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Abstract

The level-set method is a popular interface tracking method in two-phase flow simula-
tions. An often-cited reason for using it is that the method naturally handles topological
changes in the interface, e.g. merging drops, due to the implicit formulation. It is also
said that the interface curvature and normal vectors are easily calculated. This last
point is not, however, the case in the moments during a topological change, as several
authors have already pointed out. Various methods have been employed to circumvent
the problem. In this paper, we present a new such method which retains the impli-
cit level-set representation of the surface and handles general interface configurations.
It is demonstrated that the method extends easily to 3D. The method is validated on
static interface configurations, and then applied to two-phase flow simulations where the
method outperforms the standard method and the results agree well with experiments.
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1. Introduction

Investigations of droplet collision phenomena have a long tradition in the study of
multiphase flow, dating back to Lord Rayleigh [1] who in 1879 noted that a raindrop can
bounce off a pool, and to Worthington [2] who in 1876 studied among other things the
central jet that now bears his name. The early work predates the rise of computational
studies, and consists of experimental studies that enabled a separation of the flow patterns
into various regimes characterized by e.g. the Weber number and Ohnesorge number. A
case which has long been the focus of study is that of a single droplet of one liquid,
immersed in some other gas or liquid, and which collides with a deep pool of the first
liquid. This could be e.g. a raindrop falling onto a pond, or a droplet of Liquefied Natural
Gas (LNG) merging with a pool of LNG in a liquefaction heat exchanger, so the case
is interesting also from an industry point of view. Such a system may seem simple at
first, but experimental and numerical studies have shown that varied phenomena such
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as coalescence, bouncing, jetting and partial merging occur. The system is also not fully
understood yet; as an example, Thoroddsen et al. [3] have recently shown that for high
impact velocities a turbulent boundary layer forms between the droplet and the pool
after they merge.

In order to study such a case using computer simulations, it is necessary to use a
precise interface-tracking method to capture the physics before, during and after the
collision. The Level-Set Method (LSM) is a popular choice for interface tracking in
studies of collisions, since its implicit formulation means that the method can handle the
topological change which occurs when two interfaces merge. The LSM is very general,
and apart from fluid dynamics it has been used for modelling such diverse phenomena
as tumor growth [4], wildland fire propagation [5] and computer RAM production [6].
For a good introduction to the LSM, see e.g. [7]. The LSM originated from the seminal
article by Osher and Sethian [8].

In two-phase flow simulations using the LSM, accurate interface curvature and nor-
mal vector information is vital in order to get good results. Standard methods exist for
calculating these geometric quantities, but they fail when the interface topology changes,
e.g. when two drops collide and merge. Several approaches have been used to remedy this
flaw. The first approach to this problem is described by Smereka in [9]. He describes the
problem briefly, and increases the numerical smoothing in the curvature discretization
to lessen the effect. This is not an optimal solution, and Smereka notes on one of the
simulations with merging interfaces that “most of the area loss occurs at the topology
change”. Several non-smearing approaches have subsequently been developed, by Mack-
lin and Lowengrub [4, 10], by Salac and Lu [11] and by Lervåg [12, 13]. The methods
by Macklin and Lowengrub and by Lervåg use curve fitting to obtain an accurate rep-
resentation of the interface, while the method by Salac and Lu extracts several level-set
functions each representing only a single body, and uses these to calculate the curvature.

The present work proposes a new method, which is an extension of previous methods,
for calculating the curvature and normal vectors. The proposed method is based on
the method by Salac and Lu, but it handles more general interface configurations and
topological changes, as it considers only the local area around a point. The quality
function introduced by Macklin and Lowengrub is used to restrict the use of the proposed
method to those areas where it is needed, thus reducing the computational cost. As
the proposed method uses no curve fitting, it extends easily to three dimensions, as
demonstrated here. The proposed method is compared to the standard method for
demanding cases where the analytical curvature is known; for such a case the proposed
method gives errors of 1–2% where the standard method gives errors ofO(1/∆x) > 100%.
The proposed method is based on the work of Ervik [14].

The outline of this work is as follows: In Section 2, the theory of two-phase incom-
pressible flow, the LSM and numerical methods are briefly reviewed. In Section 3, the
proposed method is presented in detail. In Section 4, the method is validated on geomet-
ric test cases, and the results are compared to other methods. In Section 5, the results
of two-phase flow simulations using the current method are reported and compared to
experimental results. Finally, in Section 6, some concluding remarks are offered.
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2. The Level-Set Method and two-phase flow

The LSM is one of the more successful interface-capturing methods used in compu-
tational physics. Since its introduction by Osher and Sethian in [8], it has been used
for numerous physical applications, as well as in computer graphics. Perhaps the main
virtue of the LSM is how intuitive it is; in 2D it can easily be explained to anyone
with a basic knowledge of multivariate calculus. This simplicity stems from the impli-
citness of the LSM, making the numerical implementation of the LSM relatively easy.
The implicit formulation also means that changes in the interface topology are handled
naturally. When comparing the LSM to other interface-tracking methods, such as the
front-tracking method [15] where the interface is represented by piecewise continuous
functions, the simplicity becomes especially clear.

The main disadvantage of the LSM, on the other hand, is that it is not a conservative
method. During the course of a simulation, a fraction of fluid 1 may be converted to
fluid 2 in an unphysical fashion. Various methods have been invented to circumvent
this, e.g. the HCR-2 reinitialization method [16], so it is only a small effect presently.
Interface-tracking methods may be conservative; an example of this is the Volume-of-
Fluid (VOF) Method, but then they typically have other disadvantages. In the VOF
method, for instance, the advection equation cannot easily be solved, necessitating the
use of interface-reconstruction methods [17]. Recent efforts have attempted to join the
LSM and VOF in order to get the benefits of both methods; this approach seems to be
fairly successful [18]. In a similar spirit, recent hybrid level-set/front-tracking methods
have been developed [19] that retain the implicit definition of the interface while utilizing
the front-tracking method to improve mass conservation and to compute the surface-
tension forces in an accurate and robust manner.

We give here the formal definition of the level-set function used in the LSM. Let Γ be
the interface between two fluids, e.g. air and water, and S be the computational domain
where the fluids are confined. To represent this interface, we define a level-set function
φ : S → R with the property

Γ = {x | φ(x) = 0}. (1)
This only defines the value of φ at the interface Γ, and not elsewhere. The common
choice here is a signed distance function. Thus φ is fully specified by

φ(x) =
{
−dist(x,Γ) if x is inside Γ,
dist(x,Γ) if x is outside Γ.

