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The curvature dependence of the surface tension can be described by the Tolman length (first-order correction)
and the rigidity constants (second-order corrections) through the Helfrich expansion. We present and explain
the general theory for this dependence for multicomponent fluids and calculate the Tolman length and rigidity
constants for a hexane-heptane mixture by use of square gradient theory. We show that the Tolman length
of multicomponent fluids is independent of the choice of dividing surface and present simple formulae that
capture the change in the rigidity constants for different choices of dividing surface. For multicomponent fluids,
the Tolman length, rigidity constants and the accuracy of the Helfrich expansion depend on the choice of path
in composition and pressure space along which droplets and bubbles are considered. For the hexane-heptane
mixture, we find that the most accurate choice of path is the direction of constant liquid-phase composition.
For this path, the Tolman length and rigidity constants are nearly linear in the mole fraction of the liquid
phase and the Helfrich expansion represents the surface tension of hexane–heptane droplets and bubbles within
0.1% down to radii of 3 nanometers. The presented framework is applicable to a wide range of fluid mixtures
and can be used to accurately represent the surface tension of nanoscopic bubbles and droplets.

I. INTRODUCTION

A highly debated question has been how the surface
tension of a one-component droplet depends on its radius
R, or equivalently its total curvature 2/R.1–8 The posthu-
mously published landmark paper by Tolman9 discussed
the first-order correction of the planar surface tension
with respect to curvature,

σs(R) = σ0 −
2σ0δ

R
+O

(
1
R2

)
. (1)

Here σs(R) is the surface tension of a spherical droplet
(superscript s), σ0 = σs(∞) denotes the planar surface
tension, and δ is referred to as the Tolman length. The
sign of the Tolman length for common fluids such as
water and the Lennard-Jones (LJ) fluid has been discussed
extensively in the literature.3,10–13 For the LJ fluid, there
is now a consensus that the Tolman length is negative.11,12
The sign will, however, depend on the specifics of the
system studied; for example, Tröster and Binder14 found
a positive Tolman length from simulations of a 3D triplet
spin Ising lattice model.

Going one step further and incorporating second-order
curvature corrections to the surface tension was done by
Helfrich,15 who introduced the bending rigidity k and the
Gaussian rigidity k̄ in his study of how the surface tension
of elastic membranes depends on curvature. The Hel-
frich expansion is a second-order Taylor expansion of the
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surface tension with respect to the interfacial curvatures,
which for a spherical interface is given by

σs(R) = σ0 −
2σ0δ

R
+ 2k + k̄

R2 +O
(

1
R3

)
, (2)

and for a cylindrical interface (superscript c)

σc(R) = σ0 −
σ0δ

R
+ k

2R2 +O
(

1
R3

)
. (3)

A comparison of Eq. (2) and (3) shows that it is sufficient
to evaluate the Helfrich expansion for a spherical and
cylindrical geometry to uniquely determine the Tolman
length and both rigidity constants. The Tolman length
and the rigidity constants will in this work be referred to as
the Helfrich coefficients. Once the Helfrich coefficients are
known, the curvature correction for the surface tension of
other surface geometries, such as curved films16 or gravity-
deformed droplets,17 can be obtained to second order. The
curvature expansions are equally valid for droplets and
bubbles. Since the curvature is conventionally taken to
be with respect to the liquid phase, the curvature (and
hence the radius) is positive for a droplet and negative
for a bubble in the curvature expansions.
The physical significance of the rigidity constants for

droplets has been debated.10,18 In systems with long-range
interactions, the second-derivative of σ with respect to
curvature may not exist, thus invalidating the expansion
in Eq. (2); however, for systems with short-range inter-
actions they definitely exist.11 For Density Functional
Theory (DFT) models, the surface tension as a function
of curvature is accurately represented by a second-order
expansion down to nano-sized droplets. Previous papers
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have demonstrated this for several one-component fluid
models.11,12 It this work, we present evidence that this
continues to hold for multicomponent fluids.

A major reason for the interest in the curvature depen-
dence of surface tension is that it has a significant impact
on the nucleation rates predicted by Classical Nucleation
Theory, since it affects the work of formation for a critical
cluster.13,19–26 For pure water droplets nucleating in super-
saturated vapor, incorporating the curvature dependence
of the surface tension improves the agreement between
the theory and the experimental results;27,28 the hope is
that this also holds true for other substances and even for
mixtures. Other applications of the Helfrich expansion
include elastic properties of biological membranes,15,29
highly curved films16 and wetting at the nanoscale.30,31
Previous literature has dealt almost exclusively with

one-component droplets; in reality, however, most inter-
faces contain several components. This paper deals with
the curvature dependence of the surface tension for multi-
component fluids, which is conceptually more complicated.
This is because for multicomponent droplets a variation
in the radius can be achieved along several paths in ther-
modynamic variable space, e.g. by varying the pressure
and composition of the exterior phase to different degrees.
Since the surface tension will have a different dependence
on the radius for different paths, the Tolman length and
rigidity constants also acquire a path-dependence. This
stands in stark contrast to the one-component isothermal
case. That thermodynamic properties have a path de-
pendence is a well-known concept; for instance, the heat
capacity will differ depending on whether the temperature
is varied at constant volume or at constant pressure.
Already in 1950, Koenig32 generalized Tolman’s work

to multicomponent systems, deriving analogous results for
arbitrary directions through the thermodynamic variable
space; however, the scope was restricted to first-order
derivatives of the surface tension. A more thorough theo-
retical treatment was given by Groenewold and Bedeaux33
in 1995. They extended Koenig’s work to incorporate
second-order effects and, in the context of a statistical-
mechanical treatment with pairwise additive potentials,
presented the general equations for curvature effects on
most thermodynamic properties of interest, including the
surface tension.

The first to present quantitative estimates for the Tol-
man length of multicomponent droplets were Santiso
and Firoozabadi.34 Apparently unaware of the works by
Koenig,32 and Groenewold and Bedeaux,33 a subset of
earlier results was re-discovered for derivatives of the sur-
face tension taken at constant composition of the exterior
phase. The model employed by Santiso and Firoozabadi
is a multicomponent extension35 of the Macleod36 corre-
lation of surface tension in terms of bulk phase densities.
By assuming that the Macleod equation applies also to
curved surfaces, the resulting curvature dependence of the
surface tension can be calculated solely from bulk phase
properties. A general shortcoming of bulk-phase correla-
tions is that they are incapable of accurately representing

surface enrichment and other surface-specific phenomena.
In this work, we give a general derivation of the theory

for curvature-dependence of thermodynamic properties
along arbitrary paths in thermodynamic variable space. In
addition, a framework for computing Tolman lengths and
rigidity constants of multicomponent fluids is presented.
Instead of using bulk-property correlations, we use a more
sophisticated DFT approach of minimizing the free energy
as a functional of the density profiles. The theoretical
foundation presented in this work is model-independent,
but for the computations we shall particularize to Square
Gradient Theory (SGT), which is a semi-empirical den-
sity functional theory that often captures the underlying
physics of the droplet almost as well as more rigorous
DFTs.37 In particular, SGT and a more sophisticated,
non-local DFT have been shown to give very similar val-
ues for the Tolman length and rigidity constants of simple
fluids.11
The structure of the paper is as follows. In Sec. II

we extend previous work on curvature corrections, begin-
ning with the general and model-independent theory in
Secs. II A–II B, and then present a framework for comput-
ing multicomponent Tolman lengths and rigidity constants
by use of SGT. In Sec. III we describe a numerical method
for solving the resulting equations. In Sec. IV we evalu-
ate curvature corrections for the hexane-heptane mixture,
and describe some scenarios where curvature corrections
for multicomponent droplets can be used. Finally, we
offer some concluding remarks in Sec. V.

II. THEORY

For the equilibrium curvature of a droplet to change,
there must be a change in the intensive thermodynamic
variables of the system, i.e. the temperature or chemical
potentials. Curvature corrections have previously been
considered at isothermal conditions,2,5,6 and for the sake
of simplicity we shall also restrict ourselves to this situa-
tion. Letting µ = (µ1, . . . , µn) be the vector of the chem-
ical potentials of components 1 to n and ρ = (ρ1, . . . , ρn)
the corresponding densities, the Gibbs equation for the
internal energy density can be written as du = µdρ.
Boldfaced symbols will represent vectors or matrices, and
the inner product is implied when two vector quantities
are written next to each other, i.e. µdρ = µ · dρ. For a
vector, removing the boldfont and subscripting with tot
will mean a summation over components; for example,
the total density is ρtot =

∑
i ρi.

