3 and Figure 4, we see

that, based on the current travel time matrix, decision x1 leads to a planned

tour duration of 100 minutes. Decision x2 leads to a duration of 120 minutes.
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Figure 5: Impact of Strategy Change on Routing Decisions

Still, in case the emission level downtown is exceeded and the TMS changes to

Strategy 2, these durations may change.325

Figure 5 shows the realized travel duration for each decision assuming a

strategy change and ignoring any service times. For the sake of simplicity, we

ignore potential future routing updates and only look at one potential change.

The x-axis depicts the (future) time when the change to Strategy 2 occurs. The

y-axis shows the according travel duration for decisions x1 and x2. Comparing330

the two decisions, we observe that an early change may lead to a longer duration

for Decision 1 and a shorter duration for Decision 2. Decision 2 avoids the

critical downtown area only operating on the outskirts. If the time until the

strategy change increases, this behavior changes. Furthermore, we observe that

Decision 1 highly profits from a strategy change in about 50 minutes. At that335

point of time, the vehicle has left the downtown area. Now, it can exploit

the faster travel in the outskirts resulting from Strategy 2. In essence, we see

that the quality of a decision significantly depends on the changes in the traffic

strategies. Anticipation of future changes is necessary.
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Figure 6: BPMN-Model of the Decision Process

4.2. Procedure340

In this section, we give a general overview over the procedure applied in the

decision process. We provide algorithmic details in the next section. To antic-

ipate future changes, we can draw on two different sources of information: the

forecast provided by the TMS as well as information derived from the stochas-

tic emission process. In this section, we describe how our methods uses both345

sources of information to derive a routing decision. To this end, our method

draws on the given information by the TMS and samples potential emission

developments over the day. These sources of information are used to derive

an anticipatory travel time matrix. Based on this matrix, our policy applies

an industrial standard solver to minimize the duration of the updated routing350

(Hasle and Kloster 2007).

The process is described in Figure 6 using the business process model and

notation-language (BPMN). Figure 6 shows the three participants, the drivers,

the dispatcher, and the traffic management. The process starts when a driver

requests new directions from the dispatcher. At that point of time, the dis-355

patcher requests a forecast from the traffic management. Once the forecast is

provided, it is stored and used to generate samples of potential future emis-

sions. Each of these samples provides a development of travel time matrices for

the remaining customers, the driver still needs to serve. Based on these matri-

ces, a “target” matrix is determined to allow the application of the standard360
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solver. The routing update resulting from the solver is then communicated to

the driver.

4.3. Algorithm

Pseudocode of our method is presented in Algorithm 1. Inputs of the algo-

rithm are the point of time tk, the end of the sampling horizon tmax, a current365

location lk, the set of customers to visit Ck, the current emission level Nk, and

the set of ι measurement times I1, . . . , Iι with tk ≤ I1 < I2 < · · · < Iι ≤ tmax.

Notably, we do not assume a time limit for the vehicles but our method requires

an estimate tmax when the vehicles returned to the depot. This estimate is

necessary to determine how far the emissions need to be sampled. Because the370

exact time depends on future realizations and decisions, it cannot determined

with certainty but is approximated by a heuristic.

The algorithm generatesH potential trajectories of emissions Ñ i, i = 1, . . . ,H.

A trajectory is generated by function GenerateTrajectory() with input parame-

ters Nk, the forecasted emission levels NF and I. Notably, each trajectory is a375

m×ι-dimensional matrix of emission values. Each entry represents the emission

in one of the ι measurement times at one of the m stations. The generation

of the trajectories relies on the information given by the traffic management

NF until the forecasting horizon F . After the horizon, the algorithms samples

emissions.380

In each measurement point, each trajectory Ñ induces a traffic strategy and

therefore a travel time matrix M(I, Ñ) for the set of customers Ck and the cur-

rent location lk. These matrices are generated with function GenerateMatrix()

with input the current emission levels Ñ , the set of customers Ck, and the lo-

cation of the vehicle lk. Overall, the algorithm obtains ι · H matrices. These385

matrices are summarized to a single target matrix M∗ by taking the average of

the individual matrices’ values.

Based on this matrix M∗, we determine the routing with minimal travel du-

ration by function Solve(). The obtained route θxk is the update of our routing.