(2)

Here, the function dist(x,Γ) is the shortest distance from the point x ∈ S to the interface
Γ. With this definition of the level-set function, the normal vector to the interface is given
by

n = ∇φ

|∇φ|
. (3)

From this, the curvature is calculated by the well-known formula

κ = ∇ · n = ∇ ·
(

∇φ

|∇φ|

)
. (4)

With suitable discretizations of the derivatives involved, these quantities are easy to
calculate numerically. This is often quoted as one of the nice features of the LSM, along
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with e.g. the very natural way the method handles topological changes [20]. In 2D, the
standard discretization of the curvature is (see e.g. [21])

κ = φxx + φyy
(φ2
x + φ2

y + ε)1/2 −
φ2
xφxx + φ2

yφyy + 2φxφyφxy
(φ2
x + φ2

y + ε)3/2 (5)

Here, e.g. φx denotes the first derivative of φ in x-direction, calculated using standard
central differences. However, when curvature and normal vector calculations are done
during a change in the interface topology, this approach fails; the error in curvature is
of the order O(1/∆x) [4]. In [9], Smereka notes that “One of the major advantages
of level-set methods is their ability to easily handle topological changes. However for
this problem we have found this not to be the case.” It is this that the present method
attempts to solve.

From the defining Equation (2), φ is initialized at the start of a simulation. For a
given velocity field u, φ should be transported so that the interface follows the flow. This
is done by solving the advection equation,

∂φ

∂t
= v|∇φ| = −u ·∇φ. (6)

Here v is the velocity normal to the interface, and u is an extrapolated velocity field
constructed using the method in [22]. This equation is not justified here, see e.g. [23].

Solving this equation will result in transportation of the interface, but it will also
degrade the accuracy of the interface representation, as φ is deformed from a signed
distance function. To avoid this, the level-set function is periodically reinitialized. We
follow here the PDE-based approach introduced by Sussman, Smereka and Osher [23],
which consists in solving

∂φ

∂τ
+ sgn(φ)(|∇φ| − 1) = 0. (7)

Here τ is a pseudo-time which is not related to the physical time in simulations. This
approach is both computationally fast and accurate when used as here with a narrow-
band approach. The extrapolation of the velocity field as used in Equation (6) above
is performed by solving a similar type of equation. These equations are solved using
pseudo-CFL numbers of 1.0 for the velocity extrapolation and 0.5 for the reinitialization.
It is noted that a numerical solution of the reinitialization equation needs accurate normal
vectors at the interface.

A useful property of these equations is that the characteristics originate at the in-
terface, meaning that solving the equations numerically for N pseudo-time steps using
a CFL-number of C will yield a correct signed distance function C ·N space steps away
from the interface. This has led to the use of narrow-band methods, where the level-set
function and other properties such as the curvature are only calculated and used in a
narrow band around the interface. This reduces the computational time significantly.

In two-phase flow simulations, the LSM is coupled with the Navier-Stokes equations,

∇ · u = 0, (8)
∂u
∂t

+ (u ·∇)u = −∇p

ρ
+ ν∇2u + f . (9)
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Here ν = µ/ρ is the kinematic viscosity, while µ is the dynamic viscosity, ρ is the density,
u is the velocity field and p is the pressure. f is any external force, such as gravity, and
may be zero.

These equations hold for single-phase fluid flow, but can be extended to two-phase
flow using different methods. In the present work, the Ghost Fluid Method (GFM) [24]
is used. This method prescribes jump conditions for e.g. the pressure across the interface
based on the interface properties. The jump conditions used here are

[u] = 0, (10)
[p] = 2[µ]n ·∇u · n + σκ, (11)

[µ∇u] = [µ]
(

(n ·∇u · n)nn + (n ·∇u · t)nt (12)

− (n ·∇u · t)tn + (t ·∇u · t)tt
)
, (13)

[∇p] = 0. (14)

based on [21]. Here, t is the tangent vector along the interface and [·] denotes the jump
across an interface, that is [µ] ≡ µ+ − µ−. Note that ∇u and (e.g.) nt are rank-2
tensors. The pressure must also be decoupled from the velocity field in order to enable
a numerical solution of the Navier-Stokes equations; we use here the projection method
due to Chorin [25]. This gives a Poisson equation for the pressure which can be solved
using freely available numerical libraries. The PETSc library is used here [26].

In the present numerical implementation, SSP-RK schemes [27, 28] are used for the
time integration, while the WENO method [29] is used for the spatial discretizations. To
determine the time step dynamically, we use the CFL criterion given by Kang et al. [21].

3. The Local Level-Set Extraction (LOLEX) Method

3.1. Introduction
Calculating the curvature κ of the interface between two phases is important, since

it appears in the Young-Laplace formula for the capillary pressure, ∆p = σκ. Its value
is used in e.g. the Ghost Fluid Method (GFM) (Equation (11)), or other methods of
enforcing the jump conditions. The normal vectors to the interface are also important,
e.g. when advecting the level-set function and when reinitializing it. Calculating these
geometric quantities is straightforward in theory, using Equation (3) and Equation (4)
to compute them from the level-set function.

However, as is often the case, in practice it is not so straightforward. The problems
arise when the distance between two interfaces is of the order ∆x. This is illustrated
in Figure 1. The derivatives of φ are not defined at the kinks. As a result of this, the
numerical stencils approximating the derivatives of φ will often produce large, erroneous
values. When this happens, the curvatures and normal vectors will be erroneous. For the
curvature, this error is of order O(1/∆x), which can be several orders of magnitude larger
than the correct curvature value. It should be stressed that additional grid refinement
does not solve this problem; e.g. for the simulation of colliding drops, one would have to
continue refining the grid ad infinitum.
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The earliest non-smearing approach to this problem, by Macklin and Lowengrub
[4], uses a modification of the directional differences for points close to kinks, along
with a mesh refinement for these points. The same authors introduced a curve-fitting
method instead in [10], which is said to be an improvement on the directional differences
and a simplification. The latter version will be referred to as the MLM (Macklin and
Lowengrub Method). Further improvements to this method, and adaptations to an on-
grid framework (i.e. calculating the curvature at the grid points, not at the interface),
have been developed by Lervåg [12],[13]. These methods give good results in 2D, but are
difficult to extend to 3D simulations due to the use of curve-fitting.

An alternative approach to the problem is due to Salac and Lu [11], and will be
referred to as the Salac and Lu Method (SLM). This approach extracts separate bodies
represented by the level-set function into their own, separate distance functions. Only the
negative parts of the level-set function are extracted, the positive parts are reconstructed
through reinitialization. This procedure removes all kinks that are caused by two or more
bodies that are close to each other. For a review and comparison of the SLM, MLM and
the method by Lervåg, see Lervåg and Ervik [30]. It should also be noted that the recent
article by Focke and Bothe [31] discusses a similar issue, in the context of thin lamellae
which form when liquid drops collide off-center. The authors introduce a method which
resembles the SLM, but which also has the ability to add small amounts of liquid to the
lamella region, preventing a numerical rupture.