Although we focus on curvature changes due to isother-
mal variation of the chemical potentials, except for the
numerical examples with SGT in Sec. II C, the theory
in Sec. II can effortlessly be extended to include also
temperature variations. As explained in previous work,33
this can be achieved by letting µ = (µ1, . . . , µn, T ) and
ρ = (ρ1, . . . , ρn, s), where s is the entropy density and T
the temperature; all the derivations in Secs. II A–II B will
then remain valid.
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FIG. 1. Two possible paths in µ-space passing through a sat-
uration state (black point), where the liquid surface curvature
increases in the indicated direction. The shape of the phase
envelope S is typical for VLE of two subcritical components.
The dashed and dotted curves indicate the vapor and liquid
spinodals, respectively.

A. Definition of the problem

Starting from a Vapor–Liquid Equilibrium (VLE) state
(subscript 0) at T0 and µ0, we proceed along a path P into
the metastable region, where states are characterized by
chemical potentials µ 6= µ0. This is illustrated schemati-
cally in Fig. 1 for a binary mixture. Each state along a
particular path P corresponds to a droplet or a bubble in
equilibrium with its surrounding phase, where chemical
potentials and temperature are spatially uniform. We
refer to previous works for a discussion of thermodynamic
stability, which depends on the boundary conditions.38–40
Even though droplets and bubbles are in equilibrium with
a surrounding supersaturated phase, the term VLE state
will in the following denote a saturation state; this entails
that the vapor–liquid interface is flat.
Another route to arrive at expressions for the curva-

ture coefficients is by considering the surface curvature
associated with fluctuations of an otherwise planar sur-
face (µ = µ0). The planar surface tension and curvature
coefficients are then derived from considering the free
energy of such surface waves at different lengthscales.
This route, which was previously investigated for one-
component systems,41–43 will not be further investigated
here and we consider the VLE state only.

A spherical droplet or bubble is modeled as illustrated
in Fig. 2, and we may define its radius R corresponding
to a choice of dividing surface. The droplet is contained
in a spherical volume of radius Rtot, chosen so large that
the surrounding phase has bulk behavior at the boundary.
The radius can for example be chosen to correspond to

the total equimolar radius Re, defined implicitly by

Ntot = V (Re)ρtot(0)+(V (Rtot)−V (Re))ρtot(Rtot) . (4)

Here ρtot(r) is the total number density at radial position
r according to the model; V (R) = 4πR3/3 is the volume
up to position R; and Ntot is the total number of particles
in the container. Cylindrical geometries can be treated
in a similar way. The equimolar radius is a well-defined
function of µ, and writing the state functions along a path
P as a function of R, we introduce the functions µ(R),
σ(R), ρliq, ρvap, P liq, etc., where superscripts liq and
vap refer to the liquid and vapor phases. For a droplet,
ρliq = ρ(0) and ρvap = ρ(Rtot). Note that properties
like the curvature-dependent surface tension, σ(R), are
well-defined functions only when both the path P and
the choice for the dividing surface are given. The phase
envelope S, consisting of the two-phase equilibrium states,
is the R =∞ isoradius contour corresponding to the flat
surface.

B. General relations from classical thermodynamics of
surfaces

We start by surveying the relevant relations from clas-
sical thermodynamics for surfaces. These are valid in
all cases where the use of classical thermodynamics is
justified, which in particular means that we assume the
droplet/bubble to be large enough so that properties like
ρliq and P liq at the center have bulk phase behavior.
These thermodynamic relations cannot give quantitative
results before being coupled to a specific theoretical model,
such as the SGT model introduced in Sec. II C.

Rtot
R

FIG. 2. A spherical droplet or bubble of radius R inside a
concentric spherical container of radius Rtot. The spherically
symmetric density profiles ρ(r) are approximately constant at
the center r = 0 and at the boundary r = Rtot, but generally
have large gradients around the surface region r = R.
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1. The Gibbs Adsorption Equation

The surface tension is defined44 as σ = ΩE/A, where
ΩE is the excess (superscript E) grand free energy of a
surface between two homogeneous bulk phases and A
is the surface area. From this definition one can derive
the Gibbs Adsorption Equation (GAE).45 For interface
geometries where the curvature can be captured by a
single variable R, it can be written as44,46

dσ = −Γ dµ+
[
∂σ

∂R

]
T,µ

dR . (5)

Here R is usually the radius of a droplet or a bubble.
The adsorption vector, Γ contains the excess number
densities per area, while [∂σ/∂R]T,µ is the so-called no-
tional derivative44,47 of the surface tension with respect
to radius, i.e. the derivative of the surface tension with
respect to the choice of radius when keeping the physical
system (T and µ) unchanged. In addition to the notional
derivative, one has the physical derivative of the surface
tension. The physical derivative is well-defined only after
having made a choice of dividing surface (such as the
total equimolar radius), and a choice of path P through
the thermodynamic variable space. For one-component
droplets at fixed temperature however, only a choice of
dividing surface is needed, since the only possible path
through variable space that corresponds to droplets fol-
lows an increase in the pressure of the external phase.
The chemical potential is then determined by the Gibbs–
Duhem relation. The physical and notional derivatives of
the surface tension are related by46,48[

∂σ

∂R

]
T,µ

= dσ
dR + Γ dµ

dR , (6)

which follows directly from Eq. (5) by taking the physical
derivative. Since [∂σ/∂R]T,µ is, in general, different from
zero, it follows that for curved surfaces the surface tension
depends on the choice of dividing surface.

Another expression for the notional derivative of the sur-
face tension can be obtained from the fundamental prop-
erty that a notional change in the radius must leave the
physical system unchanged. It follows that the notional
derivative of the grand canonical potential [∂Ω/∂R]T,µ is
zero, from which one can deduce the generalized Laplace
relation46–48 [

∂σ

∂R

]
T,µ

= ∆P − gσ(R)
R

, (7)

where the geometry factor g equals 1 for a cylindrical
bubble/droplet, 2 for a spherical bubble/droplet and
∆P = P liq − P vap, where the two pressures are taken
in the homogeneous bulk phases. By use of the geome-
try factor g, our derivations below will be valid for both
spherical and cylindrical geometries.
In addition to the total equimolar radius defined in

Eq. (4), another popular choice of dividing surface is the

surface of tension, defined by [∂σ/∂R]T,µ = 0. This is
equivalent to the definition [∂σ/∂(R−1)]T,µ = 0, which
is more convenient for our purposes. As we will see,
the theory becomes especially simple for this choice of
dividing surface.

2. Curvature expansions for a multicomponent fluid

For a given choice of path P passing through a VLE
state, and for any well-defined dividing surface, we can
define the general curvature expansions as

µ(R) = µ0 + µ1
R

+ µ2
R2 + · · · (8)

ρ(r;R) = ρ0(r) + ρ1(r)
R

+ ρ2(r)
R2 + · · · (9)

∆P (R) = 0 + ∆P1
R

+ ∆P2
R2 + · · · (10)

σ(R) = σ0 + σ1
R

+ σ2
R2 + · · · (11)

Γ (R) = Γ0 + Γ1
R

+ Γ2
R2 + · · · . (12)

We emphasize that these expansions consider physical
changes of the radius R, for a fixed definition of the
dividing surface. Here ρ(r;R) is the density profile as a
function of the radial coordinate r. The quantities we
have introduced on the right-hand sides are coefficients in
an expansion with respect to 1/R, and these coefficients
are independent of the value of R for a given choice of
dividing surface. As explained in Sec. I, R > 0 for droplets
and R < 0 for bubbles in the curvature expansions, and
thus µ1 is directed into the droplet regime (cf. Fig. 1).
Eqs. (8)–(12) are valid for both spherical and cylindrical
geometries, with different values of the coefficients. The
zero-subscripted quantities are properties of the VLE
state, corresponding to a flat interface. The first- and
second-order coefficients are subscripted with 1 and 2, and
depend on the path P in thermodynamic variable space
along which R is varied. Note that the vector quantity µ1
is different from the scalar quantity µ1, the latter being
the chemical potential of component 1.
The aim of this section is to derive general relations

between the coefficients on the right-hand sides of Eqs. (8)–
(12). Combining Eq. (6) and Eq. (7) we find that ∆P =
gσ(R)/R + dσ (R)/dR + Γ dµ (R)/dR , and expanding
in 1/R yields

∆P = gσ0
R

+ (g − 1)σ1 − µ1Γ0
R2

+ (g − 2)σ2 − µ1Γ1 − 2µ2Γ0
R3 · · · .