This routing is implemented until the next decision point occurs.390
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Algorithm 1: Anticipatory Routing Algorithm

Input : Point of Time tk, End of Time Horizon tmax, Current Location
lk, Customers Ck, Current Emission Level Nk, Forecasted
Emission Levels NF , Measurement Times I

Output : Routing Update θxk
1 h← 1
2 // Initialization

3 M∗ ← 0|Ck|+1,|Ck|+1

4 while h ≤ H // For the Number of Samples

5 do

6 Ñ ← 0m,ι
7 Ñ ← GenerateTrajectory(Nk,NF , I) // Generate Trajectory

8 i← 1
9 while i ≤ ι // Generate Matrices

10 do
11 M ← 0|Ck|+1,|Ck|+1

12 M ← GenerateMatrix(Ñi, Ck, lk)

13 M∗+ = 1
H·ιM // Update Target Matrix

14 i← i+ 1

15 end
16 h← h+ 1

17 end
18 θxk ← Solve(lk, Ck,M∗) // Solve Routing Problem

19 return θxk

Notably, for the first decision point of the DVRPMC, the customers need to

be distributed to the vehicles before the vehicles leave the depot. To determine

the initial distribution, we apply the same procedure. We estimate the future

development and determine the routing that minimizes the according travel

times.395

4.4. Tuning

In the following, we describe the functions of Algorithm 1 in detail.

Determination of the Horizon The value tmax should reflect the point of

time the vehicle is assumed to have returned to the depot. To determine

tmax, we solve the routing problem based on the current matrix Mk by400

means of a nearest-neighbor heuristic.
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GenerateTrajectory We set the number of samples to H = 50. The trajecto-

ries are a combination of the forecast until horizon F . Then, the emissions

are sampled. We generate the sampled realizations by a Gaussian process.

The properties of the process are derived from the historical observations.405

For detail of the process, we refer to §A.2 of the Appendix.

GenerateMatrix The matrix for each strategy is determined by a shortest-

path, time-dependent Dijkstra-procedure.

Solve For every vehicle and every state, we need to solve an open TSP starting

from the current location, serving the remaining customer, and ending at410

the depot. To this end, we draw on the commercial solver SPIDER (Hasle

and Kloster 2007). For each open TSP, we run the solver for 20 seconds.

The initial VRP is solved via SPIDER as well. The runtime for the VRP

is set to 500 seconds. Random checks show the solver is generally able to

find the optimal solution within this amounts of time.415

4.5. Benchmark Policies

In this section, we define the benchmark policies differing in the initial as-

signment and in the dynamic adaptions of routing. First, to analyze the impact

of the initial distribution of parcels, we analyze three static routing heuristics

each with a different initial distribution. Static policies determine the routing420

once and then follow the determined sequence of customers regardless of fu-

ture changes. These policies are denoted with πS . We test three static policies

each utilizing different degrees of information (none, current, and forecasted in-

formation). The first static policy πSN does not draw on any information and

determines the routing based on the travel times when no hotspot is active.425

The second policy πSC determines the routing based on the current travel time

Matrix M0. The third static policy πSF integrates the forecasted travel times.

Notably, policy πSF is similar to the heuristic policy introduced in Huang et al.

(2017) for a static and stochastic, time-dependent vehicle routing problem.
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To analyze the impact of dynamic updates of routing and forecasts, we430

present a dynamic benchmark policy πDC only drawing on the current infor-

mation. The initial distribution is similar to πSC . Following the notation, our

presented method can be denoted as a dynamic policy with forecasts, πDF . Over-

all, we analyze five different policies, the static policies πSN , πSC , πSF and the two

dynamic policies πDC and πDF .435

5. Case Study

In this section, we present the case study for the city of Braunschweig. We

first define the instance settings in §5.1. We then compare the results of the

five policies and show the benefits of dynamic routing and anticipation in §5.2.

Finally, we analyze the results in detail in §5.3. We show in particular, how our440

policy leads to less traffic in polluted areas.

5.1. Instances

The instance design comprises the city layout of Braunschweig as well as the

hotspots and the emission development. In the following, we present the layout

and road network of Braunschweig as well as the locations of the hot-spots. We445

then describe the data we derive the emission developments from. Finally, we

define how the TMS decision’s impact the travel times within the city.

Layout: City of Braunschweig

The city of Braunschweig is a medium sized city of about 240,000 residents.

The road network consists of three rings around the city center and resembles a450

very typical European city layout. Braunschweig has one small inner-city street

ring around the city center and one larger city ring. An outer-city highway ring

encircles the city by about 75 % except on the east side. The street network

for the simulation is created with data from OpenStreetMap. The road data

was selected and then filtered and processed to its state as seen in Figure 7. It455

contains 880 arcs and 567 nodes. The road network is represented in black. The
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Figure 7: City Layout of Braunschweig ( c©OpenStreetMap)

depot is represented by the grey square. It is located at the DHL distribution

center of Braunschweig in the south-east.