The method considered here is a further development of the SLM. It is referred to
as the local level-set extraction method, or LOLEX method in short. The reason why
the SLM is insufficient in some cases, as well as the details of the present method, is
given below. Suffice it to say at this point that the present method is more general, so
it applies both to the cases considered by Salac and Lu and those considered by Focke
and Bothe (except the stabilization of thin lamellae which the latter introduce).

Another recently presented approach is due to Trontin et al. [32], who consider a
hybrid particle/level-set method. Their approach is to use the information from the
tracking particles to calculate the curvature and normal vectors, with good results. This
can obviously not be applied to a pure level-set method as discussed here, or e.g. a
coupled level-set/VOF (CLSVOF) method as has recently become popular [18].

The previously mentioned work by Shin et al. [19] which introduces a hybrid front-
tracking/level-set method is another interesting approach. The ability of their method to
conserve mass globally as well as locally is impressive, and the handling of thin filaments

φ(x)

(a) Droplets in near contact

φ(x)

x

0

(b) A slice of the level-set function

Figure 1: (a) Two droplets in near contact. The dotted line marks a region where the derivative of the
level-set function is not defined. (b) A one-dimensional slice of the level-set function. The dots mark
points where the derivative of φ is not defined.
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is better than the method proposed in this paper. As with the approach due to Trontin et
al., this method cannot be applied to a pure level-set framework, and integrating it into
an existing level-set based code would be arduous. In comparison, the method proposed
in this paper can be implemented into a level-set framework with less than 500 lines of
code.

An approach which has not been considered here, or by other authors in the context
of level-set methods as far as we are aware, is the use of filtering. Vliet and Verbeek
[33] study the estimation of curvature from a discretely sampled greyscale image, using
derivative-of-Gaussian filters, and note that this outperforms a traditional curvature
estimate analogous to Equation (5).

The idea of Salac and Lu, on which the present method is based, is simple when
compared to the curve-fitting scheme used by Macklin and Lowengrub [4] and later by
Lervåg [12, 13]. This simplicity is more in keeping with the “spirit” of the level-set
method: the LSM is an implicit alternative to front-tracking methods that employ curve
fitting, and this implicitness makes extending to higher dimensions straightforward. In
the same fashion, the SLM is easily extensible to 3D, while the methods employing curve
fitting are not. There are, however, some drawbacks to the Salac and Lu method as well.

The primary issue stems from the fact that the Salac and Lu method is aware of the
global topology of the interface. A problematic area, with a kink in the level-set function
close to φ = 0, can be caused either by two bodies in close proximity or by a single body
folding back onto itself. In the latter case, as illustrated in Figure 2, the Salac and Lu
method falls back to the standard discretization, and the calculated curvature will be
erroneous. This may seem like an edge case not worth considering, but simulations have
shown that this often happens, e.g. when a falling droplet merges into a pool. As pointed
out by Smereka [9], errors like these can be the main contribution to unphysical area
loss in a simulation. Another situation where this would often be the case is in tumor
simulations like those performed by Macklin and Lowengrub, as can be seen in e.g. [4,
Figure 6].

Figure 2: The curvature field plotted for the SLM. Note the red curvature field inside the air finger
between the drop and the pool, which is incorrect. The color should be light blue in this area.(Figure
best viewed in color.)
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3.2. The idea of the LOLEX method
The method presented here tries to combine the best of the SLM with the best of the

MLM. As illustrated in the previous section, the SLM is aware of the global topology of
the interface, which is problematic in some cases. The MLM does not have this problem,
as its curve fitting considers only the local area, but as previously stated it does not
extend easily to 3D. A natural workaround to the “global awareness” is to make the
Salac and Lu method consider only the local topology; say, a 10×10×10 cube around the
point where we calculate the curvature.

In the following, we assume the level-set function to be located on a uniform mesh on
a single CPU. The proposed method can be adapted in a straight-forward manner both
into a domain-decomposition and a mesh-refinement framework. We do not discuss this
in further detail here.

Since the SLM relies on reinitialization to remove kinks, a potential problem with
this approach is computational efficiency, as reinitialization can be time-consuming. To
avoid this problem, we want to use the standard discretization as much as possible, only
resorting to the LOLEX method when we have to, i.e. when kinks in φ are close to the
interface. To easily identify kinks, we use the quality function Q(x) which was introduced
by Macklin and Lowengrub in [4]. It is defined as

Q(x) = ‖1−∇φ(x)‖2, (15)

i.e. the deviation of φ from a signed distance function, measured with the 2 norm. If
max(Q(xi,j,k)) > η for xi,j,k in a 3×3×3 cube around the current grid point, we use the
LOLEX method. A value of η = 0.005 is used here, and is seen to perform well. That is,
the number of grid points where the LOLEX method is used becomes small compared
to the total number of grid points. This keeps the computational cost low. The effect of
varying η can be seen in Figure 10, as discussed in Section 4.2

To further decrease the computational cost, we use the “narrow band” level-set
method introduced in [34]. This means that quantities such as the curvature are only
calculated in a narrow band around the zero level set, where they are needed.

Having briefly presented the idea behind the present method and the scope in which
it will be used, we give here a step-by-step outline of it, see Figure 3. 2D notation is
used for clarity, but all steps are easily extensible to 3D. In this outline, a few arrays
are introduced for storing data: lookphi is a copy of the global φ for the local area
we are considering, bodies indicates the bodies present using increasing integers, and
locphi holds the local φs that are extracted from the global φ and then refined into more
accurate representations of the local bodies present. The quantities ilmax, jlmax and
klmax represent the number of grid points, in the x, y and z directions respectively, of the
local grid. The values of ilmax, jlmax, klmax are all set to 7 in the simulations performed
here. Their values are independent of the global grid size. Sensible values of these are
between 5 and 11; since they must be odd, smaller than 5 gives too low resolution, and
larger than 11 starts eliminating the advantage of using a localized method. The value
of 7 used here gives good results, and increasing it to 9 gives only a small change while
increasing the computational cost. In the limit ilmax → imax etc. the method of Salac
and Lu is recovered.

The steps in the algorithm that warrant further comments are: identifying the bodies
present, explicitly reconstructing the signed distance, extrapolating to the ghost cells,
and reinitializing. These will be considered further in the next section and subsections.
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↪→ Loop over the computational domain using indices i,j.

↪→ If (xi,j not close to interface) do nothing. A point is defined as close to an interface
if all φ(xn,m) for (n,m) ∈ [i− 1, i+ 1]× [j − 1, j + 1] is either negative or positive.

↪→ Else if ( Q(xn,m) ≤ η ∀(n,m) ∈ [i− 1, i+ 1]× [j − 1, j + 1] ) use ordinary method.

