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Abstract: State-of-the-art time-domain models of power cables account for the frequency dependency of physical
parameters to enable accurate transient simulations of high-voltage transmission schemes. Owing to their formulation,
these models cannot be directly converted into a state-space form as required for small-signal eigenvalue analysis.
Thus, dc cables are commonly represented in high-voltage direct current (HVDC) power system stability studies by
cascaded pi-section equivalents that neglect the frequency-dependent effects. This study demonstrates how the
conventional cascaded pi-section model is unable to accurately represent the damping characteristic of the cable and
how this can lead to incorrect stability assessments. Furthermore, an alternative model consisting of cascaded pi-
sections with multiple parallel branches is explored, which allows for a state-space representation while accounting for
the frequency dependency of the cable parameters. The performance of the proposed model is benchmarked against
state-of-the-art cable models both in the frequency domain and in the time domain. Finally, the study provides a
comparative example of the impact of the cable modelling on the small-signal dynamics of a point-to-point voltage-
source converter (VSC) HVDC transmission scheme.
1 Introduction

The present trends for improving cross-border power market
integration and the accelerating development of large-scale power
production from renewable energy sources are generating a
growing demand for high-voltage direct current (HVDC)
transmission systems [1]. Moreover, voltage-source converter
(VSC) HVDC technology is increasingly preferred due to the
recent advances in efficiency and power rating [2, 3] combined
with the inherent capability for reactive power or voltage control.
Thus, even point-to-point HVDC transmission schemes for bulk
power transfer are currently being developed and built using VSC
technology [4, 5]. Furthermore, VSC HVDC can be especially
relevant for the design of multi-terminal and even meshed grid
configurations envisioned as a future offshore transmission grid in
the North Sea region and as an overlay transmission grid in
mainland Europe [6].

With the increasing penetration of HVDC transmission schemes in
the existing ac grids, their accurate representation becomes critical
when assessing power system dynamics and stability [7, 8]. For
large-scale power systems, the small-signal stability is commonly
studied using linearisation and corresponding eigenvalue analysis
[9]. The underlying theory is well developed for stability
phenomena related to the synchronous machines and their
controllers, and tools are available in commercially graded power
system software to study small-signal stability phenomena in ac
power systems. Since the main dynamics of traditional large-scale
power systems have been dominated by the inertial dynamics of
the synchronous generators, these software tools are representing
the ac grid by algebraic phasor models without accounting for any
electromagnetic transients (EMTs). However, VSC HVDC systems
are characterised by faster control loops and system dynamics.
This has triggered research efforts in small-signal modelling and
analysis of VSC HVDC systems during the last decade [10–15].
The focus has largely been on model development for interaction
studies with the surrounding ac grid, whilst incorporating the
dynamics of the ac and dc sides of the HVDC converter station.
The behaviour of the dc cable in this respect, however, has been
given less attention.

State-of-the-art frequency-dependent cable models for EMT
simulations cannot be directly translated into a state-space
representation needed for small-signal stability analysis. Therefore,
it has been common practice to undertake small-signal stability
studies with the dc cables represented as either a single
pi-equivalent circuit [10–12, 15] or by multiple pi-equivalent
circuits [13, 14]. In some cases, the internal dynamics of dc cables
have been deliberately ignored by representing the dc transmission
system as a resistive network [16]. In [17], the effect of this
omission on the time-domain response was analysed, but again a
single pi-equivalent cable model was used as a basis for comparison.

Recently, it was demonstrated in [18, 19] that conventional
pi-equivalent representations for a dc cable can lead to a wrong
stability assessment. The results presented in [19] also indicate that
leaving out the cable current dynamics by omitting the inductance
can at least avoid false conclusions regarding the stability of
intermediate or high-frequency oscillations while retaining a
reasonably accurate representation of the slower dynamics related to
the overall power flow control. The need for representing the
frequency-dependent characteristics of the dc cable for an accurate
assessment of small-signal dynamics of HVDC transmission schemes
was also confirmed by the findings in [19]. To account for the effect
of frequency-dependent cable parameters on the oscillation modes
and damping in small-signal studies, an HVDC cable model based
on pi-equivalent sections with multiple parallel RL-branches was
proposed in [19] as an alternative to the conventional cascaded
pi-section state-space model [20]. The model is based on the
approach presented in [21], which was applied for a state-space
representation of transmission lines in [22]. The model parameter
values were determined by vector fitting [23] and the order of the
model could easily be adapted according to the accuracy requirements.

