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Abstract 

Sequential quadratic programming (SQP) may be very efficient compared with other techniques 
for the optimization of simple processes for the liquefaction of natural gas (LNG), and can be 
combined with process evaluation using commercial flowsheet simulators.  However, the level of 
success is dependent on the formulation of the problem. In this work, effects of varying different 
aspects of the optimization problem formulation is investigated, such as variable selection, 
formulae for the estimation of derivatives, initial values, variable bounds, and formulation of 
constraints. Especially the formulation of the constraint for the temperature difference between 
the hot and cold composite curve is essential. The commonly used minimum temperature 
difference constraint should generally not be employed in gradient based optimization. 
Recommendations regarding optimization of simple LNG processes using SQP and flowsheet 
simulators are provided. 

Keywords 

LNG 
PRICO 
Optimization 
Sequential quadratic programming 
Formulation of constraints 

 INTRODUCTION 1

Natural gas plays an increasingly important role in the global energy system, and over long 
distances the most efficient way of transporting this energy carrier is by liquefaction. Hence, 
during the last decade, the transport and use of liquefied natural gas (LNG) has increased 
tremendously, driven by large global price differences of natural gas. This trend is expected to 
accelerate ahead, due for instance to increased focus on carbon footprint of the different energy 
solutions and opening for shale gas export from the US. Hence, according to the IEA 450 (2°C) 
scenario, the use of natural gas will increase significantly in the decades ahead, and a large 
number of LNG carriers are under order (IEA, 2013).  

Although LNG is an environment-friendly energy source, the liquefaction process is still costly in 
terms of investment costs and energy consumption. Hence, improving the effectivity of LNG 
processes is of great importance and interest, and have been the focus of a number of studies 
referred to in  Lim et al. (2012) and Austbø et al. (2014). However, finding the best operation 
point of even relatively simple LNG processes in an efficient and rigorous manner remains 
difficult, due the typically non-linear and non-convex nature of the optimization problem and its 
high number of variables. To this end, it was shown in an earlier work that optimization of simple 
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LNG processes can be performed in a very efficient manner using a combination of a commercial 
flowsheet simulator and an SQP-routine (Wahl et al., 2013). Later, a study have been performed 
where a relatively large number of optimization routines have been applied to and compared for 
the same problem, again with the objective function calculated using a flowsheet simulator.  

However, the level of success for any LNG process optimization approach is dependent on careful 
problem formulation, in particular when using SQP techniques. In this paper, a detailed study of 
the dependence between the optimization success rate and problem formulation will be presented, 
pursuing the SQP/flowsheet simulator approach. In order for such an investigation to be 
reasonable conclusive, the complexity of the problem must be at a manageable level. Hence, the 
focus has been on the PRICO LNG process, which is a relatively simple natural gas liquefaction 
process currently used in multiple plants world-wide (Hoffart & Price, 2014). Referring to Austbø 
et al. (2014), the optimization of single cycle mixed refrigerant processes such as PRICO has 
previously been discussed in a number of works, and in a handful of these papers SQP techniques 
have been employed (Skaugen et al., 2010), (Morin et al., 2011), (Khan et al., 2012), (Skaugen et 
al., 2013), (Wahl et al., 2013). In our experience, the knowledge obtained in the study of relative 
simple processes like PRICO can also be applied for more complex processes. 

As mentioned above, the purpose of the current work is to identify how the problem should be 
formulated in order to robustly find the optimum operation point of simple LNG processes, using 
an SQP optimization routine and a commercial flowsheet simulator. The investigation is 
performed by varying different elements of the formulation and evaluating and comparing the 
corresponding results. In Section 2, the PRICO process and optimization problem are presented. 
In Section 3, some further details about the optimization methodology and implementation are 
provided. Heat exchanger implementation and temperature difference constraint formulation are 
particularly important for PRICO process optimization and have been given particular attention. 
In Section 4, the optimization results for different variations of the problem formulation are 
presented. For each set of formulations, a number of optimization runs are performed with 
arbitrary initial values within given bounds, and the ratio of successful runs is recorded. A natural 
place to start is the selection of variables, before investigating formulation aspects such as 
estimation of derivatives, bounds, effect of non-feasible starting points and the penalty of 
violating the optimization constraints. The effect of varying these elements are all performed for 
different implementations of the composite curve heat exchanger and its temperature difference 
constraint.  The results are further analyzed and summarized in the remaining chapters. 