↪→ Else use LOLEX method:

↪→ Copy φ in a [-1,ilmax+2]*[-1,jlmax+2] square around i,j into the
lookphi array.

↪→ Identify the bodies present in the [0,ilmax+1]*[0,jlmax+1] square, store
this in the bodies array.

↪→ For each body, extract the relevant part of the lookphi array into
locphi(:,:,bodyno). This array has 3 ghost cells on the boundary out-
side ilmax*jlmax; these are not used until the extrapolation further down.
Extracting means:
− copying lookphi for the internal points of this body
− copying lookphi for external points that are not next to more than one

body
− explicitly reconstructing the signed distance for external points that are

next to more than one body
− setting a value of 2*dx for all other points

↪→ Once the locphi array has been filled for all bodies, the values are extra-
polated into the ghost cells. The extrapolation is zeroth-order, as will be
explained further down.

↪→ The locphi array is then reinitialized for all bodies. This erases the problem-
atic kink, as well as the value of 2*dx which was set previously. Thus this
value is unimportant, as long as it is > 0.

↪→ Using these local φ’s, the curvature and normal vectors can be calculated
for each body. The curvature and normal vectors corresponding to the body
which is closest to the current grid point are used.

Figure 3: A step-by-step outline of the LOLEX algorithm.
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3.3. Details of the method
Some steps of the algorithm outlined need further explanations. This is either be-

cause they are too technical to be fully described in the previous short outline, or because
they have not been properly motivated yet. The steps that will be considered are identi-
fying the bodies present (Section 3.3.1), explicitly reconstructing the signed distance
(Section 3.3.2), extrapolating to the ghost cells (Section 3.3.3), and reinitializing (Sec-
tion 3.3.4).

3.3.1. Identifying the bodies present
To identify the bodies present, a recursive routine is used, which starts at a seed point

in a body and iterates through the entire body, marking it as a body in the bodies array.
The seed point is found by scanning the computational domain for points with φ < 0.
The recursive routine is called bodyscan here. The bodies array starts with a value
of unchecked, and bodies found are marked using increasing integers. The recursive
subroutine will have marked the entire first body when its first call returns.

A final point to note about the routine given here is that even though a recursive
subroutine is used, memory usage will not be problematic. This is because the routine
operates on a small array whose size is independent of the grid size. In 3 dimensions and
with the presently used size of the local area, the array bodyscan would have 11*11*11
= 1331 elements. This routine can maximally be called 1331 times, giving a worst-case
memory consumption of 13.5 MB. In reality this number would typically be less than half
of that. This will not cause memory problems, although it is too large to fit in the CPU
cache for some processors. The performance impact has not been tested here, as the 3D
calculations are only considered as a proof-of-concept, and have not been optimized for
speed. In 2D the memory use is naturally much smaller.

3.3.2. Explicit reconstruction of the signed distance
For some points with φ > 0, two or more bodies are within ∆x of the point. This

means that the value of φ is probably incorrect, since it has to be the distance to two
separate bodies at the same time. We will call such points “dependent points”. These
points are found using the bodies array: if this array has more than one unique positive
integer value in the four points adjacent to the present point, it is dependent. Because φ
is likely incorrect for dependent points, we discard its value, and instead explicitly recon-
struct the distance to the relevant interface. The procedure used is due to Adalsteinsson
et al. [35].

When we consider such a dependent point, it lies right next to two interfaces. When
reconstructing the distance, only one interface is of interest, so the other one is moment-
arily removed. Note that the signed distance is always positive for exterior points, so it
is just the normal distance.

The procedure in [35] is as follows. The point (i, j) which we are considering is next
to the interface of current interest. We ignore all other interfaces. Up to rotational
symmetry, there are four possible cases. An illustration of these cases can be seen in
Figure 4.

We examine the four cases (a to d) more closely:

a The interface crosses one of the lines from (i, j) to its four neighbors. In this case, we
use the distance to the interface along this line as our distance. This distance is

10
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(a)

s

t

(b)

s1

s2

t

(c)

s1

s2

(d)

Figure 4: Cases for the neighborhood of a point.

given by
s = ∆y + φ(i, j − 1) (16)

where we have assumed that (i, j − 1) is the neighbor on the other side of the
interface. Since this neighbor is an internal point, it has φ < 0. The distance to
the interface is the distance to the neighboring grid point (∆y) minus the distance
from that grid point to the interface, which gives this formula. It is best to use
only the φ-value inside the body, since it is less likely to be distorted.

b The interface crosses two of the lines, and these two lines make out a corner of the
2×2 grid around (i, j). In this case we use the shortest distance to the straight line
between the two points of intersection. The distance d is given by the formula(

d

s

)2
+
(
d

t

)2
= 1. (17)

As long as s2 + t2 6= 0 this equation can be solved, and the positive solution is

d = st√
s2 + t2

. (18)

If we have s2 + t2 = 0, then s = t = 0, so it is obvious that the distance to the
interface is d = 0.

c The interface crosses three lines. We construct the two straight lines between the
points of intersection, and use the shortest distance to either of these two lines,
given by (

d

min(s1, s2)

)2
+
(
d

t

)2
= 1. (19)
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d The interface crosses two lines. These lines are on opposite sides of the point (i, j). In
this case, we use the shortest of the two distances, so d = min(s1, s2).

These formulae can be extended to three dimensions, where the possible cases are
more numerous. In 3D, the central point has two additional neighbors. This means there
are more variations in addition to the cases considered above. This is not considered in
detail here.

3.3.3. Extrapolation
After the interior of the locphi array has been filled, the ghost cells must be filled

before we can reinitialize the local φ. Two ways of doing this are illustrated in Figure 5.
A first approach is to use linear extrapolation, which should work well since φ is a linear
function in 1D. However, it turns out that this does not work. A fundamental property
of the reinitialization equation (7) is that its characteristics originate at the interface
φ = 0. This is why the present method (and the SLM) works – we only need a few cells
directly next to the interface to have the correct value of φ, and reinitialization will fix
the rest. It also means that reinitialization will never move the position of the interface,
which is a desirable property in general.

The problem with linear extrapolation occurs when we extrapolate starting on the
opposite side of the kink from the interface. In this case, the values of the local φ
are tending towards 0 from above, which means that extrapolation can reintroduce the
other body (which we removed in the first place). When this happens, reinitialization
cannot fix the values beyond the kink, since it cannot move the interface reintroduced
by extrapolation. A straightforward alternative is to use a zeroth-order extrapolation.
This means simply copying the values along the edges into the ghost cells. It is obvious
that this will never cross φ = 0, so reinitialization works as intended.