(13)

By applying the Gibbs–Duhem equation, dP =
ρdµ, separately to each of the two homogeneous
phases, we find that dP liq/dR = ρliq dµ/dR and
dP vap/dR = ρvap dµ/dR, which upon subtraction be-
comes d∆P/dR = ∆ρ dµ/dR. By expanding this last
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equation in 1/R and comparing the coefficients with
Eq. (13), we obtain the relations

gσ0 = µ1∆ρ0 (14)
(g − 1)σ1 − µ1Γ0 = µ2∆ρ0 + 1

2µ1∆ρ1 , (15)

where ∆ρ1 = ρliq
1 −ρvap

1 . The directions of µ1 and µ2 vary
according to the choice of dividing surface and path P
considered in the thermodynamic variable space; however,
their inner product with ∆ρ0 are fixed by Eqs. (14)–(15).
In other words, one is free to choose the directions of µ1
and µ2, but not their norms. Referring to Fig. 1, the
path Pa is a straight (i.e. linear) path in µ-space, which
implies that µ1 ∝ µ2 ∝ ∆µ, where ∆µ = µ − µ0; the
path Pb is curved and µ1 and µ2 have different directions.
These vectors are not fully determined before one also
knows their norms, and Eqs. (14)–(15) determine these
last degrees of freedom.
The term ∆ρ1 in Eq. (15) can be re-expressed using

properties of the planar density profile, by using that
ρliq

1 = (ρliq
0µ)µ1, where ρliq

0µ is the derivative of ρliq as a
function49 of µ, evaluated at µ0. Similarly, we have that
ρvap

1 = (ρvap
0µ )µ1, and so

µ1∆ρ1 = µᵀ
1(∆ρ0µ)µ1 (16)

where ∆ρ0µ = ρliq
0µ−ρvap

0µ . In Tab. I we show how Eq. (14)
and Eq. (15) particularize for spherical and cylindrical
geometries, using both the surface of tension and an
arbitrary choice of dividing surface. The equations in
Tab. I have been formulated in terms of the Tolman
length, using the relation σ1 = −gσ0δ. Further, Eq. (14)
implies that ∆µc

1 = 1
2 ∆µs

1; such a simple relationship
does not in general exist between µc

2 and µs
2.

Eq. (14) is not valid for paths that are tangential to
the VLE envelope in µ-space, since we then have that
µ1∆ρ0 = 0, while gσ0 6= 0. The reason for this is that
the curvature is constant (zero) along the VLE envelope,
which means that thermodynamic properties cannot be
parametrized with the curvature. Each point on a valid
path should correspond to a different value of the curva-
ture. We shall discuss this point further in Secs. IVB–
IVC.

We will also need formulae for the curvature expansion
coefficients for the adsorption, Γ0 and Γ1. By definition
we have that Γ (R) =

∫
ρE dr /A(R), where A(R) is the

area of the cylindrical or spherical droplet/bubble. Using
the geometry factor g, this can be written compactly
as Γ (R) =

∫
ρE(z)(1 + z/R)g dz. Here we have made

the substitution z = r − R, which is conventional when
dealing with curvature corrections.50 A Taylor expansion
in 1/R then yields that

Γ0 =
∫
ρE0 (z) dz , (17)

Γ1 =
∫ (

ρE1 (z) + gzρE0
)

dz , (18)

where in general, Γ1 6=
∫
ρE1 (z) dz.

3. Role of the dividing surface

For an arbitrary but fixed path P through the thermo-
dynamic variable space, which is not parallel to the satu-
ration locus, we now examine how the first- and second
order coefficients in Eqs. (8)–(12) depend on the choice
of dividing surface, i.e. the definition of R. Consider two
different definitions of the dividing surface, according to
which the radius of a given droplet is respectively R̃ and
R. Following previous notation,46 we assume that we can
write

R̃ = R+ ε(R)

= R+ ε0 + ε1
R

+ · · ·
(19)

This assumption is equivalent to the requirement that the
deviation R̃−R is finite in the planar limit, and that it
varies smoothly with the curvature, 1/R. This can also
be formulated as

1
R̃

= 1
R
− ε0
R2 + ε20 − ε1

R3 + · · · , (20)

which is a more convenient form when evaluating curva-
ture expansions.
Clearly, a different definition of the dividing surface

will not change the physical properties of the system, and
in particular, it will not change the chemical potential µ.
This means that we can write µ(R) = µ̃(R̃), where the
left- and right-hand sides denote the chemical potentials as
functions of R and R̃, respectively, as these vary along P .
By Taylor expanding the right-hand side of this identity
in 1/R̃ and using Eq. (20) to replace 1/R̃ with 1/R, we
find that

µ̃0 = µ0 , (21)
µ̃1 = µ1 , (22)
µ̃2 = µ2 + ε0µ1 . (23)

Similarly, we have that ∆P (R) = ∆̃P (R̃), so that

∆̃P0 = ∆P0 , (24)

∆̃P1 = ∆P1 , (25)

∆̃P2 = ∆P2 + ε0∆P1 . (26)

Indeed, for any quantity h that is independent of the
dividing surface, we have that h̃0 = h0, h̃1 = h1 and
h̃2 = h2 + ε0h1. Eq. (23) shows that the direction of µ2
is not fully determined by the path P , but in general also
depends on the choice of dividing surface.

Regarding the density profile, a curvature expansion of
the identity ρ(z + ε(R)) = ρ̃(z) yields that

ρ̃0(z) = ρ0(z + ε0), (27)
ρ̃1(z) = ρ1(z + ε0) + ε1ρ0z(z + ε0) (28)
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TABLE I. General relations between curvature-correction coefficients for cylindrical and spherical geometries. Results are shown
for an arbitrary choice of dividing surface and the surface of tension. Quantities corresponding to a cylindrical or a spherical
curvature are superscripted with respectively c or s. These relations extend previous findings for the one-component case.41,50

Arbitrary dividing surface Surface of tension

Cylinder
σ0 = µc

1∆ρ0

0 = Γ0µ
c
1 + µc

2∆ρ0 + 1
2 (µc

1)ᵀ(∆ρ0µ)µc
1

σ0 = µc
1∆ρ0

σ0δ = Γ0µ
c
1

Sphere
2σ0 = µs

1∆ρ0

−2σ0δ = Γ0µ
s
1 + µs

2∆ρ0 + 1
2 (µs

1)ᵀ(∆ρ0µ)µs
1

2σ0 = µs
1∆ρ0

2σ0δ = Γ0µ
s
1

where ρ0z is the derivative of ρ0 with respect to z. It
turns out that the quantity ρ2 is not needed up to the
order we consider in this framework,50 and neither is
Γ2. For the adsorptions, we insert Eqs. (27)–(28) into
Eqs. (17)–(18), and obtain

Γ̃0 = Γ0 − ε0∆ρ0 , (29)

Γ̃1 = Γ1 − ε0(∆ρ1 + gΓ0)− ε1∆ρ0 + g

2 ε
2
0∆ρ0 . (30)

Especially interesting are the curvature expansion coeffi-
cients for the surface tension,

σ̃0 = σ0 , (31)
σ̃1 = σ1 , (32)

σ̃2 = σ2 − ε0µ1Γ0 + g

2 ε
2
0σ0 . (33)

In terms of the Helfrich coefficients, Eqs. (32)–(33) lead
to

δ̃ = δ, (34)
k̃ = k − 2ε0µc

1Γ0 + ε20σ0, (35)
˜(2k + k̄) = 2k + k̄ − ε0µs

1Γ0 + ε20σ0. (36)

Eq. (34) shows that the Tolman length is independent of
the choice of dividing surface also for multicomponent flu-
ids, which extends previous findings for a one-component
system.11 Eqs. (35)–(36) are simple transformation for-
mulae for the rigidity constants of multicomponent fluids
for different choices of dividing surface. To derive the
transformation formulae for the surface tension, we use
the definition of the notional derivative to write

σ(R̃) = σ(R) +
∫ R̃

R

[
∂σ

∂R′

]
T,µ

dR′ ,

Taylor expand the right-hand side to second order in 1/R̃,
and compare coefficients with the second-order expansion
of σ̃(R̃). This is a lengthy, but straightforward derivation
that can be found in the Supplementary Material.
All the transformation formulae Eqs. (21)–(36) have

been verified numerically using the SGT model, in the
specific case where R̃ is the total equimolar radius and R
is the radius of tension.