 PROBLEM FORMULATION 2

 The PRICO process 2.1

In this work, the PRICO™ process (Stebbing & O’Brien, 1975), (Price & Mortko, 1996) has been 
analyzed. The same process was investigated in Wahl et al. (2013) where a more detailed 
description of the optimization problem is found. An Aspen HYSYS® flowsheet of the PRICO 
process with one compressor and one heat exchanger is provided in Figure 1. 

Natural gas (stream G1) enters the heat exchanger at ambient temperature and at a rather high 
pressure. The natural gas is condensed, liquefied, and subcooled in the heat exchanger (stream 
G2) before the pressure is reduced to atmospheric conditions (stream LNG). The mixed 
refrigerant enters (stream R1) and leaves (stream R2) the LNG heat exchanger at the same 
temperature as the natural gas. The pressure of stream R2 is reduced (stream R3), and stream R3 
is used to reduce the temperature of the high pressure refrigerant and the natural gas. After being 
heated and vaporized in the LNG heat exchanger (stream R4), the refrigerant is then compressed 
(stream R5) and cooled (stream R1). The properties of the G1 and LNG streams are fixed for each 
case; only parameters for the mixed refrigerant are allowed to vary during the optimization. 
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For the runs provided here, natural gas feed temperature (stream G1) and the refrigerant after 
external cooling (stream R1) both enters at 25°C, while streams G2 and R2 both leaves at -155°C. 

 

 Heat exchanger calculations 2.2

The heat exchanger models used are based on composite curves. All hot streams to be cooled are 
merged into one pseudo-stream, the hot composite curve, while all cold streams to be heated are 
merged into the cold composite curve. In this case the hot streams are the natural gas and high 
pressure refrigerant and the only cold stream is the low pressure refrigerant. One challenge when 
using a composite curve model is that enthalpy may be transferred from the hot composite stream 
to the cold composite stream without considering the temperature difference. A positive 
temperature difference between the two streams is required to avoid that the hot composite stream 
attains a lower temperature than the cold composite stream at the same location. 

 Optimization problem 2.3

The objective of the optimization is to minimize the power consumption of the compressor. In all 
cases considered here, the following constraints have been specified and applied: 

• A minimum superheating of the compressor inlet stream above its dew point temperature 

• A minimum positive temperature difference between the hot and the cold composite 
curves in every location of the heat exchanger 

 

The objective function to be optimized is expressed as: 

min𝑊 �𝑥,𝑃𝑅4,𝑃𝑅5� 

subject to 

∆𝑇𝑛�𝑥,𝑃𝑅4,𝑃𝑅5� − ∆𝑇ℎ ≥ 0;  for all intervals n  (1) 

𝑇𝑐�𝑥,𝑃𝑅4,𝑃𝑅5� − 𝑇𝑑𝑑𝑑�𝑥,𝑃𝑅4,𝑃𝑅5� − ∆𝑇𝑐 ≥ 0 (2) 

𝑃𝑅4𝐿𝐿  ≤ 𝑃𝑅4 ≤ 𝑃𝑅4𝑈𝐿  

𝑃𝑅5𝐿𝐿  ≤ 𝑃𝑅5 ≤ 𝑃𝑅5𝑈𝐿  

𝑥𝑖𝐿𝐿  ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈𝐿; for all components 𝑖 

where 

• W is the compressor power consumption  

• ΔTh is the minimum temperature difference allowed for the heat exchanger 

• ΔTn is the temperature difference in interval number n of the heat exchanger 

• Tc is the calculated inlet temperature of the inlet stream (R4) to the compressor 

• Tdew is the calculated dew point temperature of the inlet stream (R4) to the compressor  
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• ΔTc is the specified minimum temperature difference between Tc and Tdew 

• PR4 and PR5 are the pressures of stream R4 and R5, respectively 

• xi is variable i relating to the composition and flowrate of the refrigerant, the definition will 
vary between the formulations  

• 𝑥 is a vector of all xi 

• Superscripts LB and UB denote lower and upper bounds, respectively, of the specified 
variables. 

(1) leads to one or more constraints depending on the formulation. 

The optimization set-up is similar to the one described in Wahl et al. (2013), using the NLPQLP 
routine from Schittkowski (2006) for optimization and Aspen HYSYS® V8.2 for process 
simulation. Most of the basic results presented here are however expected to be relevant also 
when using other advanced SQP routines or flowsheet simulators. 