Instead of single customers, the city is divided into a set of 27 districts.

The districts C1, ..., C27 are represented by the dots in the map. Each district460

represents an actual residential cluster in Braunschweig.

Hot-Spot Layout

In the following, we describe the hot-spot layout. The layout is proposed

by the city’s working group on traffic management UVM (2015a,b). These hot-

spots are already installed. The left side of Figure 8a shows the five hot-spot465

locations in Braunschweig where emissions are measured on a hourly basis. The

according red boxes indicate areas where the yearly NO2 average exceeds 40
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(a) Hot-Spots and critical pollution areas in the City
of Braunschweig

(b) Effect of Traffic Manage-
ment Actions on Hot-Spot 1

Figure 8: Hot-Spots in City of Braunschweig UVM (2015a,b)

µg/m3 and the yellow boxes indicate areas, where NO2 pollution is critical and

lies between 36 to 40 µg/m3 on average.

It has been shown that the emissions at Hot-Spots 2 and 5 are strongly470

correlated to the emissions of other hot-spots. Thus, they are excluded and

only the other three Hot-Spots 1, 3, and 4 are considered in the study. If the

threshold at a hot-spot is exceeded, according measures are taken. The impact

of the measures for Hot-Spot 1 is depicted in Figure 8b. Green road segments

represent a decrease in traffic and red segments reflect an increase in traffic. We475

see that traffic in the affected area (Hildesheimer Str.) is redirected to adjacent

areas (Celler Str., Hamburger Str.). Similar measures are taken if the threshold

at the other two hot-spots is exceeded. Overall, this leads to 23 = 8 potential

strategies.

Emissions480

The emission trajectories are derived from an air pollution data set provided

by Environmental Department of Lower Saxony, Germany. The original data

is summarized on city level. Even though there is a correlation between the

emission levels within a city, the levels can vary significantly within different

parts of the city. Thus, for each of the hot-spots, we draw on the emission485
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development of a different city but on the same day. We select the data of

Braunschweig, Osnabrück and Hannover. The latter two cities are in vicinity

to Braunschweig and their data shows a strong Pearson coefficient correlation

of 0.75 and 0.65 compared to the data set of Braunschweig. Each of the three

hot-spots corresponds its trajectory data to an individual monitoring point from490

a three month period in the beginning of 2016. The data set comprises 90 days.

Impact of Traffic Strategies

We differentiate between two types of road segments. The first segment

represents main roads connecting the districts. These roads are mainly affected

by the TMS decisions and the speed on these roads depends on the applied495

traffic strategy. The second type of segments represents smaller side-roads. The

speed on these segments is set to 25 km/h lying between the averages of major

EU cities (Statista 2008).

For the roads affected by TMS decisions, we vary the impact of the traffic

strategies on the travel speeds. We generate four different speed patterns. These500

patterns differ in the assumed speed in areas with increased and decreased traffic

capacities. In areas with decreased capacity, we generate instances with medium

and high impact. A medium impact sets the average travel speed to 10 km per

hour. A high impact decreases the speed to 5 km per hour. In areas with

increased capacity, the medium impact increases speed to 30 km per hour while505

high impact increases the speed to 40 km per hour. The combination results in 4

different impact settings: medium decrease-medium increase, medium decrease-

high increase, high decrease-medium increase, and high increase-high increase.

Fleet Size and Service Time

We vary the number of vehicles between 2 and 5. To reflect realistic working510

hours, we vary the service time per district with respect to the number of ve-

hicles. If the number of vehicles is small, a vehicle serves more districts. Thus,

the service time per district is short. The service times are 15 minutes for 2

vehicles, 30 minutes for 3 vehicles, and 60 minutes for 4 and 5 vehicles.
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Figure 9: Comparison of the Policies: Reduction in Travel Time and Time Spent in Polluted
Areas. Letter “C” indicates the policies relying on current information. Letter “F” represents
policies forecasting future developments.

5.2. Reduction in Travel Duration515

In this section, we depict the improvement of the policies compared to the

static policy without any information πSN . We define the improvement of a

policy as the travel duration reduction of a policy π compared to πSN . Let

∆(π) denote the average travel duration for policy π. Then, the improvement

is defined as520

∆(πSN )−∆(π)

∆(πSN )
.