For the one-component case, it was shown in previous
work11 that for a particular DFT model, the equimolar
surface is the choice of dividing surface that minimizes the
magnitude of the rigidity constants. Eqs. (34)–(36) con-
stitute a generalization of this result to a multicomponent
fluid, and the derivation shows that it is not a peculiar-
ity of the DFT model in Ref. 11, but generally true for
one-component fluids. In the multicomponent case, any
dividing surface that satisfies µ1Γ0 = 0 will minimize σ2.
One example of such a radius is the (dµ/dR)-weighted
equimolar radius defined by Γ (dµ/dR) = 0, and another
is the one defined by µ1Γ = 0. Another property that
these choices of radii have in common is that a multi-
component version of Tolman’s law holds.32,46 The main
drawback of any definition for the choice of dividing sur-
face that satisfies µ1Γ0 = 0 for a multicomponent fluid,
is that it will not be a state function since it depends on
the direction of µ1; thus the same physical droplet will
be assigned a different radius according to which µ1 that
is considered.

C. Computing the curvature coefficients by use of SGT

Curvature corrections for the SGT model have been
derived in the literature for one-component fluids.50 In
the following, we derive similar corrections for a mul-
ticomponent fluid interface as described by SGT. The
multicomponent expressions will have the same form as
in the single-component case, to which they reduce in
the one-dimensional case. In SGT, the grand free energy
functional is modeled as

Ω[ρ] =
∫ (1

2ρ
ᵀ
rKρr + aEOS(ρ)− µρ

)
dr , (37)

where subscript r means a derivative with respect to r.
HereK is a constant, symmetric and positive semidefinite
n×n matrix known as the influence matrix, and aEOS(ρ)
is the Helmholtz energy density of a fluid with uniform
densities ρ at the specified temperature. The function
aEOS is modeled with an Equation of State (EOS), where
aEOS(ρ) = −PEOS(ρ) + µEOS(ρ)ρ. Since we restrict the
discussion to planar, cylindrical and spherical geometries,
only one spatial variable r is needed. The Laplacian can
then be written ∇2 = d2/dr2 + (g/r ) d/dr , where g is
0, 1 or 2 depending on the geometry. The stationarity
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condition δΩ[ρ] = 0 is found to be equivalent to the
system of differential equations −K∇2ρ+µEOS(ρ)−µ =
0, or

Kρrr = −g
r
Kρr + µEOS(ρ)− µ , (38)

where subscript rr means the second-order derivative
with respect to r. Similar to the one-component case50
we can Taylor-expand Eq. (38) in 1/R, and by using the
definitions Eqs. (8)–(9) we find that

Kρ0zz = µEOS(ρ0)− µ0 , (39)
Kρ1zz = µEOS

ρ (ρ0)ρ1 − µ1 − gKρ0z , (40)

where z = R− r as in Sec. II B 3 and subscripts z and zz
means first- and second-order derivatives with respect to
z. Since µc

1 = 1
2µ

s
1, we have that ρc1 = 1

2ρ
s
1 for SGT.

The solutions of Eq. (40) are degenerate: if ρ1 is a
solution, then ρ1 + αρ0z is as well. This reflects the fact
that the first-order curvature correction for the density,
ρ1, depends on the choice of dividing surface, where we
refer to Eq. (28) and the discussion in Sec. II B 3 for
more details. For the total equimolar surface, defined by
Γtot = 0, the constraint on ρ1 is obtained from Eq. (18)
by summing over the components:

∫
[ρE1,tot(z) + gzρE0,tot(z)] dz = 0 . (41)

Eq. (41) restores uniqueness for the total equimolar sur-
face, and has been stated before in the literature for
the one-component case.50 For the surface of tension, it

follows from Appendix A that the condition on ρ1 is∫
ρᵀ0zKρ1 dz =∫

[(g − 1)z2ρᵀ0zKρ0z + z2µs
1ρ0z + zµs

1ρ
E
0 ] dz

(42)

For our purposes, there is no need to worry about the
degeneracy of ρ1, as the SGT formulae Eqs. (48)–(50)
for the Helfrich coefficients are invariant under the shift
ρ1 7→ ρ1 + αρ0z. For other applications however, this
degeneracy cannot be ignored, for example when consider-
ing transport of heat and mass across curved vapor–liquid
interfaces.51,52

The surface tension equals the area-specific excess grand
free energy ΩE[ρ]/A(R), which for SGT is given by

ΩE[ρ]
A(R) =

∫ [1
2ρ

ᵀ
zKρz + aE(ρ)− µρE

](
1 + z

R

)g
dz ,

(43)
where aE(ρ) = aEOS(ρ)− aEOS(ρbulk) and, for a droplet,
ρbulk = H(−z)ρliq +H(z)ρvap where H is the Heaviside
function. The expression in Eq. (43) is valid for planar,
cylindrical and spherical geometries. Using the differential
equations (39) and (40), one can evaluate the first few
terms in a curvature expansion of Eq. (43). Details on this
derivation are provided in the Supplementary Material.
The final expression is

ΩE[ρ]
A(R) =

∫
ρᵀ0zKρ0z dz (44)

+ 1
R

∫ [
gzρᵀ0zKρ0z − µᵀ

1ρ
E
0
]

dz (45)

+ 1
R2

∫ [
g(g − 1)

2 z2ρᵀ0zKρ0z −
1
2gρ

ᵀ
0zKρ1

+ 1
2gz

2µᵀ
1ρ0z −

1
2µ

ᵀ
1ρ

E
1 − µᵀ

2ρ
E
0

]
dz .

(46)

Comparing the curvature expansion in Eqs. (44)–(46)
with the Helfrich expansion for the sphere (Eq. (2)) and
cylinder (Eq. (3)), we find the following SGT expressions
for the coefficients in the Helfrich expansion:

σ0 =
∫
ρᵀ0zKρ0z dz , (47)

δ = − 1
σ0

∫ [
zρᵀ0zKρ0z + 1

2µ
s
1ρ

E
0

]
dz , (48)

k =
∫ [
−1

2ρ
ᵀ
0zKρ

s
1 + 1

2z
2µs

1ρ0z −
1
4µ

s
1ρ

s,E
1 − 2µc

2ρ
E
0

]
dz , (49)

k̄ =
∫ [

z2ρᵀ0zKρ0z + (4µc
2 − µs

2)ρE0
]

dz , (50)

2k + k̄ =
∫ [

z2ρᵀ0zKρ0z − ρᵀ0zKρs1 + z2µs
1ρ0z −

1
2µ

s
1ρ

s,E
1 − µs

2ρ
E
0

]
dz . (51)
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Here, we have eliminated ρc1 and µc
1 by using the relations

ρc1 = 1
2ρ

s
1 and µc

1 = 1
2µ

s
1. One can verify that the formu-

lae Eqs. (47)–(51) are consistent with the transformation
formulae in Eqs. (31)–(33), both directly by analytical
integration as well as numerically. This is an excellent con-
sistency check for the SGT formulae, since any consistent
model must yield expressions for the Tolman lengths and
rigidity constants that conform to these transformation
formulae.

III. NUMERICAL METHODS

To determine the Tolman length and both rigidity con-
stants along a path P in the thermodynamic variable
space, we carried out the calculations in the following
order:

i) Solve the differential equation (39) for the planar
density profile ρ0 at the saturation state.

ii) Obtain the direction of µs
1 from the tangent of P in

the µ-space. Use Eq. (14) to determine its magnitude.

iii) Determine the Tolman length, δ from Eq. (48).

iv) Solve the differential equation (40) for ρs1, i.e. the
first-order curvature correction to the density profile
for spherical droplets.

v) Determine the directions of µs
2 and µc

2 from P, and
determine their magnitudes using Eq. (15).

vi) Determine the rigidity constants k and k̄ from
Eqs. (49)–(50).