 OPTIMIZATION SPECIFICATIONS 3

 Process flowsheets 3.1

Each individual stream in the heat exchanger is divided into a number of intervals, specified as 
uniformly spaced either in temperature or enthalpy. In this work, the number of intervals has been 
10 or 100 for each stream, but 11 or 101 for the natural gas stream when equal temperature step 
has been used. Since, in our case,  the natural gas and the high pressure refrigerant enters and 
leaves at the same temperature, an additional interval is added for the natural gas stream to avoid 
identical intervals for these streams. This gives 29 (30) or 299 (300) locations where the 
temperature difference is calculated in the heat exchanger. Hence, four different flowsheets will 
be investigated: 

• 10 intervals per stream uniformly spaced in temperature 

• 100 intervals per stream uniformly spaced in temperature 

• 10 intervals per stream uniformly spaced in enthalpy 

• 100 intervals per stream uniformly spaced in enthalpy 

The pressure drops of the heat exchangers have been ignored in the results presented here. 
However, similar optimization runs have been performed where fixed pressure drops for each pass 
in the LNG heat exchanger have been included. These optimization runs generally provide little 
additional information to the runs without pressure drops and are omitted here.  

 Formulation of the temperature difference constraint 3.2

The temperature difference constraint within the LNG heat exchanger may be formulated in 
several ways. The options that have been tested in this work are listed below along with some 
comments regarding implementations in HYSYS: 

• Using the minimum temperature difference (DTmin): This is a scalar that is returned from 
HYSYS heat exchanger calculations. 

• Using all returned heat exchanger temperature differences as constraints (StrPts): The 
optimization routine requires a fixed number of constraints during each optimization run. 
Each stream within the heat exchanger is divided into a fixed number of intervals and it is 
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specified that no additional dew or boiling points are to be calculated. Since each point in 
the composite curve originates from one of the cold or warm streams, the number of 
returned temperature differences should be constant. However, this is not the case, and this 
has to be handled in the main code. HYSYS will occasionally add a point beyond the end 
of the composite curves that does not correspond to any of the inlet or the outlet streams. 
These values are simply deleted by the optimization tool. In other situations, the 
discretization of different streams may return locations that are close to each other, and 
HYSYS may omit one or more of these locations in order to save execution time. In these 
cases the optimization tool tries to identify the location and add the value by copying one 
of the neighboring values. For heat exchangers with many intervals, the error will not be 
large, and at least it is only one point (one constraint) that is affected. 

• Using all temperature differences that originate from the hot streams (HotStrPts): This is 
identical to the formulation above (StrPts) except that only the temperatures from the hot 
streams are used. When equal temperature steps are used, this means that each constraint is 
always evaluated at a fixed hot stream temperature.  

• Using linear interpolation (LinInt): A linear interpolation function is made from the 
returned composite curve points based on the enthalpy transferred and the temperature 
difference. The number of returned elements from the interpolation is fixed. 

• Using spline interpolation (SplineInt): As linear interpolation, but cubic splines are used 
instead. 

• Using known local minima of the temperature difference curve (LocalMin): This 
formulation requires that a solution that is not far away from the optimal solution has been 
obtained. If the locations for the minimum temperature differences are distinct, one may 
use the returned temperature difference curve without the required modifications for 
StrPts, and instead return only the minimum temperature difference within separate 
predefined intervals. For the flowsheets investigated here, there are four locations where 
the minimum temperature difference will be obtained for the best known solution. The 
following four intervals of the hot composite temperatures will contain one each of these 
locations: 

 < -120°C 

 -120°C – -70°C 

 -70°C – 0°C 

 0°C 

 Optimization scheme and parameter settings 3.3

For each case, 100 optimization runs have been performed. In order to make sure that the initial 
points are not controlled by the user, random values for each of the variables are created within 
their lower and upper bounds. If the initial state is feasible, an optimization run is performed, 
otherwise a new initial state is generated. The bounds for the variables have been selected such 
that a wide parameter range is covered, while ensuring that it is possible to identify a feasible 
starting point within a few seconds of execution time.  

The feed to the compressor should be superheated at least ∆𝑇𝑐 =10°C above the dew point 𝑇𝑑𝑑𝑑 
in all cases. The minimum of the temperature differences ∆𝑇𝑛 should be more than ∆𝑇ℎ=1.2°C in 
all cases. This work is a continuation of the work in Wahl et al., 2013 where different values of 
∆𝑇ℎ was selected in order to compare with previous reported work. The largest value for ∆𝑇ℎ has 
been used here. 
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 RESULTS 4

In this section, results for different formulations of the optimization problem are presented. The 
formulation of the optimization problem is varied in terms of the selection of variables, the 
representation of constraints, different flowsheet representations of the process, and different 
parameters used during the optimization.  