The difference between these two is shown in Figure 5. In (a), a zoom in on the
global level set of a droplet touching a pool is shown. In (b), the local level set of the
lower body (the pool) is shown after extraction and explicit reconstruction. Here, the
values on the edges are not set, indicated in grey. In (c), the same is shown after first-
order extrapolation, and in (d) after zeroth-order extrapolation. In (e), the first-order
extrapolated φ is shown reinitialized, and in (f) the zeroth-order extrapolated φ is shown
reinitialized. Note in particular that in (e), a kink still exists after the entire procedure
(green line), so the geometric quantities calculated would still be wrong if the derivatives
cross the kink.

The corner cells on the boundaries must also be set. Here, these all get the value
from the corresponding corner of the internal grid.

3.3.4. Reinitialization
When the extracted local level-set has been extrapolated, it must then be reinitialized

before the geometric quantities are calculated. This is essential in order to have good
values of the level-set function outside the interface. The entire LOLEX method hinges
on the fact that reinitialization restores the local level-set to a signed distance function,
so that ordinary discretizations will not give errors. This is not entirely straightforward,
however.

When reinitializing, we require at least some points on either side of the interface with
decent φ-values, i.e. φ being the signed distance to the interface. In addition to this, we
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(a) Zoom in on global level set (b) Extracted local level set

(c) First order extrapolated (d) Zeroth order extrapolated

(e) First order, reinitialized (f) Zeroth order, reinitialized

Figure 5: Extraction, extrapolation and reinitialization of the local level set is shown, for the lower
body in Figure (a). Red indicates a negative value, blue a positive value, and white indicates zero. The
green lines indicate kinks in the level set function, and the black lines are the zero level sets. A detailed
explanation of the figures is given in Section 3.3.3. (Figure best viewed in color.)
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Figure 6: Why we reinitialize from a lower level set: At the lower level set, indicated by the dotted line,
values of e.g. ∇φ are more accurate at the grid point which is closest to the grey line than for the zero
level set. The grey line indicates the local level-set function φ. The dashed lines indicate ∇φ calculated
using central differences.

need to know the smeared sign function, and most crucially, the normal vectors at the
interface. Thus we are faced with a bootstrapping problem: accurate normal vectors
are required in order to accurately calculate the normal vectors. This is only a problem
when the global interfaces are very close; when there is a moderate distance (i.e. more
than one grid point between the interfaces), the normal vectors can be calculated at the
interface using the local level-set.

The solution to this conundrum is to exploit the redundant information which is
stored in the level-set function. To illustrate this redundancy, imagine that you are
walking along a normal vector to the interface. At each grid point you pass, you are
told the current distance to the interface. As long as you do not pass any kinks, this
information is redundant: using the value at the first grid point you pass, you can
calculate the value at the next grid point, and the one after that, given that you know
the grid spacing.

What this means for the present case is that we have information inside the current
body that we can use. Most importantly, we can calculate the normal vectors without
problem for internal points. This means that we can reinitialize a level set different
from φ = 0, e.g. φ = −0.8∆x, and get essentially the correct φ afterwards. We are not
guaranteed to get exactly the correct φ, but as we cannot obtain the correct φ anyway, we
will settle for a good approximation. An illustration of this in 1D is shown in Figure 6,
where the extracted local level-set function φ is shown in grey. Note that e.g. the value of
∇φ at the grid point 02, shown with a dashed line, is much closer to 1 than the value at
the grid point 01. When the lower level set is used, we momentarily move the interface
further to the left in this figure, so the grid point 02 is closest to the interface. It is
obvious that we have a better chance of restoring a signed distance function with the
correct location of the interface if we reinitialize from the lower level set.

The value of −0.8∆x used here gives the most accurate results. If the value is too
close to zero, the benefit of reinitializing from a lower level set is reduced. However, if
the value is too large, we risk having this lower level set too close to the edges of the
local domain, and we increase the potential error caused by reinitializing from a different
level than zero. The optimal result is afforded by choosing a value somewhat below
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Table 1: Parameters used in the LOLEX method, along with values used and sensible ranges.

Parameter Value Sensible range
Local grid size 7 5–11
Gradient threshold η 0.005 0.01–0.001
Reinit. level set −0.8∆x −1.0∆x to −0.5∆x

−0.5∆x, since this ensures that the grid point 02 is always closest to the interface, while
minimizing errors from the edges of the domain.

Another problem solved by this is the fact that the values directly outside the zero
level set may be incorrect in some cases. In particular, this happens when an outside
grid cell is not flagged as dependent, but its value of φ still deviates from that dictated
by a signed distance function. Tests have shown that this sometimes occurs, and that it
distorts the reconstructed local level set.

Reinitializing from a different level may sound somewhat complicated to do, but the
implicit formulation springs to the rescue again. To reinitialize from a lower level set,
we simply add a positive constant to φ at every local grid point, call the reinitialization
routine on this φ, and then subtract the same constant from the reinitialized φ. The
effect of this is illustrated in Figure 7, which is an extreme case. Here, reinitialization of
two very close bodies (concentric circles) has distorted the global level-set function close
to and outside the interfaces. The reinitialized local level-set function is also wrong, but
the one which is reinitialized from a lower level set gives a much smoother representation
of the interface, which agrees with the contour lines further into the body. This smoother
representation will, in turn, give a significantly more accurate curvature. A plot of the
curvature calculated with and without this improvement is shown in Figure 8 for the
concentric circles case; this global interface configuration can also be seen in Figure 11
further down. This plot shows the curvature along the inner circle. It is seen that
the improvement is large, particularly in this case when two interfaces are close. The
curvature calculated using the standard method is not shown, as it is outside the y-axis
range in this figure.

While the curvature calculated using the LOLEX method is close to the analytical
value, there is still a more or less constant error of 1–2%. It turns out that this error is
caused by the reinitialization of the local level set, as is indicated in this figure as well.
The line captioned ‘Forced LOLEX’ shows the LOLEX method used on a single interface
corresponding to the inner circle. Here, the level-set function is correct and the standard
method gives an error for the single interface which is smaller than the line width in
this figure. When we force the use of the LOLEX method, the only difference from the
standard method is the extrapolation and reinitialization, meaning that these must be
the culprits. To mitigate this, a more accurate reinitialization procedure could be used,
e.g. the HCR method due to Hartmann et al. [16].

3.3.5. Parameters of the method
In the LOLEX method as presented here, there are a number of parameters that can

be varied. An overview of these is given here, along with the values used presently, and
sensible ranges, in Table 1.
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(a) Before (b) From φ = −0.8∆x (c) From φ = 0

Figure 7: The LOLEX method on a global level set which is distorted due to reinitialization of very
close bodies. The global bodies are two concentric circles. (a) Local φ before reinitialization. (b) Local
φ reinitialized from φ = −0.8∆x. (c) Local φ reinitialized from φ = 0.0. The black square indicates the
boundary to the ghost cells, and the red square indicates the 3×3 central points that are used in the
final curvature calculation.
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Figure 8: Lineplots of the curvature along the interface when reinitializing from both the zero level set
and a lower level set. Also shown are the curvature calculated when forcing use of the LOLEX method
on a single interface, and the analytical curvature.
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After the local level sets have been extracted correctly, the standard discretizations
can be used to calculate the normal vector and curvature. As the curvature and normal
vector cannot be multiply defined at a single grid point, we must combine the information
from different local level sets. To do this, we simply select the one corresponding to the
interface which is closest to the central point.