That means, that the improvement reflects the percentual decrease in travel

duration compared to πSN . In the same way, we calculate the improvement with

respect to the amount of time vehicles spend in a polluted area. The average

results are summarized in Figure 9. On the x-axis, the four policies are depicted.

The left y-axis and the bars show the improvement in travel duration. The right525

y-axis and the squares show the improvement with respect to travel in polluted

areas. We see a strong correlation between improvement in travel time and time

spent in polluted areas. The proposed policy πDF outperforms all other policies

with respect to reduction in travel time and time spent in polluted areas. The
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average improvements compared to the static benchmark policy are 6.8% in530

travel time and even 54.6% with respect to travel through polluted areas. That

means that the time spent in polluted areas is less than half compared to the

static benchmark policy. Comparing the static and the dynamic routing poli-

cies, we observe a significant gap in improvement. The static policies drawing

on current and even forecasted information lead to reductions of less than 2% in535

both travel time and time spent in polluted areas. Thus, dynamic reactions to

the TMS decisions are highly beneficial. The dynamic policy πDC only drawing

on current information already provides improvements of about 6%. Integrat-

ing forecasts about future developments further increases the improvement. The

same tendency can be observed by analyzing the fuel consumption for the differ-540

ent policies as shown in §A.3 in the Appendix. Dynamic reaction and forecasts

reduce the required fuel and, therefore, the emissions significantly.

The individual results can be found in Table A3 in the Appendix. Generally,

we observe a slight increase in improvement with an increasing number of vehi-

cles. This can be explained that, with an increase in the number of vehicles, each545

vehicle serves less districts. That means that the routing flexibility of a vehi-

cle decreases. While the differences for varying number of vehicles is relatively

small, we observe a significant variance with respect to the traffic strategy’s

impact on the travel times. In the following, we analyze this phenomenon in

detail.550

5.3. The Impact of TMS

In this section, we analyze the impact of the TMS on the travel duration and

the routing decisions. First, we show that the improvement of dynamic routing

and anticipation increases when the impact of the TMS-decisions on the travel

times is high. Then, we analyze how the dynamic routing changes the time555

vehicles spend in polluted areas in detail.
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Figure 10: Reduction in Travel Times for Varying TM-Impact on Travel Times

Varying the Impact on Travel Times

In the following, we analyze how the improvement changes with respect to

the TMS’s impact on the travel time. To this end, we differentiate the results

by the speed pattern. We recall the four speed patterns as medium decrease-560

medium increase, medium decrease-high increase, high decrease-medium in-

crease, and high increase-high increase. For each of these patterns, the average

improvement is shown in Figure 10. We observe that the differences between

medium and high increase is relatively small. That indicates that spending

significant resources to increase the speed in non-polluted areas may not be565

beneficial for CEPs. Comparing the differences between medium and high de-

crease, we observe a different behavior. While the improvement for a medium

decrease is relatively low, the improvement reaches nearly 10% for a high de-

crease of travel times in polluted areas. That means in cases where the TMS

significantly reduces capacity in polluted areas (or even bans traffic in these570

areas), anticipation and dynamic rerouting becomes of particular importance.

25

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400



Travel Through Polluted Areas

In the previous section, we have shown how dynamic and anticipatory rout-

ing results in a reduction of travel time for the CEP. We now show how the

cooperation between CEP and TMS results in significant reduction of traffic575

through the polluted areas. To this end, we compare the routing behavior πDF

to πSN for the instance settings with 2 vehicles and high impact of the TMS.

Figure 11 visualizes how often a vehicle traverses a polluted area. Green seg-

ments indicate that a vehicle travels this segment at times the segment was not

affected by pollution. That means that the vehicle travels these segments in580

times when there is no decrease in capacity in and into these segments.

This also applies for segments such as the outer-city highway ring in the

west of Braunschweig which is never affected by TMS decisions. Red segments

indicate segments where a vehicle travels while this segment is polluted. The

widths of the red segments indicate the frequency with which a polluted segment585

is used. The more often a segment is used, the wider is the red line. On the left

side the results for the static routing by policy πSN is shown. On the right side

the results for the dynamic and anticipatory policy πDF are depicted.

First, we recall that the locations of the three hot-spots are in the west of

Braunschweig, in the city center, and in the east of Braunschweig. Comparing590

static and dynamic routing, we observe a significant reduction of travel time

in the western hot-spot area. In the dynamic routing policy, the vehicles often

use the outer-city highway ring and avoid the hot-spot area in case of pollution.