For a given path the first-order coefficients δ and µ1 are
independent of the choice of dividing surface, while the
second-order coefficients µ2, k and k̄ are not.
The most popular version of SGT is the so-called ge-

ometric mean square gradient theory (GM-SGT), where
the combining rule for the influence matrix K = [κij ]ij
is given by the geometric mean of the pure component
values, κij = √κiiκjj . We will use GM-SGT to generate
the results in Sec. IV, but in Secs. IIIA–IIIB below we
develop the numerical solution procedure for an arbitrary
symmetric and positive semidefinite influence matrix K.

A. Solving the full SGT model with an arbitrary
symmetric influence matrix

We first discuss the numerical solution of the full SGT
equation

K∇2ρ(r) = µEOS(ρ(r))− µ . (52)

SinceK is symmetric we can writeK = PΛP ᵀ, where P
is the orthogonal matrix having eigenvectors as columns
and Λ is the diagonal matrix of eigenvalues. Let now ι

be the tuple of indices corresponding to nonzero eigen-
values, and ζ be the tuple of indices of zero eigenvalues.
Introducing the variables

q(r) = P ᵀρ(r), φ(ρ(r)) = P ᵀ
(
µEOS(ρ(r))− µ

)
,

we reformulate Eq. (52) as a coupled set of differential
equations and algebraic equations

Λι∇2qι(r) = φι(ρ(r)), (53)
P ᵀ
ι ρ(r) = qι(r), φζ(ρ(r)) = 0, (54)

corresponding to rankK differential equations for qι(r)
and n algebraic equations to recover ρ(r) given qι(r).
Of these algebraic equations, there are rankK linear
equations and n− rankK nonlinear equations, that will
have to be solved in each grid point. We use the Neumann
boundary conditions

dqι
dr (0) = 0, dqι

dr (Rtot) = 0 . (55)

The first boundary condition always holds due to sym-
metry, and is also necessary to ensure that the Laplacian
does not diverge for the curved geometries. The second
boundary condition is an approximation that becomes
exact in the limit Rtot → ∞; in practice the densities
approach their bulk values exponentially fast, akin to the
exact tanh solution obtained when solving SGT using
van der Waals equation of state.44,53 One should verify
that the spherical container is chosen sufficiently large so
that the ∂qι/∂r vanishes well before the container wall at
r = Rtot. Eqs. (52)–(55) constitute a nonlinear Boundary
Value Problem (BVP).

In addition to Eqs. (53)–(55), which are true for any
density profile, additional equations are needed to spec-
ify the particular solution we are interested in; this is
equivalent to specifying µ in Eq. (52). For our purposes,
we will be interested in computing the density profiles
of a droplet with given total equimolar radius Re along
specific paths in µ-space. We will therefore also solve for
the vector of cumulative number of particles, N(r), by
use of the following equation

dN(r)
dr = A(r)ρtot(r) , (56)

and the boundary conditions N(0) = 0 and Eq. (4). Re-
stricting the considered paths to straight lines in µ-space,
we have that µ(t) = µ0 + tµ1, where t is an unknown
parameter that is part of the solution. A good initial
guess for t is 1/R.
As an initial guess for the density profiles, we use for

each component a tanh function shifted and scaled so
that it is centered at the position of the radius, and has
the bulk liquid and vapor densities as limiting values. We
solve the algebraic equations defined by Eq. (54) with
Newton’s method. This entails that for each gridpoint we
converge the iteration given by DG(ρn)(ρn+1 − ρn) =
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G(ρn), where

G(ρ) =
[
P ᵀ
ι ρ− qι
φζ(ρ)

]
, DG(ρ) =

[
P ᵀ
ι

P ᵀ
ζ µ

EOS
ρ (ρ)

]
.

(57)
A good initial guess is available from the solution at the
same position in the previous pass of the BVP solver, or
the initial density profile if it is the solver’s very first pass.

To solve the resulting BVP numerically, we use the col-
location method solve_bvp in the Python library SciPy,54
version 0.18.1. The underlying algorithm is essentially
the same algorithm as the widely used bvp4c integrator
in Matlab. One of its main features is automatic grid
refinement, which in practice will produce a fine mesh in
the interface region and a coarse mesh where the densities
are essentially constant.

B. Solving for the curvature corrections

Using the solution ρ0 for the planar density profile, we
solve Kρ1zz = µEOS

ρ (ρ0)ρ1 − µ1 − gKρ0z as a system
of linear differential equations for ρ1. Since solve_bvp
uses automatic grid refinement, we use a cubic spline
to interpolate ρ0 in any new grid points the algorithm
introduces. Defining

q1(z) = P ᵀρ1(z) ,
φ1(ρ1(z)) = P ᵀ

(
µEOS

ρ (ρ0(z))ρ1(z)− µ1 − gKρ0z(z)
)
,

the equations to solve are

Λιq1zz(z) = φ1,ι(ρ1(z)), (58)
P ᵀ
ι ρ1(z) = q1,ι(z), φ1,ζ(ρ1(z)) = 0. (59)

To solve for the curvature corrections is easier than finding
a full SGT solution from Eqs. (53)–(54): solving for q1,ι
from Eq. (58) amounts to solving a set of linear differ-
ential equations, in contrast to the nonlinear differential
equations that determine qι; moreover, Eq. (59) is a linear
system of algebraic equations, while Eq. (54) is nonlinear.
We find that the initial guess ρ1 = 0 suffices to converge
the equations.
To calculate δ, k and k̄, it suffices to solve Eqs. (58)–

(59) for the spherical curvature-correction ρs1, since the
cylindrical correction can be found from ρc1 = 1

2ρ
s
1. To

solve for ρ1 we need the compositional Jacobian matrix
of the chemical potentials µEOS

ρ (ρ0). This Jacobian is
usually available for the EOS, as it is needed for efficient
thermodynamic algorithms such as flash algorithms.

For boundary conditions, we specify that the gradients
vanish at the center of the droplet and at the container
wall:

dq1,ι
dr (0) = 0, dq1,ι

dr (Rtot) = 0 , (60)

where the first condition again follows from a symme-
try argument, while the latter is an approximation that
becomes exact in the limit Rtot →∞.
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x/y heptane
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FIG. 3. Dew curve (red) and bubble curve (blue) of the hexane-
heptane mixture at 298.15 K in pressure-composition space,
with a VLE state marked (black points). Here x and y denote
the mole fraction of heptane in the liquid and vapor phase,
respectively. In Pxy space, a planar density profile corresponds
to one bubble point and one dew point; the corresponding plot
in µ-space is qualitatively similar to Fig. 1.

C. Numerical consistency checks

It is challenging to achieve a numerically robust im-
plementation of SGT, and developing various approaches
for this is an active research area.55–57 To ensure a cor-
rect implementation, the code has been subjected to the
following consistency checks:

• The second-order expansion fits well with the surface
tension values from the full SGT model for large
droplets. (See Fig. 10.)

• The curvature correction transformation formulae
in Sec. II B 3 hold in the case µ1 ∝ µ2 (i.e. straight
path in µ-space) for the surface of tension vs. the
total equimolar surface.

• The results remain unchanged when solving for a
droplet of a given radius and in a larger container.
This verifies that finite-size effects are negligible.

• The results remain unchanged when solving on a
more refined grid, i.e. to a higher numerical accu-
racy.

• The curvature correction for the mixture approach
their pure-component values as the mixture becomes
very concentrated in one of the components.

IV. RESULTS AND DISCUSSION

We discuss next the Tolman length, rigidity constants
and the accuracy of the Helfrich expansion, using the
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TABLE II. Parameters used to generate results. Component 1
is hexane, component 2 is heptane. κ1 and κ2 are the pure-
component influence parameters, κ12 is the cross-influence
parameter, while k12 is the interaction parameter in the EOS
mixing rule.