As the present method uses reinitialization on a local grid for each grid point where
it is used, the performance impact of the method could become large. To avoid this,
the quality function Q(x) is used to restrict the use of the method. In a typical falling
drop simulation, the present method will only be used in a small percentage of the total
number of time steps, and even then, it will typically not be used for all points along the
interface. This means the computational cost of the present method has a low impact
on the total runtime of a simulation. We note that the computational cost is lower than
in the method of Salac and Lu, since that applies reinitialization to the entirety of the
bodies present.

3.4. Summary
In this section the presently used LOLEX method has been described in detail. The

method is used for grid points where the level-set function deviates from being a signed
distance function, where it extracts one or more local level sets, removes any kinks in
these by use of reinitialization, and finally uses these local level sets to calculate the
curvature and normal vectors. The values corresponding to the interface which is closest
to the current grid point is used.

The method is motivated in that it is more general than the previous method by
Salac and Lu [11], handling bodies which fold back onto themselves, and it extends more
easily to 3D than the previous methods by Macklin and Lowengrub [4, 10] and by Lervåg
[12, 13], which use curve-fitting schemes. The parameters of the method are given in
Table 1. Results, both for static and dynamic simulations, are given in the next sections.

4. Geometric results

In order to test the LOLEX method, some static interface configurations were used
that replicate typical situations occurring in simulations of droplet collisions.

4.1. Circles and straight interfaces
The first test case consists of three circles and a straight-lined interface, where two of

the circles and the straight-lined interface are joined together. The results for this case
are shown in Figure 9 for the LOLEX method, the SLM, and the standard method. In
this figure, the interfaces are shown as black lines, and the color indicates the curvature.
The background curvature of 0 is indicated in white, blue indicates a negative curvature
and red indicates a positive curvature. The figure illustrates that the standard method
produces positive unphysical curvatures several places, both between the circles and the
straight interface and between circles. The Salac and Lu method remediates the situation
somewhat, but still has problems where the circle folds back onto the straight interface,
and at the bottom of the middle circle, which is particularly close to the straight interface.
The LOLEX method produces positive curvatures only where they are expected and
needed.
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(a) LOLEX method

(b) Salac and Lu method

(c) Standard method

Figure 9: Comparison of curvature calculation methods for circles and straight interfaces. The color
indicates the curvature; white is zero, blue is negative and red is positive.
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4.2. Droplet falling onto a pool
In order to compare the behavior of the LOLEX and the standard method for different

interface separations, a test case was considered which mimics a droplet falling onto a
pool. In this case, a 0.2 m diameter circle and a horizontal line were initialized in a 1m
×1m domain. The separation between the circle and the line was varied from 3.6∆x
down to 0∆x in increments of 0.1∆x. For each separation, the curvature was calculated
at all points within the narrow band close to the interfaces, and the supremum-norm
‖κ‖∞ of the curvature values was calculated. This was done using the standard and the
LOLEX method, for grid resolutions of 64×64, 256×256 and 1024×1024. The analytical
curvature is 10 for the circle and 0 for the line, so the supremum norm should be close
to 10. The results are shown in Figure 10.
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Figure 10: Supremum norm of the curvature for decreasing interface separation. Dashed lines: results
using the standard method. Solid lines: results using the LOLEX method. The lines are shaded lighter
with increasing grid resolution. The analytical curvature of the circle is 10.

As is seen in this figure, the standard method returns the value used in regularizing
the curvature, ‖κ‖∞ = 1

∆x , when the interface separation becomes smaller than about
2.4 ∆x. Increasing the grid resolution does not improve the situation. Note that the y
axis in this plot is logarithmic. Meanwhile, the LOLEX method gives decent values close
to the analytical value of 10 all the way up to when the interfaces merge, which happens
at a separation of 0.2 ∆x. It is seen that the small deviations for the LOLEX method
are reduced when the grid resolution is increased.

A final thing which may be illustrated using this figure is the effect of the parameter η.
This parameter indicates how much the level-set function φ has to deviate from being a
signed distance function before we switch from using the standard method to the LOLEX
method. In the circle-line case in Figure 10 the value of η = 0.005 (used throughout this
paper) triggers the switch for the first point when the distance is 4.2∆x. Using η = 0.01
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as in [10], the switch is made at 3.9∆x. Both these distances are in the region where the
standard method gives good answers, so the LOLEX method is not very sensitive to the
precise value of η as long as it is in this range.

In addition to the curvature, accurate normal vectors close to the interface are de-
sirable in level-set simulations. The importance in reinitialization has been suggested
above, coming from the fact that normal vectors are used in finding the upwind direc-
tion. Normal vectors are equally important in calculating the extension velocity, where
an error would lead to the interface not moving according to the flow.

4.3. Concentric circles

(a) Central difference (b) Directional difference

(c) Lervåg (d) LOLEX

Figure 11: Comparison of normal vector calculations using different methods.

In order to compare the proposed method to the standard method, a geometric test
case was considered which replicates the demands of simulating merging interfaces. The
calculated normal vectors are compared both to the standard central-differences discretiz-
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ation, to a directional-differences discretization as described in [4], and to the curve-fitting
method of Lervåg [13].

In this test case, two concentric circles were initialized, as if we had a thin ring of
fluid 1 inside fluid 2. The width of this ring was 1.6∆x. This test case is interesting,
since it reveals grid effects or anisotropies. It also replicates the situation of a thin film
that forms between a droplet and a pool for cases where the droplet deforms the pool
surface before merging. This has been observed experimentally, see e.g. [36]. The results
for all four methods are shown in Figure 11.

In this figure it is seen that the directional difference method is not much better
than the central difference method. This is partly what prompted the use of curve fitting
methods; Macklin and Lowengrub initially used directional differences and additional grid
refinement in [4], but switched to curve-fitting methods in [10]. As is seen in Figure 11
(c), curve fitting methods (the method by Lervåg is used here) give the correct result.
In (d), we see that the LOLEX method also gives the correct result. It is impossible to
distinguish the results in (c) and (d) without overlaying the figures and zooming in a lot.
We calculated the maximum RMS deviation between the LOLEX method and the other
three methods compared in Figure 11, e.g. ‖

√
(nx(d)− nx(a))2 + (ny(d)− ny(a))2‖∞.