In the following, optimization results using different formulations will be shown. Unless 
otherwise stated, all temperature differences have been used as constraints for the LNG heat 
exchanger, forward difference using step lengths of 10-3 for all variables has been used for the 
estimation of the derivatives, the coefficient for the heat exchanger temperature difference 
constraint has been 10 (left hand side of (1)), and the refrigerant suction and discharge pressure 
and component molar flow rates have been used as optimization variables.  

The returned solutions are compared with the best known solutions for each of the four 
flowsheets. The percentage of runs that came within different specified deviations from the best 
known objective is shown in figures for each optimization formulation and flowsheet. 

 Selection of optimization variables 4.1

Three different combinations of optimization variables have been tested:  

• Compressor suction (PR4) and discharge (PR5) pressure and component molar flow rates (8 
variables) 

• PR4, PR5, component molar fractions, and refrigerant molar flow rate (9 variables) 

• PR4, PR5, component molar fractions and refrigerant heat flow rate (9 variables) 

The last two sets have one additional variable. Hence, different from the variable selection using 
component molar flow rates, the variables for the flow rate and the composition of the refrigerant 
are not independent. Another alternative could have been to use enthalpies or entropies. However, 
enthalpy and entropy are highly dependent on the composition, and will be difficult to set bounds 
for, easily leading to conditions where flash calculations are not defined. 

4.1.1 PR4, PR5, and component molar flow rates as optimization variables 

The variable bounds are provided in Table 1. The minimum flow rate of methane and ethane has 
been set to 0.1 in order to ensure some flow through the LNG heat exchanger.  

In Figure 2, the effects on the optimization of different LNG heat exchanger temperature 
constraint formulations for the temperature difference within the LNG heat exchanger are 
illustrated. Heat exchanger models both with 10 and 100 intervals per stream have been used, but 
the results are clearest for the runs with 100 intervals, at the bottom half of the figure. The 
conclusions that can be drawn are: 

• The minimum temperature difference constraint formulation has lower success ratios than 
any of the other formulations. The reason is that the minimum temperature difference is 
found in multiple places of the heat exchangers, depending on the operation point, leading 
to discontinuities in the derivatives which are difficult to handle for NLPQLP. By 
inspecting logged values for the estimation of the derivatives, it was often observed that 
when NLPQLP completed without returning the best solution, two or more locations were 
found with the minimum temperature difference. Adjusting one variable caused one of the 
locations with the minimum temperature difference to increase, while the other decreased. 

• The version with local minimum points for the temperature difference curve works well 
when 100 intervals are used, but not with 10 intervals. 
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• Linear interpolation in general works better than spline interpolation. Visually it seems 
like both the linear and the spline interpolations fit very well with the original composite 
curves. 

• In general, using all stream points (StrPts) or using all hot stream points (HotStrPts) are 
the best heat exchanger temperature constraint formulations. 

This set of variables has been used in all sections following section 4.1. 

4.1.2 PR4, PR5, molar component fractions, and molar refrigerant flow rate as 
optimization variables 

All fractions are used as variables, since the bounds will not allow for any component fractions to 
be calculated as 1 minus the sum of the rest. Hence, this formulation requires one additional 
variable compared to the one in Section 4.1.1. HYSYS is normalizing the fractions. The other 
conditions have been identical to the ones in Section 4.1.1. The bounds of the variables are 
provided in Table 2. 

The optimization results with this variable selection are shown in Figure 3, and are quite similar to 
the results using molar flow rates shown in Figure 2. One should be a little careful in comparing 
the results shown in Figure 3 and Figure 2 since the effect of the bounds may be significant, but it 
seems like using the component molar flow rates gives a higher percentage of successful runs. 

4.1.3 PR4, PR5, molar component fractions, and refrigerant heat flow as optimization 
variables 

In Figure 4, the optimization results when using component fractions plus refrigerant heat flow 
are summarized. In general, the performance was not good for this selection of variables. One 
reason may be that the setting of the bounds, shown in Table 3, is difficult since the heat flow 
depends on the composition.  

 Virtual splitting of the LNG heat exchanger 4.2

In section 4.1 it was shown that the minimum temperature difference was not useful as a 
constraint when there are multiple locations where the minimum value may appear. One 
alternative formulation is to use a set of intervals where the minimum value only appears once. In 
this section, each interval is replaced by a separate heat exchanger. The exact location for the 
minimum value may be slightly different from the ones in section 4.1 since the discretization for 
each pass differs. Within each LNG heat exchanger, the minimum temperature difference is used 
as the constraint. The results for this formulation are shown in Figure 5 as a function of intervals 
per LNG heat exchanger. The results are quite good compared to the previous results. For this 
process, the four locations are clearly distinguishable. In this situation, the minimum temperature 
difference works very well as the constraint.  