Similar behavior can be observed for the downtown hot-spot. Notable is the

development around the eastern hot-spot. Generally, no improvement by the595

dynamic routing can be observed. In some segments, there is even a more

intense use of the roads despite pollution and reduced speed. This behavior

indicates that in the east of Braunschweig, there is a bottleneck. In this part

of town, there is no alternative for the vehicles to avoid this critical area. In

contrast to the western part of Braunschweig, there is no outer-city highway600

ring. This is an interesting observation and may assist city planners in their
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(a) Static Routing πS
N (b) Dynamic Routing with Forecast πD

F

Figure 11: Travel through Polluted Areas ( c©OpenStreetMap)

decisions on improvements of the road network. A bypass in the east may be

highly beneficial.

6. Conclusion

Many cities worldwide face significant challenges with air pollution. To avoid605

high emission levels in local areas of the city, city municipalities implement traffic

management systems (TMSs). The TMS dynamically controls traffic flows. In

several hot-spots, the TMS monitors emission levels and reacts in cases the

levels exceed a threshold. A reaction is an orchestrated set of actions leading

to a traffic strategy. Each strategy changes the capacities in the road network610

and thus the travel times in the affected areas. Courier and parcel services

(CEPs) route a fleet of vehicles to serve customers within the city. Thus, the

CEPs are particularly impacted by the TMS’ decision. In this paper, we have

shown how a CEP’s reaction to and anticipation of potential strategy changes

reduces travel time significantly. To this end, we have presented an anticipatory615
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dynamic routing policy. Our policy samples future emission levels and strategy

changes to avoid critical areas in the city. We apply our policy for the city

of Braunschweig, often used as a reference for a typical European city layout.

Our method provides benefits for the the service provider and the city. First,

it reduces the CEP’s average travel times by up to 16%. Second, it reduces620

the time vehicles spent in polluted areas by more than 50%. Thus, a close

cooperation between TMS and CEP leads to a win-win-situation.

There are several avenues for future research. Even though Braunschweig

reflect a typical city layout with a ring structure, it may be worthwhile to analyze

our policies for other city networks. As we have seen, even anticipatory routing625

may not prevent all travel through polluted areas. Our policy is therefore an

indicator for potential bottlenecks in a city network. Future research may use

the presented problem and method to evaluate the impact of road network

decisions such as the addition of a new bypass or the increase in road capacity.

It may also be promising to further increase the cooperation between TMS and630

CEPs by defining strategies enabling efficient and fast delivery.
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Diegmann V, Neunhäuserer L, Gässler G (2010) A monitoring system to control effects665

and effectiveness of traffic measures in urban areas. IVU.

DLR (2017) Application platform for intelligent mobility. URL http://www.dlr.de/

ts/en/desktopdefault.aspx/tabid-6422/#gallery/25304.

Eglese R, Bektas T (2014) Green vehicle routing. Vehicle Routing: Problems, Methods,

and Applications 18:437.670

Ehmke JF, Campbell AM, Thomas BW (2016a) Optimizing for costs and emissions

in vehicle routing in urban areas. Submitted.

Ehmke JF, Campbell AM, Thomas BW (2016b) Vehicle routing to minimize time-

29

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

http://www.sueddeutsche.de/wirtschaft/liefergesellschaft-alles-immer-bitte-sofort-1.3154867
http://www.sueddeutsche.de/wirtschaft/liefergesellschaft-alles-immer-bitte-sofort-1.3154867
http://www.sueddeutsche.de/wirtschaft/liefergesellschaft-alles-immer-bitte-sofort-1.3154867
http://dx.doi.org/https://doi.org/10.1016/j.trd.2017.04.016
http://dx.doi.org/https://doi.org/10.1016/j.trd.2017.04.016
http://dx.doi.org/https://doi.org/10.1016/j.trd.2017.04.016
http://www.dhl.co.uk/content/dam/downloads/gb/express/services/gogreen/gogreen_service_sheet_gb_en.pdf
http://www.dhl.co.uk/content/dam/downloads/gb/express/services/gogreen/gogreen_service_sheet_gb_en.pdf
http://www.dhl.co.uk/content/dam/downloads/gb/express/services/gogreen/gogreen_service_sheet_gb_en.pdf
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-6422/#gallery/25304
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-6422/#gallery/25304
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-6422/#gallery/25304


dependent emissions in urban areas. European Journal of Operational Research

251(2):478–494.675

Ehmke JF, Mattfeld DC (2010) Data allocation and application for time-dependent

vehicle routing in city logistics. EUT Edizioni Università di Trieste.