Parameter Value

k12 −0.0011
Temperature 298.15 K

κ1 4.18× 10−19 Jm5/mol2
κ2 5.76× 10−19 Jm5/mol2
κ12

√
κ1κ2

−111 −110 −109 −108
µ/(kJ/mol) heptane

−114.5

−113.5

−112.5

−111.5

µ
/(

kJ
/m

ol
)

h
ex

an
e

S

θ

µ0(xA)

µ0(xB)

µs(Droplet)

FIG. 4. A phase diagram of the chemical potential space, where
all coordinates that are not on the VLE curve, S (thick solid
line), represent either spherical bubbles or droplets of different
compositions and radii. The thermodynamic properties of a
droplet at µs (blue point) can be represented by a curvature
expansion either along a path from State A (red point and
solid line) or from State B (light blue point and dotted line).
Here, x is the liquid-phase composition, which is different in
the two VLE states. The path from State A can be specified
by the angle θ, measured counterclockwise relative to the
perpendicular (dashed curve) of S at µ0(xA).

hexane-heptane mixture at T = 298.15 K as example. We
have checked that the conclusions drawn in this section
are not sensitive to the choice of temperature by repeating
the calculations at T = 330 K and T = 375 K (not shown).

The Peng–Robinson EOS58 is used to describe the prop-
erties of the single-phase fluid (the functions with super-
script “EOS” in Sec. II). By using binary interaction pa-
rameters, the Peng–Robinson EOS accurately represents
vapor–liquid equilibrium compositions for mixtures of
hydrocarbons.59,60 The phase diagram of hexane-heptane
at T = 298.15 K as calculated by the Peng–Robinson
EOS is displayed in Fig. 3, where the binary interaction
parameter is provided in Tab. II. The figure shows that
VLE can be found between the saturation pressure of
pure hexane (∼ 20 kPa) and of pure heptane (∼ 6 kPa),
with dew points represented by the red solid curve and

bubble points represented by the blue dashed curve.
The entries of the influence matrix K were fitted to

the pure-component surface tension values reported by
Jasper61 at 300 K, with the resulting values shown in
Tab. II, and the cross-influence parameter κ12 was de-
scribed by the geometric mean rule. SGT then predicts
the planar surface tension of the hexane-heptane mixture
to vary nearly linearly with the liquid mole fraction of
heptane. This is expected, as hexane and heptane are
similar fluids.

A. An explanation for the path dependence of the
coefficients in the multicomponent Helfrich expansion

As explained previously, the Tolman length and rigidi-
ties of a multicomponent fluid depend on the path taken
through thermodynamic variable space. This becomes
especially clear by considering Fig. 4, which presents a
phase diagram in the chemical-potential space, where all
coordinates that are not on the VLE envelope, S (thick
solid line), represent either bubbles or droplets. The fig-
ure illustrates two paths from S to a uniquely defined
spherical droplet state characterized by µs, where the
VLE states A and B have different liquid-phase composi-
tions, pressures and surface tensions. Both paths traverse
continuously through droplet states, and are equally valid
from a thermodynamic point of view. Given that the sur-
face tension of the droplet, σs is accurately represented
by the Helfrich expansion, the following relation is true:

σ0 (xA)
(

1− 2δA
R

)
+ ks,A

R2 = σ0 (xB)
(

1− 2δB
R

)
+ ks,B

R2 ,

(61)
where x is the mole fraction in the liquid phase, the left-
hand-side represents the Helfrich expansion from State
A and the right-hand-side is the Helfrich expansion from
State B. Since σ0 (xA) 6= σ0 (xB), Eq. (61) shows that
the Helfrich coefficients of a multicomponent fluid depend
on the VLE state used in the Helfrich expansion. The
Tolman length and rigidities of a multicomponent fluid
are thus only state functions after the path along which
droplets and bubbles are considered has been specified.
The rigidities also need the choice of dividing surface to
be specified in order to be state functions.

B. Behavior of the Helfrich coefficients from a fixed VLE
state along different paths in thermodynamic state space

The path from a VLE state along which droplets and
bubbles are considered, can for a binary mixture be char-
acterized by the angle θ, which measures the counter-
clockwise angle relative to the perpendicular of S at µ0
(see Fig. 4). For a fixed VLE state, and a given choice
of the dividing surface, the Helfrich coefficients can thus
be represented as functions of the angle θ. We now fix
the VLE state according to the specification in Tab. III,
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choose the total equimolar dividing surface, and examine
the dependence of the Tolman length and the rigidities
on θ. Fig. 5 illustrates this dependence for the Tolman

−π/2 −π/4 0 π/4 π/2

θ/rad

−1.0

−0.5

0.0

0.5

1.0

δ/
(1

0−
9

m
)

−1.0

−0.5

0.0

0.5

1.0

‖µ
s 1
‖/

(1
0−

4
Jm
/m

ol
)

FIG. 5. The Tolman length δ (red curve) and ‖µs
1‖ (blue

dashed curve) as functions of the direction in chemical-
potential space, as measured by θ.

length.
A striking feature of the Tolman length in a multicom-

ponent fluid is that it can take any real value, as illustrated
by the red solid curve. However, the directions parallel
to P are not meaningful for a curvature expansion of the
surface tension, since the curvature is constant in these
directions, equal to zero. This is reflected in asymptotes
in the Tolman length profile at θ = ±π/2. The Tolman
length changes sign somewhere in between, but it is neg-
ative for most values of θ, including the perpendicular
direction corresponding to θ = 0. Moreover, Fig. 5 shows
that ‖µ1‖ approaches ∞ when θ approaches θ = ±π/2,
and has the symmetry of an even function with respect
to θ, with a minimum at θ = 0. This means that the
perpendicular direction in µ-space (θ = 0) is the one in
which the chemical potential of large droplets is the least
sensitive with respect to changes in curvature.

Fig. 6a shows how the second-order curvature correction
for droplets and bubbles, called the spherical rigidity
ks = 2k+ k̄, and µs

2 vary with the choice of path. We have
here considered a straight line in the chemical-potential
space, implying that µ1 ∝ µ2. The spherical rigidity
varies little for directions close to the normal direction,
but starts to diverge at approximately |θ| > π/4.

We have also considered paths that cannot be described
by straight lines in µ-space, but curves (like the path Pb
in Fig. 1). To this end, we fixed the angle of µ1 to
θ = 0 and varied the angle θ2 between µ2 and the normal
vector of the saturation locus; µ2 is then fully determined
by Eq. (15). The resulting behavior of ks and ‖µ2‖ is
shown in Fig. 6b, which reveals that the second-order
coefficients are essentially constant when µ1 is fixed to the
perpendicular direction. More generally, we find that for
fixed directions of µ1 close to the perpendicular direction,

approximately |θ| . π/6, the rigidity constants are to a
good approximation independent of θ2. We will therefore
in the following constrain the discussion to paths that can
be described by straight lines in µ-space.

C. Behavior of the Helfrich coefficients across the phase
envelope for fixed choices of paths

The Tolman length and rigidities of a multicomponent
fluid are only state functions and useful from a prac-
tical point of view after a path has been specified, as
explained in Sec. IVA. Therefore, we next fix the path
according to different choices and study the change in the
Tolman length and rigidities along the phase envelope.
We parametrize the phase envelope by using the liquid
mole fraction of heptane.
The Tolman length exhibits a very different behavior

across the phase envelope depending on the path chosen,
as shown in Fig. 7a. If the path is chosen so as to keep the
composition at the center of the droplet constant (blue
solid curve), then the Tolman length increases monotoni-
cally and close to linearly with the liquid mole fraction
of heptane. If the vapor composition is kept constant
however (green dotted curve), the Tolman length exhibits
a maximum. A similar behavior is seen if the path in-
creases the chemical potential of hexane twice as much
as heptane; this corresponds to paths that are straight
lines in µ-space with a slope of 2, so that µ1 ∝ [1, 2] (red
curve). (The direction [1, 2] was chosen arbitrarily as an
example). When the path is perpendicular to the phase
envelope in µ-space (black dashed curve), the Tolman
length exhibits both a maximum and minimum. A com-
mon denominator for all the choices of paths in Fig. 7a is
that they recover the pure-component Tolman lengths in
the pure-component limit. This is in agreement with the
consistency criteria listed in Sec. III C.