One observation is that the number of successful runs does not necessarily increase with the 
number of intervals. The more intervals that are used, the smoother the temperature difference 
curve should be, but this does not help for the optimization routine. 

It should be noted that this formulation is only feasible if there is some knowledge about the shape 
of the temperature difference curve for the optimum solution. It is not clear why some runs do not 
manage to return better solutions. For several of the runs that failed, the conditions for the last 
combination of variables seem to be good for further progress; almost linear characteristics in the 
nearby region, but some noise in the evaluations could cause problems.  
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 Estimation of the derivatives 4.3

Estimating the derivatives is important when using a gradient based optimization technique such 
as NLPQLP. Step lengths for the estimation of the derivatives are normally selected based on the 
precision of the evaluation of the function and the absolute value of the variable. In this section, 
step lengths have been varied to see whether they have an impact on optimization success rate. It 
should be noted that the lower limit of the derivative step length will be dependent on the noise of 
the process evaluation, and the results here are thus not generally applicable when using other 
process simulators.  

4.3.1 Fixed step lengths for all variables 

When only the pressures or the molar flow rates alone are used as variables, the problem becomes 
too easy to solve in order to check for effects of varying step lengths. When only the molar flow 
rates are used as optimization variables, at least all step lengths between 10-10 and 1 kmol/s may 
be used. Similarly, for the pressures all step lengths between 10-7 and 10-1 bar may be used.  

Figure 6 shows the optimization success rate as a function of step lengths of the derivative 
estimators when solving the full problem. The step lengths have had an identical numerical value 
for all variables, in units of bar and kmol/s for the pressures and component flow rates, 
respectively. For 100 intervals, step lengths between 10-4 and 10-3 generally work best for both 
step types, but the success rate is only marginally reduced for a step length of 10-5 for equal 
enthalpy step. For 10 intervals, the success rates are lower. The step lengths should be larger than 
10-8 and smaller than 1. A closer inspection of the optimization output data show that the initial 
conditions that lead to accurate optimization solutions differ for different step length selections, 
although some initial conditions always lead to failure.  

4.3.2 Variable step lengths for each variables 

For another set of optimization runs where the step length 𝜖 for each variable 𝑥 was calculated by 
𝜖 = min (𝜀𝑚𝑖𝑛 + 𝛼|𝑥|, 𝜀𝑚𝑚𝑚), performance was comparable to fixed step length of 10-4 or 10-3 in 
Figure 6. In this case 𝜀𝑚𝑖𝑛 had the values 10-7, 10-6, 10-5, 10-4, 10-3, 𝛼 had the values 10-4, 10-3 and 
10-2 while 𝜀𝑚𝑚𝑚 was 0.1. In this case the minimum step length should be between 10-5 and 10-3. 
For this interval the constant 𝛼 should be smaller or equal to 10-3. For optimization problems 
using analytical expressions it is often recommended to use a variable step length in order to 
achieve the highest possible precision in the estimation of the derivatives. For the flowsheet 
optimizations here, one can as well use a fixed step length. 

4.3.3 Formula for the estimation of derivatives 

Three different estimators have been tested for the derivatives: 

• Forward/backward difference 

• Central difference (two sided) 

• 4th order difference 

There are several bounds that should not be violated in the evaluations for these types of process 
problems, e.g. flow rates and pressures cannot be negative. Hence, when approaching such 
bounds, either the step length, the location where the derivative is estimated, or the derivate 
estimator has to be adjusted. Eight ways of estimating the derivative have been investigated:  

• Forward difference with fixed step length (Fw_S): If the upper bound is violated, the value 
for the variable is adjusted such that the fixed step length may be used.  
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• Forward difference with fixed location (Fw_L): Performs a forward difference unless the 
upper bound is violated, then it performs a backward difference. 

• Backward difference with fixed step length (Bw_S): If the lower bound is violated, the 
value for the variable is adjusted such that the fixed step length may be used.  

• Backward difference with fixed location (Bw_L): Performs a backward difference unless 
the lower bound is violated, then it performs a forward difference. 

• Central difference with given step length (Cnt_S): If the upper bound for evaluation is 
violated, the positive part of the step length is reduced to the difference between the value 
and the upper bound, similarly for the lower bound. Thus the center moves. 

• Central difference with fixed location (Cnt_L): If the upper bound for evaluation is 
violated, a backward difference is used. If the lower bound for evaluation is violated, a 
forward difference is used.  