This was 0.0086 for the Lervåg method, 0.92 for the Central difference and 1.78 for the
Directional difference; a 90◦ difference would give

√
2. We note that the maximum error

is largest for the Directional difference, while the average error is largest for the Central
difference. The difference between the LOLEX and Lervåg methods is too small to have
any impact on the simulation results.

As pointed out several times already, the main advantage of the present LOLEX
method over methods employing curve fitting is that it scales easily to 3D. This is because
the present method retains the implicitness of the level-set method. A 3D extension of
the Macklin and Lowengrub method, on the other hand, would fit a local surface to the
point of interest, as they indicate in [10]. Curvature estimation in 3D based on local
surface fitting has long been a topic of research in computer vision, see [37] for a review
of various methods including the use biquadratic surfaces and of splines. The conclusion
of [37] is that these methods are very sensitive to numerical noise (in their context, sensor
noise). In the current case, noise is to be expected, as can be seen in Figure 7 (b). Due to
this fact, methods in computer vision that avoid local surface fitting and calculate only
the sign of the curvature have been introduced, since this quantity can be calculated more
reliably[38]. This is not a viable alternative in two-phase flow simulations as considered
here.

4.4. 3D bubble above a plane
A curvature calculation using the LOLEX method on a 3D case is shown in Figure 12.

In this case, a bubble is placed above a plane, with distance 1.2 ∆x at the closest. The
grid is 50×50×50, and the bubble radius is 12.5 ∆x. The surfaces are colored according
to the curvature (interpolated to the surface). In Figure 12 (a), the standard method
is used. In 3D, this is the 27-point stencil given by Kang et al. [21]. In Figure 12 (b),
the LOLEX method is used to extract the local level sets, and the curvature is then
calculated using the same 27-point stencil on these local level sets. It is seen that the
LOLEX method performs much better than the standard discretization in areas where
the bubble and plane are in close proximity. Note that the plane is not shown here, only
the bubble. The kink in the global φ is below the bubble.
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(a) Standard discretization (b) LOLEX method

Figure 12: 3D bubble above a plane (not shown). Comparison of the standard curvature discretization
(a) and the LOLEX method (b). The surfaces are colored according to the curvature, and the standard
method is seen to give large errors close to the kink in the level-set function (which is below the sphere),
seen as green and dark blue bands.

Comparing to the analytical curvature, which in this case is −10 for the spherical
bubble, it is seen that the standard discretization performs well away from kinks, where
the variation in curvature is at most ±0.2%. Close to the kink, the standard discretization
has errors of ±80%, seen as green and dark blue bands in Figure 12 (a). The LOLEX
method has the same variation as the standard method away from kinks, while the
variation is ±2% close to the kink, seen as light blue spots in Figure 12 (b). Thus it is
seen that the LOLEXmethod gives an error which is an order of magnitude lower than the
standard method close to kinks in the level-set function. There is still a small error of the
same size as reported above in 2D, which is again probably caused by reinitialization. A
deviation of this magnitude is unlikely to have a large impact on simulations, in contrast
to the errors from the standard discretization.

To the knowledge of the authors, improved calculation of geometric quantities for a
pure level-set formulation in three spatial dimensions that handles general topologies have
not been reported before in the literature. Salac and Lu report results of 3D simulations
in [11], but it is not known how (or if) they handle problems like that illustrated in
Figure 2, i.e. a body folding back onto itself. They also do not discuss the problem
of needing good normal vectors at the interface in order to solve the reinitialization
equation.

Given the current state of developments toward petascale supercomputers, and partic-
ularly the rapid evolution in GPU-accelerated solvers, dynamic 3D level-set simulations
of colliding bodies are going to become more and more common. As this happens, a
method such as the present one will be necessary in order to get trustworthy results for
situations where accurate curvature is important.

5. Dynamic results

As discussed previously, the case of a single droplet of liquid falling onto a pool of
the same liquid, either through gas or another liquid, has been widely studied. Thus it
is a good benchmark on which to test the proposed method, since detailed experimental
results are available.
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When considering this case, the main dichotomy is between a droplet falling through
gas and a droplet falling through liquid. We will consider both cases here, since both
are interesting from an industry standpoint. These two cases present different challenges
to numerical simulations. The liquid-in-gas case has a high density difference between
the two fluids, which is known to be a difficult case. Sussman et al. have studied this
problem, and have produced good results using a hybrid LSM-VOF method [18]. The
liquid-in-liquid case, on the other hand, can be time-consuming to simulate due to the
viscous term in the CFL-criterion used here [21], but is not challenging with respect to
density differences.

5.1. Decane droplet in water merging with decane pool
The simulation discussed here consider two immiscible liquids, where a droplet of the

heaviest liquid is placed in the lightest liquid above a pool of the heaviest liquid. In the
experimental work by Chen et al. [39], the droplet is made to rest on the pool, and then
merging happens after some time. The heavy liquid is water, and the light liquid is a
mix of 20 % polybutene in decane. The droplet diameter is 1.1 mm. As the droplet and
interface are brought into proximity, a thin film is formed between them. This thin film
drains, and after some time the film ruptures and the droplet merges with the interface.
In the Chen et al. experiments, the merging happens at the central point, but off-center
merging has also been reported for larger droplets [40].

A simulation was performed with the same fluid properties and droplet dimension as
reported by Chen et al. The computational domain was 6×6 mm, the grid was 400×400,
and the CFL-number was 0.8. The results are shown in Figure 13. The agreement
between the simulation and experimental results is very good.

In this simulation, the point of merging is decided mainly by grid effects when the
droplet deforms the interface forming a thin film. With the present method, we must
simply hope that precisely what happens at the time of merging does not significantly
affect the following behaviour. Comparing Figure 13 (a) and (b) indicates that in this
case the precise mechanisms of merging are not very important, as the numerical and
experimental results agree very nicely. To accurately capture the thin film behaviour,
the grid resolution would have to be extremely fine. Hodgson and Lee [41] report that
the width of the thin film between a droplet and a pool for the water-toluene system
they study is four orders of magnitude smaller than the droplet diameter, i.e. around 100
nanometers. It is possible that an adaptive grid could be able to resolve such a thin film,
but since there is no analog to the Knudsen number for liquids, it is not immediately
clear whether the continuum description of the Navier-Stokes equations still holds at this
length scale.

Comparing the LOLEX method and the standard method on this case, the standard
method gives a more oscillatory pressure field around the contact point, as seen in Fig-
ure 14. This increased pressure inside the thin film delays the rupture of the film, seen
as a slightly increased width of the film in Figure 14 (b).