Unlike the path for which µ1 ∝ [1, 2], the directions of
µ1 for the other three paths have to be calculated. To
calculate the perpendicular direction in µ space, first note
that µ−µ0 is perpendicular to S if and only if (µ−µ0) dµ0
is zero for all vectors dµ0 that are tangent to S at µ0.
Since the Gibbs–Duhem relation shows that S is locally
defined by the relation (ρliq

0 −ρvap
0 ) dµ0 = 0, it follows that

the perpendicular directions in µ-space are proportional
to (ρliq

0 − ρvap
0 ). The calculation of the direction of µ1

for paths of constant vapor or liquid composition is more
involved, and is described in the Supplementary Material.

A natural question to investigate is whether there exists
any simple “mixing rule” for Tolman lengths, i.e. a formula
that estimates the Tolman length of a mixture from pure-
component values. Since the Tolman length is a path-
dependent property, such mixing rules should be for the
Tolman length along a particular path. After inspecting
the selection of paths plotted in Fig. 7a it appears that,
for this hydrocarbon mixture, the Tolman length δ along
paths of constant liquid composition varies almost linearly
with the liquid-phase composition; the same is true for
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(b) Fixed µ1, varying direction of µ2.

FIG. 6. The spherical rigidity ks = 2k + k̄ (red curve) and ‖µs
2‖ (blue dashed curve) as functions of the angle θ, using the total

equimolar radius. The angles have different meanings in the two plots: In (a) µs
1 ∝ µs

2 and θ = θ2. In (b) we have fixed µ1 to
be in the perpendicular direction (θ = 0), while µ2 forms an angle θ2 with the perpendicular direction.

TABLE III. A VLE state (planar interface) and a droplet state
(spherical interface) used to generate results. The VLE state
is that shown in Figs. 3–4 and the droplet state is shown in
Fig. 4. The mole fraction x is that of heptane.

State P vap/kPa xvap P liq/kPa xliq Re/nm Rt/nm

VLE 11.4 0.35 11.4 0.63 ∞ ∞
Droplet 16.50 0.49 3739.14 0.23 10.00 10.14

the quantity σ0δ. For systems where this linearity holds,
it is straightforward to implement curvature corrections
for the surface tension as the only required information
is the coefficients of the Helfrich expansion for the pure
components and the composition of the liquid phase. We
evaluate the accuracy of the curvature expansion along
the constant-liquid-composition path in Sec. IVD and
Sec. IVE.

We have also plotted the rigidity constants in Figs. 7b–
7d for the case when µ1 ∝ µ2, corresponding to straight
lines in µ-space. The behavior of these coefficients across
the phase envelope is in general very different depending
on the choice of path. However, for the paths correspond-
ing to constant (to first order) liquid or vapor composition,
we see that similar to the Tolman length, the rigidity con-
stants depend nearly linearly on the liquid-phase compo-
sition. We conclude that, for the hexane-heptane mixture,
all coefficients in the Helfrich expansion exhibit a nearly
linear dependence on the liquid mole fraction of heptane
for the path corresponding to constant liquid composition
(solid curves), but for other choices of paths they gener-
ally vary in a less regular way. The value of the spherical
rigidity constant ks is about −1 kBT .

D. Which path yields the most accurate representation of
small droplets and bubbles?

In Secs. IVB–IVC we showed that the magnitude and
the behavior of the Tolman length and the rigidities de-
pend strongly on the path taken in the thermodynamic
variable space. Fig. 4 shows that the same droplet can
be described by traversing different paths. It is impor-
tant to emphasize that once the choice of dividing surface
has been specified, the surface tension of a droplet is a
state function and different paths will recover this surface
tension within the accuracy of the Helfrich expansion.
An important question then arises: which path yields the
most accurate representation of droplets and bubbles? Us-
ing SGT as reference, this accuracy can be determined by
numerically evaluating the deviation between the second-
order expansions in Eqs. (8)–(12) and the corresponding
thermodynamic properties obtained from the full SGT
representation of droplets.

One path of particular interest is the perpendicular path
in chemical-potential space, as for a given droplet µdrop
this corresponds to performing a curvature expansion
from the closest VLE state µ0, where closest means that
‖µ− µ0‖ is minimized. Fig. 8 shows the relative error
between the Helfrich expansion and the surface tension
for the fixed droplet state specified in Tab. III. The figure
shows that for all choices of paths satisfying |θ| < π/4, i.e.
directions that are not too far away from the perpendicular
direction in µ space, the Helfrich expansion gives a very
accurate representation of the surface tension, with a
relative error below 0.1%.
Fig. 8 displays the accuracy for only one droplet; a

more comprehensive evaluation should consider a wide
range of droplets where the droplets vary in composition.
The bar charts in Fig. 9 show the absolute average relative
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FIG. 7. Coefficients of the Helfrich expansion across the phase envelope at T = 298.15 K for the hexane-heptane mixture, using
the total equimolar radius. The colors of the curves have the same meaning in all plots, and is indicated in the legend in plot (b).

TABLE IV. Average absolute relative deviations when estimating the thermodynamic properties of droplets with radius 5 nm
and varying compositions at 298.15 K, using various curvature expansions. The deviations are calculated by comparing the
values predicted from the curvature expansion to that of the full SGT description of the droplets.

Expansion type
∥∥µest − µ

∥∥/‖µ‖ |σest − σ|/|σ| |∆P est −∆P |/|∆P |

Linear mixing rules 6.2× 10−2 2.9× 10−4 3.2× 10−4

Constant liquid composition 3.7× 10−6 3.0× 10−5 1.3× 10−5

Perpendicular direction 1.2× 10−5 4.4× 10−5 4.5× 10−4

deviation (AARD) between the second-order curvature
expansion and the full SGT representation for droplets
and bubbles of radius 10 nm. By calculating the full SGT
solution for 50 VLE states along the phase envelope, 50
bubbles and 50 droplets, the deviation is calculated by
estimating the µ, σ and ∆P for every droplet and bubble
from every VLE state using a curvature expansion, and
the AARD is plotted as a function of the counterclock-
wise angle θ measured with respect to the perpendicular

direction. The results have been binned into 11 intervals
of equal width for the angle θ. Droplets corresponding
to |θ| > π/2 relative to a VLE state have not been con-
sidered. For the hexane-heptane mixture, Fig. 9 presents
evidence that the perpendicular direction θ = 0 is, on
average, the best choice of all fixed-θ paths. However, it
is not so that the perpendicular direction is always the
most accurate, and the minimum error for the quantities
examined is usually shifted slightly towards θ > 0 for
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FIG. 8. The relative deviation when estimating the droplet in
Tab. III from different VLE states, corresponding to different
angles θ, using the Helfrich expansion. The relative deviation
for the path of constant liquid composition is −6× 10−6, and
is given by the blue point.

some droplet/bubble-states and towards θ < 0 for other
droplet/bubble-states.

For the hexane-heptane mixture, it turns out that there
is a path that is even more accurate on average that the
perpendicular path (θ = 0), namely the one corresponding
to constant liquid composition. The deviations for this
path is given by the green dashed lines in Fig. 9.
In Tab. IV we present the calculated AARDs for 50

droplets with even smaller radii, namely 5 nm. It is clear
that in the collective estimation of chemical potentials,
surface tensions, and liquid–vapor pressure differences,
the path of constant liquid composition is better than
the perpendicular direction in µ space, although for the
surface tensions they give very similar results.

E. How small droplets and bubbles can be accurately
represented by the Helfrich expansion?

For possible applications, it is important to know the
size range for droplets and bubbles where the Helfrich
expansion gives an accurate representation of the surface
tension. In Fig. 10 we consider the fixed VLE state of
Tab. III, and compare the Helfrich expansion to the full
SGT solution for droplets and bubbles of decreasing radius
for different choices of θ. For the perpendicular direction
displayed in Fig. 10a, a visual inspection shows that one
has to consider the last bullet point before the Helfrich
expansion (solid curve) starts to deviate significantly from
the center location of the surface tension predicted by
SGT, i.e. at R ∼ 2.5 nm. The accuracy of the path of
constant liquid composition is displayed in Fig. 10b, and
is seen to be very similar to that of the perpendicular
direction; this is consistent with Figs. 9c–9d and Tab. IV.
For these paths, the Helfrich expansion gives the same

predictions of the surface tension as the full SGT to a
very high accuracy, even for droplets with radii of less
than 3 nm.