Ehmke JF, Steinert A, Mattfeld DC (2012) Advanced routing for city logistics ser-

vice providers based on time-dependent travel times. Journal of Computational

Science 3(4):193–205.680

EU (2015) Directive 2008/50/ec of the european parliament. http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:

en:PDF, accessed: 2015-09-10.

Figliozzi M (2010) Vehicle routing problem for emissions minimization. Transportation

Research Record: Journal of the Transportation Research Board 1–7.685

Fleischmann B, Gietz M, Gnutzmann S (2004) Time-varying travel times in vehicle

routing. Transportation Science 38(2):160–173.

Franceschetti A, Honhon D, Van Woensel T, Bektaş T, Laporte G (2013) The time-
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APPENDIX

In the Appendix, we present an overview on related literature in §A.1. We

further present the individual results in §A.4.

A.1. Literature785

In this section, we give a brief overview of the related literature. We focus on

vehicle routing for emission reduction, on routing with stochastic travel times

and on anticipation in dynamic vehicle routing problems.

Emissions

The work on Green vehicle routing for emission reduction has seen a signifi-790

cant increase in the last years. The objective is either to minimize the delivery

fleet’s emissions by optimizing driving speed (Bektaş and Laporte 2011, Demir

et al. 2014, Franceschetti et al. 2013) or by considering different emissions for

different travel arcs in their routing (Figliozzi 2010, Eglese and Bektas 2014,
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Ehmke et al. 2016b, Turkensteen and Hasle 2017). Generally, CEPs work in a795

highly competitive environment. In our research, we therefore assume that a

CEP aims on minimizing routing costs and not emissions. However, as we show

in §5, the reduction of routing costs in cooperation with TMS simultaneously

reduces emissions in critical areas substantially.

Stochastic Travel Times800

The DVRPMC can be classified as a dynamic vehicle routing problem with

stochastic travel times. This class of problems is scarcely considered in the liter-

ature. Dynamic problems usually consider uncertainty in demands or requests

while VRPs with stochastic travel times are generally considered in a static

setting (Ulmer 2017). In Table A1, we present an overview on stochastic travel805

times. We classify work with respect to the problem model and the compu-

tational study. We differentiate models by the Type of the problem, VRP or

dial-a-ride (DARP). We analyze whether a model is dynamic and whether it

considers emissions or the correlation of travel times. We analyze the computa-

tional studies with respect to the applied method and the instances. We depict810

anticipatory methods integrating stochastic information in decision making. We

further differentiate whether the instances base on real data for emissions and

road network.

First work on stochastic travel times is presented Laporte et al. (1992). The

paper evaluates a priori tours with respect to stochastic travel times. Kenyon815

and Morton (2003) compare routing with stochastic travel times to routing

with mean travel times. Their research shows that solving the stochastic VRP

is superior to the routing with mean travel times. Taniguchi and Shimamoto

(2004) compare an a priori route calculated with a traffic forecast to a dynamic

VRP, where the latest traffic information becomes available. Here, the traffic is820

inflicted with a congestion. The dynamic rerouting approach reduced costs by

3.7% compared to the a priori tours. For our problem, the origin and the impact

of the traffic influence is different compared to Taniguchi and Shimamoto (2004).

Further, the approach by Taniguchi and Shimamoto (2004) is not anticipatory
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but only reactive. Ando and Taniguchi (2006) determine a priori routes given825

stochastic travel times and time windows. They show that their anticipatory

method reduces both costs and emissions.

Huang et al. (2017) address a static and deterministic routing problem with

time-dependent travel times as well as a static and stochastic extension. The

sequence of customers is static, but the paths can differ. More specific, they830

allow different paths between the customers based on the time-dependent and/or

stochastic travel times. To this end, they used a modified Dijkstra-algorithm

to determine the shortest paths. They do not allow the change of the customer

sequence. In our work, we consider both: In every decision point, we allow

reordering the sequence of remaining customers and we consider path flexibility835

between customers. In our case, the shortest path between two customers can

change due to a change of the travel time matrix. As Huang et al. (2017), we

incorporate this path flexibility by using the modified Dijkstra-algorithm.

Huang et al. (2017) extend their work by incorporating stochastic travel

times based on congestion. Again, their solution is a static route but with flex-840

ible paths between the customers. They solve small instances with a two-stage

stochastic program and develop a “Route-First, Path Second”-heuristic. In this

heuristic, they determine the best route based on expected travel time values. In

their evaluation, the path is then selected based on the travel time realization.