Starting from the approach presented in [19], this paper extends
the analysis of the proposed model and demonstrates its
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Fig. 1 Steady-state pi-model of the cable
advantages and limitations by means of time-domain comparisons
with a state-of-the-art EMT model. Such comparisons are
presented for the model of a dc cable as well as for the analysis of
a point-to-point HVDC link, verifying the ability of the proposed
cable model to accurately represent the small-signal dynamics of
the cable and its impact at a system level. Furthermore, it is shown
that increasing the order of the conventional cascaded pi-section
model by adding more sections does not improve the results, while
a model with parallel RL-branches effectively can retain the
damping characteristics of the actual cable, thereby preventing the
prediction of non-existent instabilities.
2 Conventional cable modelling for state-space
representation

In general, cable models can be classified into two main subgroups,
based either on lumped parameters or on distributed parameters. In
particular, the models with distributed and frequency-dependent
parameters have proved to provide an accurate representation of
the complex behaviour of power lines and cables [24]. Arguably
the most established example of such a model is the universal line
model (ULM) also known as wideband model [25]. The model
benefits from efficient numerical implementations tailored to EMT
analysis. Thus, the ULM is at present the preferred numerical
implementation for time-domain simulation, as reflected by its
availability in the standard libraries of commercial EMT software.
Furthermore, it may be assumed as a reference to benchmark the
performances of alternative models, as made clear by the
time-domain comparison presented in [26]. Though suitable for
time-domain simulations, the ULM and distributed parameter
models in general, cannot be translated into a state-space
representation for integration into larger models for performing
small-signal eigenvalue analysis of power systems. For this class
of applications, lumped parameters models are more common
since they can be effectively and conveniently expressed in a
state-space compatible format. However, a lumped parameter
representation based on standard pi-equivalents fails to account for
the frequency dependency of the parameters. This section
summarises the conceptual steps that lead to the formulation of the
conventional cascaded pi-section model for power cables.
Moreover, the simplifying hypotheses that are embedded in the
modelling approach are explicitly highlighted together with the
resulting limitations that arise.
2.1 Steady-state cable model

For converter control interactions studies, the model of HVDC
cables can be reduced by means of a Kron reduction. This
assumes an ideal grounding for both the armour and sheath
conductors: namely, that they are at ground potential along the
entire length of the cable. In reality, the sheaths of subsea cables
are usually grounded at both ends, while onshore cables can also
be grounded at additional points along the length of the cable.
Therefore, the reduction only applies when the voltages in armour
and sheath remain small compared with the conductor voltage
[27], which is a realistic assumption for control studies. As a
consequence, the analytical representation of a subsea cable with
three conducting layers (conductor, sheath and armour) reduces to
that of an equivalent conductor. The cable can then be accurately
described by the steady-state pi-model, as shown in Fig. 1.

The series and parallel elements of this circuit are given by

Zp = zℓ
sinh gℓ

gℓ
(1)

Yp = yℓ
tanh (gℓ/2)

(gℓ/2)
(2)

where ℓ is the length of the cable and z and y are the cable impedance
2

and admittance per unit length, respectively

z(v) = r(v)+ jvl(v) (3)

y(v) = g(v)+ jvc(v) (4)

and g is the propagation constant defined as

g = ���
zy

√
(5)

The frequency dependency of the conductance g and the capacitance
c is normally omitted for EMT models of power cables [27],
simplifying (4) to

y = g + jvc (6)

On the contrary, omitting the frequency dependency of the resistance
r and inductance l is much more severe, as discussed in the
remainder of this paper. Figs. 2a and b show the frequency
dependency of r and l for a 320 kV XLPE cable for VSC HVDC
transmission with data from [28].

Figs. 2c and d show the impedance for a 300 km long cable with
these parameters, using the analytical formulation from (1) to (6),
with the cable short-circuited at one end.

2.2 Constant parameter approximation

An underlying assumption in the conventional cascaded pi-section
model is that the frequency dependency of all parameters can be
omitted, hence also simplifying (3) to

z = r + jvl (7)

It is important to stress that the resulting model still relies on the
analytical formulation from (1) and (2), but with the
approximation from (6) and (7).