• Fourth order difference with fixed step length (4th_S): The new value for the variable 
where the estimation of the derivative is calculated is 𝑥𝑖 = 𝑚𝑚𝑥 (𝑚𝑖𝑚(𝑥𝑖 , 𝑥𝑖𝑈𝐿 −
2𝜖), 𝑥𝑖𝐿𝐿 + 2𝜖) 

• Fourth order difference with fixed location (4th_L): The following estimators are used (in 
prioritized sequence) 

• 𝑥𝑖 − 2𝜖 > 𝑥𝑖𝐿𝐿  ˄ 𝑥𝑖 + 2𝜖 < 𝑥𝑖𝑈𝐿: Fourth order difference 

• 𝑥𝑖 − 𝜖 > 𝑥𝑖𝐿𝐿 ˄ 𝑥𝑖 + 𝜖 < 𝑥𝑖𝑈𝐿: Central difference 

• 𝑥𝑖 − 𝜖 > 𝑥𝑖𝐿𝐿: Backward difference 

• 𝑥𝑖 + 𝜖 < 𝑥𝑖𝑈𝐿: Forward difference 

Figure 7 shows the effect of selecting different formulae for the estimation of derivatives. 
Although there are differences, these are not significant. In general, using a more complicated 
estimator does not generate more successful runs. 

A closer investigation of each run shows that there exists runs that fail to get within the tightest 
deviation from the best solution independently of the selection of derivation formulae.  However, 
there are some runs that fail for most of the estimators, while it succeeds for some of the others. 
This implies that if one estimator fails, it may be possible to toggle between other estimators in 
order to find better solutions. For this simple process, starting from a different location is probably 
easier, but for more complex processes with lower success rates, switching estimators may be 
useful. 

 Variable bounds / initial value bounds 4.4

In the optimization formulation discussed above, the bounds for the initial values have been 
identical to the bounds for the variables. In this section the bounds for the variables and the initial 
values have been decoupled and varied, but the initial value bounds need to be at least as strict as 
the variable bounds. Initial values outside the variable bounds would anyway have been rejected 
by the optimization routine. The bounds have basically been selected based on the best known 
solutions for each case. The initial value and variable bounds have been set to either of three sets 
of bounds; tight (T), medium (M) and wide (W). Since the bounds for the initial values must be 
inside the bounds of the variables, this gives six different combinations. These bounds are 
provided in Table 4, tabulated together with the best obtained solutions for the heat exchanger 
formulations with 10 and 100 intervals with constant enthalpy (DH) or temperature (DT) steps. It 
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should be noted that the solution with 10 intervals with fixed temperature steps (10DT) differs 
significantly from the other solutions. 

The optimization results for the different bounds are shown in Figure 8. For the labels, the first 
letter indicates the bounds for the variables and the second the bounds for the initial values. This 
means the label "W/T" means wide bounds for the variables and tight bounds for the initial values. 
In most situations, narrowing the bounds for the variables improves the likelihood of finding the 
best solution. In the same way, starting with a set of variables that are closer to the solutions 
increases the success rate. The effect seems to be more pronounced with crude 10 interval heat 
exchangers. 

 Feasible start 4.5

For simple processes like the PRICO process, finding feasible initial values for the variables by 
random generations within their bounds is quite easy. Finding a feasible set of variables leading to 
a process state within the constraints is more difficult for complex processes. Hence, the effect of 
starting from non-feasible starting points has been investigated. In Figure 9, the four results to the 
right in each plot are identical to the ones in Figure 2. The four results to the left are started from 
initial conditions that not necessarily fulfil the constraints; some do, but not all. Not surprisingly, 
for all four flowsheets, the optimization runs that started from only feasible initial points perform 
best on average. This trend is especially clear when more intervals are used in the heat exchanger 
model. This implies that ensuring feasibility for the starting points could be essential when using 
this optimization routine. 

 Coefficient for the temperature difference constraint 4.6

Each term in the optimization problem may have a factor that is multiplied to the term in order to 
make sure that all evaluated results, i.e. objective and constraint functions, are within comparable 
orders of magnitude of each other. The factor in front of the temperature constraint for the LNG 
heat exchanger is varied in this section, while the factor for the objective function and the dew 
point deviation is fixed to 1. The step length for the estimation of the derivatives has in this case 
been 10-4 and every returned element in the composite curve (StreamPoints) has been used as the 
constraint for the LNG heat exchanger. 