This heuristic achieves optimal solutions in 9 of 10 test cases. In our paper,845

we use the same idea for our static policies πSC and πSF . We fix the sequence of

customers but allow path flexibility. However, calculating the expected travel

time values is challenging because of the connection between travel times and

the stochastic emissions. Thus, we sample travel time realizations and deter-

mine our paths on the sampled values. As Huang et al. (2017), we allow path850

flexibility in our evaluation. In our computational evaluation, we show that the

dynamic adaption of customer sequences provides significant benefit compared

to static sequences.

The only works in dynamic routing explicitly considering stochastic travel

times in model and solution method are provided by Schilde et al. (2014) and855
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Table A1: Classification of Stochastic VRP literature

Model Computation

Paper Type Dynamism Emission Correlation Anticipation Emissions Network

Laporte et al. (1992) VRP - - - - - -
Miller-Hooks and Mahmassani (2000) VRP X - - - - -
Fu (2002) DARP - - - - - -
Kenyon and Morton (2003) VRP - - - X - -
Taniguchi and Shimamoto (2004) VRP X - X - - -
Ando and Taniguchi (2006) VRP - X X - X X
Xiang et al. (2008) DARP X - - - - -
Lecluyse et al. (2009) VRP - - X - - -
Yan et al. (2013) VRP X - - - - -
Schilde et al. (2014) DARP X - X X X X
Cimen and Soysal (2017) VRP X X - X - X
Huang et al. (2017) VRP - - - X - X

This work VRP X X X X X X

Cimen and Soysal (2017). Schilde et al. (2014) present a dynamic dial-a-ride

problem with stochastic requests and travel times. The authors consider con-

gestion and therefore correlation in travel times. They sample both requests

and travel times to generate and evaluate routing plans. Cimen and Soysal

(2017) present work on minimizing fuel consumption. This fuel consumption is860

directly related to the vehicle’s emissions. They solve the problem by means of

approximate dynamic programming.

Our problem is further related to work on time-dependent travel times. For

these problems, travel matrices change over the course of the day (Van Woensel

et al. 2008, Li et al. 2010, Ehmke and Mattfeld 2010, Ehmke et al. 2012). But865

unlike our problem, the transition between the matrices are deterministic.

Anticipation in Dynamic Vehicle Routing

In dynamic vehicle routing, routes are adaptively changed with respect

changing environment and newly available information (Ulmer et al. 2016). The

work on dynamic vehicle routing gains increasing interest in the research com-870

munity. For a general overview on dynamic vehicle routing, we refer to Ritzinger

et al. (2015). In most of the works on dynamic vehicle routing, the dynamic

and stochastic environment represents new customers requesting service. The

dynamic environment in our research is the impact of the TMS’s decision on

the CEP’s travel times.875

Anticipatory methods in dynamic vehicle routing integrate stochastic infor-
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mation in their decision making. Due to the generally large information space,

the applied methods draw on samples of the stochastic distribution. A promi-

nent method is the multiple-scenario approach (MSA) where plans are gener-

ated and evaluated based on sampled information (Bent and Van Hentenryck880

2004, Hvattum et al. 2006, Ghiani et al. 2012, Voccia et al. to appear). The

sampling-method from Ghiani et al. (2009) uses sampling to evaluate how new

information changes the current plan. Our method is therefore related to the

work by Ghiani et al. (2009). Further, sampling methods simulate trajectories

of the Markov decision process to evaluate a decision’s outcome. These methods885

are known as rollout or lookahead algorithms (Goodson et al. 2017, Ulmer et al.

to appear). Finally, there is an increasing amount of work applying approximate

dynamic programming to dynamic vehicle routing (Meisel 2011, Schmid 2012,

Ulmer et al. 2017).

A.2. Emission Sampling890

In this section, we give details on how we sample the emissions. We draw on

a Gaussian process with varying mean value and standard deviation per hour.

The mean values and standard deviations are derived from the training data

set and are shown in Table A2. Given a current hour, the process samples the

change in emission level for the next hour by means of a normal distribution895

based on the mean values and the standard deviation. For example, given an

emission level of 55.000 in hour 17, the expected emission level for hour 18 is

55.000 + 3.500 = 58.500. The sampled emission level is 55 + N (3.500, 4.621)

with N the normal distribution.