A larger deviation can be seen in Fig. 10c, corresponding
to θ = 5π/18, while Fig. 10d shows how choosing |θ|
too large results in useless predictions with the Helfrich
expansion. Unlike the other directions in Fig. 10, the
direction θ = 5π/12 has a positive Tolman length, and
moreover a positive spherical rigidity. The second-order
derivative of σ with respect to R−1 is seen to change sign
from positive for small curvatures to negative at large
curvatures, and the second-order (Helfrich) expansion is in
fact worse than the first-order (Tolman) expansion since
it predicts that the surface tension diverges to infinity.
We have not plotted the bubble solutions in Fig. 10d,
since there is a limit to how small bubbles that can exist
along in directions in µ-space that are almost tangent to
the phase envelope. This is because a straight path into
the bubble regime may lead us back to the droplet regime
again (imagine changing the direction of the path PA in
Fig. 1 to be almost tangential to S).

While Figs. 10c–10d demonstrate how a poor choice of
path impacts the accuracy, we also mention another pit-
fall that must be avoided when considering paths P that
cross the VLE envelope, so that the curvature changes
sign. If the path P is not smooth across the envelope, the
curvature coefficients will have different values when esti-
mated from bubble properties compared to when they are
estimated from droplet properties, and the curves plotted
in Fig. 10 would then exhibit “kinks”. This caveat applies
equally well to non-isothermal variations of curvature,
in which case the Helfrich coefficients acquire a path-
dependence even for one-component systems, and has
previously been a source of confusion in the literature.62
The paths PA and PB in Fig. 1 are examples of smooth
paths.

F. Practical use of the Helfrich expansion for mixtures

At least for describing droplets and bubbles of the
hexane-heptane mixture, there is one choice of path that
stands out: the path of constant liquid composition. On
average, it yields the most accurate representation of the
surface tension with the Helfrich expansion. In addition,
the Tolman length and rigidities of the mixture are nearly
linear in the mole fraction of the liquid phase. In order to
use the Helfrich coefficients, for example to describe the
critical cluster/cavity in nucleation, the only requirement
would be the pure component values of the curvature
expansion coefficients and the liquid-phase composition.
We have tested the applicability of the linear mixing

rules that apply to the path of constant liquid-phase com-
position by obtaining the curvature expansion coefficients
for the single-component systems, and then assuming a
linear dependence with respect to the mole fraction at the
center of the droplet, this corresponds to assuming that
σ0, σ0δ, and ks are linear in the liquid composition. The
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FIG. 9. The AARD of thermodynamic properties estimated using the curvature expansion for droplets (left-hand side) and
bubbles (right-hand side) with radius 10 nm. The black bars represent deviations as a function of θ, while the green dashed line
is the deviation for the constant liquid composition direction.

results are shown in the second row of Tab. IV. The table
shows that for this hydrocarbon mixture, the linear mix-
ing rule works very well for estimating the surface tension
and the pressure difference. Results for the estimation

of the droplets’ chemical potential are less satisfactory,
but usually also of less interest. The average accuracy for
the surface tension of 5 nm droplets as predicted by the
Helfrich expansion with linear mixing rules is 0.03%.
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FIG. 10. Accuracy of the curvature expansion from a fixed VLE state as a function of inverse radius 1/Re, where Re is the total
equimolar radius. All plots correspond to straight paths through µ-space, forming an angle θ to the perpendicular direction of
the VLE envelope S, as illustrated in Fig. 4. The VLE state (flat surface) in these plots is specified in Tab. III.

These conclusions remain valid at higher temperatures.
The good performance of the linear mixing rule is not
expected to hold for all mixtures, and may be a conse-
quence of the fact that for the hexane-heptane mixture
the planar surface tension is approximately linear in the
liquid composition. Although the linear rule for planar
surface tension is known to fail for many mixtures,63 our
results demonstrate that at least for some mixtures it
is possible to develop approximate mixing rules for the
coefficients in the Helfrich expansion. For mixtures where
the linear mixing rule fails, one could try to extend the
established non-linear mixing rules63 for planar surface
tension to curved surfaces.

V. CONCLUSION

In this work, we have presented and explained the gen-
eral theory for the curvature dependence of the surface
tension for multicomponent fluids by use of the Helfrich
expansion. Square gradient theory (SGT) was employed
for a mixture of hexane-heptane at 298.15 K to obtain
quantitative estimates of the first-order correction, given
by the Tolman length, and the second-order corrections,
given by the rigidities. With these coefficients, the Hel-
frich expansion can be used to describe the surface tension
of spherical or cylindrical droplets/bubbles or of arbitrar-
ily curved vapor–liquid films up to second-order in the
curvature. The Tolman length of a multicomponent fluid
was shown to be independent of the choice of dividing
surface. The rigidities do depend on the choice of divid-
ing surface, and we presented simple formulae to account
for the change in the rigidities with a change of dividing
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surface.
Unlike in the one-component case, the Tolman length

and rigidities of a multicomponent fluid depend on
the path taken through thermodynamic variable space,
i.e. how the pressure and composition of the exterior phase
are changed as the droplet/bubble shrinks and the curva-
ture increases. We explained where this path dependence
comes from and showed that the magnitude and behavior
of the Tolman length and rigidities depend strongly on
the choice of path. The path that on average gave the
most accurate representation of small droplets and bub-
bles was found to be the one corresponding to constant
liquid composition; however, good accuracy was found
for all paths in directions sufficiently far away from the
directions parallel to the saturation locus, i.e. sufficiently
close to the perpendicular direction in µ-space.

All the paths considered reproduce the pure-component
Tolman length and rigidities in the limit of pure hexane
and heptane. For the hydrocarbon mixture investigated,
we found that the Tolman length and rigidity constants
are nearly linear in the mole fraction of the liquid phase
along paths of constant liquid composition. We compared
the Helfrich expansion to the full description of droplets
and bubbles as provided by SGT, finding excellent agree-
ment even for very small droplet/bubble sizes. For the
path of constant liquid composition, the Helfrich expan-
sion reproduces the surface tension from SGT within 0.1%
for droplet radii down to 3 nanometers. Valuable future
work would be to test the generality of our findings for
other mixtures, and more sophisticated density functional
theories than SGT. The multicomponent Helfrich expan-
sion and the framework developed in this work have the
potential to be used in several important applications,
such as in nucleation theory, or in the description of
multicomponent droplets forming on solid surfaces.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for details regarding
the following: (1) the derivation of the transformation
formulae for the Tolman length and rigidity constants
upon a change of dividing surface; (2) the derivation of
the curvature expansion of the excess grand free energy
per surface area; (3) the calculation of the direction of µ1
for paths of constant vapor or liquid composition.
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Appendix A: SGT formula for the notional derivative of a
droplet

Expanding the formula for the notional derivative,
[dσ/dR ]T,µ = dσ/dR + Γ dµ/dR , yields[

∂σ

∂R

]
T,µ

=σ1 + µ1Γ0
R2

− 2σ2 + µ1Γ1 + 2µ2Γ2
R3 + · · · .

Using the the SGT expressions for σ1 and σ2 given by
Eqs. (45)–(46), and the formulae for the adsorptions given
by Eqs. (17)–(18), we find that[

∂σ

∂R

]
T,µ

= − g

R2

∫
(zρᵀ0zKρ0z) dz

− g

R3

∫
[(g − 1)z2ρᵀ0zKρ0z − ρᵀ0zKρ1

+z2µs
1ρ0z + zµs

1ρ
E
0 ] dz

+ · · · .

All the coefficients in this expansion are zero for the
surface of tension. That the (1/R2)-coefficient is zero
yields a compact characterization of the position of the
surface of tension for a plane surface in SGT:∫

zρᵀ0zKρ0z dz = 0 . (A1)

Using the formulae for parallel and tangential pressures
for the SGT model,40 one can verify that Eq. (A1) is equiv-
alent to requiring that the first moment of the parallel
minus the tangential pressure to be zero. Since the sur-
face tension equals the integral of the parallel minus the
tangential pressure, the surface of tension is the effective
position at which the surface tension acts.
Moreover, setting the (1/R3)-coefficient to zero yields

an integral condition that ρ1—which depends on the
choice of dividing surface—has to satisfy when computed
relative to the surface of tension. This is most conveniently
written in the form∫

ρᵀ0zKρ1 dz =∫
[(g − 1)z2ρᵀ0zKρ0z + z2µs

1ρ0z + zµs
1ρ

E
0 ] dz .

(A2)
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