Variables have been defined in such a way that they are roughly in the same order of magnitude 
(between 0 and 20). The objective typically is between 1 and 100, while the temperature 
differences will is between -100 and 100 without any scaling. When close to the best solution the 
objective will be around 15 and the temperature difference around 1.  

The results are shown in Figure 10. In general it seems like coefficients around 10 to 20 gives the 
best performance. Coefficients below 1 and above 50 significantly reduce the number of 
successful runs. 

 Execution times/flowsheet evaluations 4.7

Execution time has not been the focus in this work. Typically, to get within 0.1 % deviation from 
the best known solution or closer required 450 – 800 flowsheet evaluations for the case using 100 
intervals distributed on temperature. The formulation using the local minimum temperature 
difference formulation required the least; the one using temperature differences based on the hot 
stream points required slightly less than 700, the two types of interpolation required a bit more 
than 700 evaluations, and finally the one using all temperature differences required around 800 
evaluations. The execution time was typically slightly above 1 min, with one flowsheet evaluation 
requiring less than 0.1 second. When the distribution was on enthalpy, the same pattern was 
observed; the only difference was a 10 % increase in the execution time per flowsheet evaluation. 
When 10 intervals were used, the execution time per flowsheet evaluation was reduced by a factor 
of 2.  
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 CONCLUSIONS 5

Mathematical optimization of LNG processes has proven to be a difficult task due to the high 
number of variables, and typical non-linearity and non-convexity of the problem. In a previous 
work (Wahl et al., 2013) it was shown that the optimization of a single-cycle mixed refrigerant 
LNG liquefaction process can be performed efficiently using a combination of a commercial 
flowsheet simulator such as HYSYS and a widely used SQP routine such as NLPQLP. However, 
the success rate of this approach is highly dependent on how the optimization problem is 
formulated and implemented.  In this work, a study of the effect of the problem formulation of the 
single cycle mixed refrigerant PRICO process has been presented. Aspects of the formulation 
which have been investigated includes optimization variables selection and bounds, composite 
curve heat exchanger implementation and minimum temperature difference, derivative estimation 
formulae and step lengths, and feasibility of initial values. 

Three selections of variables have been investigated. In all sets, the refrigerant compressor suction 
and discharge pressure were used as variables. The additional variables characterized the 
refrigerant flow. Using the component molar flow rates performed slightly better than using the 
molar fractions and total molar flow, while using the heat flow had less success. 

Of higher importance is the implementation of the minimum temperature constraint in the heat 
exchanger. As long as there is more than one location within the LNG heat exchanger where the 
minimum temperature difference could be achieved during optimization, the minimum 
temperature difference should not be used as a constraint. Using all values returned from the 
composite curve as minimum temperature constraints is a better solution. Alternatively, if the 
initial value is reasonably good, the heat exchanger can be divided up in such a way that each 
section only has one minimum temperature location. 

Another important result is that there is no gain in using a more complex and accurate formula 
than first order expressions for the derivative estimation for a sufficiently detailed heat exchanger 
model. This is important because process evaluation is the computational expensive part of LNG 
process optimization. The step lengths for the estimation of the derivatives must be selected with 
care. For the runs performed here, where the variables were roughly between 0 and 20, step 
lengths around 10-4 – 10-3 showed the best performance. 

NLPQLP performs much better if the initial point produced a feasible solution. For a simple 
process like PRICO, a random combination of variables will quickly return a feasible solution. 
For more complex processes, where tight variable bounds have not been identified, random initial 
value generation will not work. In this case, a routine or possibly just a simple algorithm to find a 
feasible solution might be required. 

As with most optimization problems, tightening the bounds improves the performance of the 
optimization routine. This also includes the set of values for the initial variables. However, it is 
not necessarily true that the tightest bounds give the best performance. 

This work has been investigating a relatively simple LNG process. Depending on the formulation, 
this work has shown that NLPQLP performs well. It is believed the results here can be 
generalized to most similar gradient based, and in particular SQP based local search routines. 
However, more complex processes will pose new challenges, and the optimization of more 
advanced LNG liquefaction processes are currently under progress. 
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Nomenclature 

𝛼 Constant for the absolute value of variable xi 

𝜖 Step length  

P Pressure 

Tc  Calculated inlet temperature of the inlet stream to the compressor  

ΔTc  Specified minimum temperature difference between Tc and Tdew 

Tdew  Calculated dew point temperature of the inlet stream to the compressor  

ΔTh  Minimum temperature difference allowed for the heat exchanger 

ΔTn  Temperature difference in interval number n of the heat exchanger  

xi  Variable i  

W  Compressor power consumption 

𝑥  Vector of all xi 

 