A.3. Fuel Consumption900

In this section, we analyze how the policies impact the fuel consumption

of the fleet. Notably, the fuel consumption is impacted by a variety of factors

such as speed, varying weights, road gradients, acceleration, etc. To realistically

capture all these factors, a fine-grained traffic simulation is required. We do not

have access to this kind of simulation. We solely focus on the speed of the905

37

2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072



Table A2: Values for the Emission Process

Hour Mean Value Standard Deviation

9 9.938 7.262
10 -3.125 5.397
11 -9.375 6.459
12 -3.563 3.790
13 1.313 3.19
14 -2.625 6.098
15 1.688 5.834
16 4.313 2.941
17 -1.063 3.572
18 3.500 4.621
19 1.563 7.322
20 3.625 6.317
21 -5.188 5.109
22 2.625 11.323
23 -1.875 7.635
24 -2.188 6.229

vehicles. Thus, the purpose of the following study is merely to give a tendency

how fuel consumption changes for different policies.

To calculate the fuel consumption, we draw on the equation presented in

Franceschetti et al. (2013). As suggested in Ehmke et al. (2016a), we ignore

load and assume an empty vehicle. For arc a, we calculate the fuel consumption910

ψa(v) given a speed v. The equation can then be written as follows:

ψa(v) = λ

(
kNeV

da
v

+ γβdav
2 + γαµda

)
. (A1)

Parameter da describes the distance associated with arc a. The other pa-

rameters Ne, V, λ, k, γ, β, α describe engine details. For these parameters, we

directly follow the parametrization given in Ehmke et al. (2016a). Parameter µ

indicates the weight of the vehicles. We assume the weight of a standard vehicle915

with µ = 6350 kg.

Based on Equation (A1), we calculate the average fuel consumption for the

static policy πSN , the dynamic policy based on current information πDC , and the

dynamic policy integrating forecasts πDF . Notably, we only calculate the fuel
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consumption for the travel between the districts and ignore the fuel consumption920

within the districts. We select the instance settings with high TMS-impacts and

vary the number of vehicles between 2 and 5. We calculate the average reduction

of policies πDC and πDF compared to πSN similar to the reduction in travel time.

The average reduction of policy πDC in fuel consumption is 8.7% (10.0% in travel

time). The average reduction of policy πDF is 9.2% (10.5% in travel time). The925

reductions are therefore slightly lower compared to the reductions in travel time.

Still, dynamic updates of the route plans and anticipation of future development

not only reduce travel time but also fuel consumption significantly compared to

static planning.

A.4. Results930

Table A3 depicts the results for the individual instance settings. For differ-

ent fleets sizes and each speed pattern (increase/decrease), the average travel

duration and the time in polluted areas is shown for each policy.
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Table A3: Individual Results

Travel Duration Time in Polluted Areas

Speed high-high high-low low-low low-high high-high high-low low-low low-high

2 Vehicles

πS
N 180.1 157.4 181.1 157.5 25.4 25.5 33.7 26.0
πS
C 177.4 155.2 178.7 156.2 24.3 24.8 33.9 25.6
πS
F 174.8 155.7 176.2 156.0 24.1 25.1 33.0 25.9
πD
C 153.9 148.2 158.0 148.2 13.0 14.3 17.7 14.2
πD
F 151.7 147.0 154.5 148.1 10.9 13.1 17.4 13.6

3 Vehicles

πS
N 251.2 228.6 250.9 228.8 37.0 36.5 36.2 35.1
πS
C 244.2 226.3 249.8 229.7 37.8 35.6 37.0 32.3
πS
F 243.9 224.7 243.0 226.6 37.0 35.9 35.6 35.3
πD
C 224.6 220.3 231.6 224.3 16.6 17.2 21.8 17.9
πD
F 223.8 218.5 226.3 222.1 14.5 14.8 17.1 18.0

4 Vehicles

πS
N 414.6 388.1 412.8 389.6 38.4 38.5 36.2 32.0
πS
C 411.7 387.1 413.0 387.7 39.2 39.1 37.0 30.6
πS
F 411.2 386.4 406.4 386.7 40.4 38.8 35.6 30.4
πD
C 387.7 381.2 391.7 382.2 18.9 18.8 21.8 16.6
πD
F 384.4 379.7 386.0 381.5 15.5 16.8 17.1 15.5

5 Vehicles

πS
N 501.1 461.9 487.8 467.6 51.5 37.8 39.7 47.3
πS
C 497.6 459.7 492.4 466.8 52.1 38.0 41.4 46.2
πS
F 495.1 459.8 483.0 464.7 51.0 39.0 40.0 46.5
πD
C 463.9 452.7 464.1 457.7 22.1 18.8 20.3 23.3
πD
F 459.2 452.0 458.7 456.3 18.3 17.4 17.5 21.8
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