5.2. Water droplet falling through air onto a water pool
Considering the case of a liquid in gas, a simulation was performed of a 0.18 mm

diameter water droplet falling through air at 0.29 m/s and impacting a deep pool of water.
Experimental results for this case due to Zhao, Brunsvold and Munkejord are found in
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(a) Experimental result

(b) Simulation result

Figure 13: A 1.1 mm diameter water droplet merging with a water pool. The ambient fluid is 20%
polybutene in decane. Snapshots are taken 542 µs apart, the arrow indicates the capillary wave, and the
horizontal lines indicate the top of the bubble in the first frame. Figure (a) is the experimental result,
reprinted with permission from [39], copyright 2006 American Institute of Physics. Figure (b) is the
simulation result.
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p [Pa]

LOLEX Standard

Figure 14: Water droplet in a mixture of polybutene and decane, about to merge with a water pool.
Comparison of the pressure field using the LOLEX method and the standard method at t = 0.007 s.

[42]. These results indicate that a partial coalescence occurs, but the high-speed camera
used was not fast enough to capture all the details of the partial coalescence process.

The simulation was performed using axisymmetry. The computational domain was
0.7 mm × 0.7 mm, resolved using a 401×401 Cartesian grid. The CFL number was
0.25. The LOLEX method was used for curvature and normal vector calculation. A
comparison of the experimental and simulation results are shown in Figure 15.

The time intervals between frames for the experimental and simulation results do not
match in this figure. The intervals between the second and third frames are the ones that
match best, suggesting that the behaviour of the thin air film that forms between the
droplet and the pool before coalescence is the major source of this discrepancy. The grid
used in the simulation is unable to resolve the thin film. It is not clear that an increased
grid resolution would amend this, as the continuum approximation may not be valid for
the thin air film. The width of this film is not known from experiments.

As an order-of-magnitude estimate, we can use the results by Hodgson and Lee [41].
They report that the width of the thin film between a droplet and a pool before merging,
for the water-toluene system they study, is around L = 100 nanometers. Since the
mean free path in air at room temperature and atmospheric pressure is around λ = 66
nanometers [43], the Knudsen number is Kn = λ

L ≈ 0.7 6� 1, which would imply that
the continuum description is no longer valid.

Nevertheless, the simulation is able to correctly predict the partial coalescence, and
the simulation agrees well with experiments on the size of the daughter droplet produced.
In the experiments, this daughter droplet subsequently bounces on the pool of water. The
simulation is unable to predict this, again due to the thin air film formed, and shows the
daughter droplet merging with the water pool instead.
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(a) Experimental result

(b) Simulation result

Figure 15: Experimental results (top) and simulation results (bottom) for a 0.18 mm water droplet
falling through air and impacting a deep pool of water at 0.29 m/s. Figure (a) is reprinted from [42],
Copyright (2011), with permission from Elsevier.
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A comparison between the LOLEX method and the standard method is shown in
Figures 16 and 17. These figures show a section through the droplets just before collision
and just when the neck is at its tallest, respectively. The pressure field is plotted as
colored contours. The LOLEX method is plotted on the left side and the standard
method is plotted on the right side. It is seen from these figures that the curvature errors
produced by the standard method give rise to significant oscillations in the pressure; note
in particular the interleaved red and blue patches where the pressure changes sign. As
the reinitialization is performed more frequently, the oscillations persist, and are even
found inside the pool below the droplet.

An important effect of this erroneous pressure is a loss of kinetic energy, which can
be seen in Figure 17, where the neck is clearly shorter with the standard method. It is
also seen that more frequent reinitialization leads to a higher loss of kinetic energy. As
some authors have noted [44], the height of the neck and the dynamics of the capillary
waves are important factors for the partial coalescence mechanism.

The LOLEX method is not significantly affected by the amount of reinitialization,
and gives a more sensible pressure field in both cases. It should be noted that the pressure
difference across the droplet interface in Figure 16 is about 2500 Pa, which is very large,
caused by the very small droplet diameter.

This case also allows an illustration of the benefit of using the LOLEX method over
the Salac and Lu method. In Figure 18 we compare the curvature field for these two
just after droplet-film merging, where it is seen that curvature errors in the Salac and Lu
method have led to the entrainment of a small bubble. Since the bubble is under-resolved
on this grid, it subsequently disappears due to reinitialization. The LOLEX method does
not entrain any bubbles.

Finally, we consider the performance impact of the LOLEX method on this case. The
same simulations using the LOLEX and standard method were rerun using a 201×201
grid for timing purposes. The simulation using the standard method took 43525 s of
CPU time, while the simulation using the LOLEX method took 46753 s. This means
the LOLEX method is 7% slower than the standard method for this case, which is a fair
trade-off for the benefits of both reduced pressure oscillations and lower sensitivity to
reinitialization frequency.

6. Concluding remarks

In the present work we have proposed a new method for calculating the curvature and
normal vectors of an interface represented by a level-set function, and which gives accur-
ate results before, during and after topological changes in the interface. The method is
compared to the standard method for geometric test cases, where the analytical curvature
is known, and it is seen that in areas where the standard method gives errors of around
100 %, the proposed method gives errors of around 1–2 %. The method is easily exten-
ded to 3D, as is demonstrated, where the same reduction in error is seen. The method
is then employed in simulations of two-phase flow where a droplet merges with a pool.
Here it is seen that the standard method gives rise to unphysical pressure oscillations
before merging, which affect the subsequent capillary waves, while the proposed method
fares much better. The results of the simulations using the proposed method are com-
pared to experimental results both for a liquid-in-liquid case, where the agreement is very
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p [Pa]

t = 1.327 ·10−4 s
LOLEX

t = 1.386 ·10−4 s
Standard

(a) Reinitialization every 7 time steps

t = 1.323 ·10−4 s
LOLEX

t = 1.342 ·10−4 s
Standard

(b) Reinitialization every time step

Figure 16: Water droplet falling onto a pool, just before the interfaces merge. Comparison between the
LOLEX method and the standard method. The pressure field is shown as colored contours.

p [Pa]

t = 2.408 ·10−4
LOLEX

t = 2.459 ·10−4
Standard

(a) Reinitialization every 7 time steps

t = 2.412 ·10−4
LOLEX

t = 2.544 ·10−4
Standard

(b) Reinitialization every time step

Figure 17: Water droplet falling onto a pool, when the neck reaches its highest position. Comparison
between the LOLEX method and the standard method. The pressure field is shown as colored contours.
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t = 1.393 · 10−4
LOLEX

t = 1.393 · 10−4
Salac and Lu

Figure 18: Water droplet falling onto a pool, zoom in on the interface just after merging. Comparison
between the LOLEX method and the Salac and Lu method. It is seen that the latter entrains a small
air bubble due to the oscillatory curvature field following the merging. The curvature field is shown as
colored contours.

good, and for a more demanding liquid-in-gas case where the agreement is qualitative,
reproducing the partial coalescence behaviour.
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