Superscripts  

LB  Lower bounds of the specified variables 

UB  Upper bounds of the specified variables 

Subscripts 

Max Maximum value 

Min Minimum value 

R4 Stream R4 

R5 Stream R5 
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Figure 1. Flowsheet for the LNG process to be optimized. The cycle consists of one mixed 
refrigerant (R) and a natural gas stream (G). 
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Figure 2. Number of successful optimization runs for various formulations of the LNG heat 
exchanger constraints when molar flow rates have been used as variables. Legend indicates 
deviation from best known solutions. 
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Figure 3. As Figure 2, but using molar fractions and total flow rate as variables. 
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Figure 4. As Figure 2, but using heat flow and molar fractions as variables. 
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Figure 5. Number of successful runs when the physical LNG heat exchanger has been represented 
in the flowsheet by a series of heat exchangers, each with a single local minimum location. The 
minimum temperature approach is used for each flowsheet heat exchanger. Legend indicates 
deviation from best known solutions. 
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Figure 6. As Figure 2, but where the step length of the derivative estimator has been varied 
instead of the heat exchanger temperature constraint implementation  
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Figure 7. As Figure 2, but for different derivative estimator implementations.  
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Figure 8. As Figure 2, but for different bounds for the variables and initial values for the variables, 
with reference to Table 4. 
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Figure 9. As Figure 2, but showing the dependence on the feasibility of the optimization starting 
point. 
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Figure 10. As Figure 2, but varying the coefficients for the temperature difference constraint 
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Table 1: Bounds when using the refrigerant component molar flow rates 

Variable Unit LB UB 

R4: Pressure  bar 2.0 6.0 

R5: Pressure  bar 10.0 20.0 

R1: Nitrogen  kmol/s 0.0 1.0 

R1: Methane  kmol/s 0.1 2.0 

R1: Ethane  kmol/s 0.1 2.0 

R1: Propane  kmol/s 0.0 2.0 

R1: i-Butane  kmol/s 0.0 2.0 

R1: n-Butane  kmol/s 0.0 2.0 
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Table 2: Bounds when using the refrigerant component molar fractions and the total refrigerant 
molar flow rate 

Variable Unit LB UB 

R4: Pressure  bar 2.0 6.0 

R5: Pressure  bar 10.0 20.0 

R1: Molar flow kmol/s 0.1 6.0 

R1: Nitrogen  mol/mol 0.0 0.2 

R1: Methane  mol/mol 0.1 0.5 

R1: Ethane  mol/mol 0.1 0.5 

R1: Propane  mol/mol 0.0 0.5 

R1: i-Butane  mol/mol 0.0 0.5 

R1: n-Butane  mol/mol 0.0 0.5 
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Table 3: Bounds when using the refrigerant component molar fractions and the total refrigerant 
heat flow rate 

Variable Unit LB UB 

R4: Pressure  bar 2.0 6.0 

R5: Pressure  bar 10.0 20.0 

R1: Heat flow GJ/h -1500.0 -500.0 

R1: Nitrogen  mol/mol 0.0 0.2 

R1: Methane  mol/mol 0.1 0.5 

R1: Ethane  mol/mol 0.1 0.5 

R1: Propane  mol/mol 0.0 0.5 

R1: i-Butane  mol/mol 0.0 0.5 

R1: n-Butane  mol/mol 0.0 0.5 

 



28 

 

Table 4: Bounds and best known values for the variables. 

Variable Unit LBW LBM LBT 10 
DH 

10 
DT 

100 
DH 

100 
DT 

UBT UBM UBW 

R4: 
Pressure  bar 1.0 2.0 3.0 3.1 5.1 3.1 3.1 6.0 6.0 9.0 

R5: 
Pressure  bar 10.0 10.0 12.0 12.1 14.7 12.3 12.4 15.0 20.0 30.0 

R1: 
Nitrogen  kmol/s 0.0 0.0 0.1 0.2 0.3 0.2 0.2 0.4 1.0 2.0 

R1: 
Methane  kmol/s 0.1 0.2 0.6 0.7 1.1 0.7 0.7 1.2 1.2 2.0 

R1: 
Ethane  kmol/s 0.1 0.8 1.2 1.3 1.7 1.3 1.3 1.8 1.8 2.0 

R1: 
Propane  kmol/s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 2.0 

R1:  
i-Butane  kmol/s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 2.0 

R1: n-
Butane  kmol/s 0.0 0.5 0.9 1.1 1.1 1.1 1.1 1.3 1.5 2.0 
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