Figs. 3a and b show the effect of removing this frequency
dependency of r and l. In this example, the single values of these
parameters are obtained by a weighted fitting over the frequency
range of 1 μHz up to 1 MHz [23]. The process is described in
more detail in Section 3.1. The overall result is an accurate
representation of predominantly the low-frequency range.

2.3 Conventional cascaded pi-section model

As the model from the previous section still relies on the analytical
formulation from (1) and (2), an approximation is needed to express
it in a state-space format. A common approach is to use cascaded
pi-sections. The approximation stems in the fact that for short
lines, the hyperbolic correction factors in (1) and (2) approach 1,
resulting in a series impedance zℓ. For longer lines, these
correction factors can be approximated by cascading multiple
pi-sections in series. This approach is taken in [20] to present a
state-space model for transmission lines and is a commonly used
approach to model HVDC cables for small-signal stability studies.
Figs. 3c and d show the approximation of the cable with 1, 5 and
15 cascaded pi-equivalents, using the constant r and l values from
Section 2.2.
IET Gener. Transm. Distrib., pp. 1–12
& The Institution of Engineering and Technology 2016



Fig. 2 Frequency dependence of cable parameters and cable impedance

a Cable parameters – resistance r
b Cable parameters – inductance l
c Steady-state cable model – impedance magnitude
d Steady-state cable model – impedance angle
These results clearly show that by cascading several branches the
cable response better resembles the behaviour of the analytical
equivalent pi-model with constant parameters (Figs. 3a and b),
instead of the actual cable impedance (Figs. 2c and d ).
3 Frequency-dependent cascaded pi-model

The previous discussion clearly highlights that increasing the
number of pi-sections results in a better approximation of the
hyperbolic correction factors from (1) and (2), but this does not
result in a good approximation of the actual behaviour of the cable
since it does not allow taking into account the frequency
dependency of the distributed parameters. To overcome these
drawbacks, the idea of modelling the cable by means of parallel
series RL-branches from [21] has been used. In [22], this idea has
been explored to include transmission lines in a state-space model.
To some extent, the method presented in this paper also shows
similarities to the approach taken in [18], which involved
Fig. 3 Cable impedance – constant parameter approximation and conventional

a Constant parameter approximation – impedance magnitude
b Constant parameter approximation – impedance angle
c Conventional pi-section model – impedance magnitude
d Conventional pi-section model – impedance angle
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modelling the cable screen by including a coupled inductor.
However, the proposed method is different since it assumes the
screen to be at ground potential and is more general in the sense
that the approach can be extended to an arbitrary number of
branches, thereby improving the fitting in the frequency domain.

The modelling approach consists of two subsequent steps. First,
the frequency dependencies of the series elements are fitted with
parallel branches by using vector fitting [23]. Second, the
hyperbolic correction factors from (1) and (2) are approximated
with multiple pi-sections, resulting in the model from Fig. 4a.

The elements of the pi-equivalent scheme are given by

Ri = riℓp (8)

Li = liℓp (9)

G = cℓp (10)

C = gℓp (11)
pi-section model approximation
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Fig. 4 Cascaded pi-section model with parallel series branches

a Full model
b Approximate representation of the frequency-dependent series parameters
where ℓπ = ℓ/p is the length of a pi-section and p represents the
number of pi-sections.

3.1 Vector fitting of series impedance elements

The goal of the first step, the vector fitting, is to provide an adequate
description of the series elements in the frequency domain by means
of a rational approximation of order N. The problem takes the general
form of a sum of partial fractions [23]

f (s) =
∑N
i=1

ci
s− ai

+ d + se (12)

Considering N parallel branches with a resistance ri and inductance li
as in Fig. 4b, the series admittance of the cable,
ys(s) = [r(s)+ sl(s)]−1, is in fact approximated as

ys(s) ≃
∑N
i=1

1

lis+ ri
(13)

A comparison of (12) and (13) shows that this model naturally
leads to a simplified version of the rational formulation from (12)
with d = 0, e = 0 and

li = c−1
i (14)

ri = −aic
−1
i (15)

Hence, the dc resistance per unit length of the equivalent cable model
is given by

rdc =
1∑N

i=1 −a−1
i ci

(16)

Figs. 5a and b show the approximation of the series impedance using
five parallel branches.

The fitting of the series impedance data to parallel branches clearly
provides a valid means to take into account the frequency
dependence of the cable parameters.
4

3.2 Cascaded pi-section model with parallel branches

The hyperbolic correction factors in (1) and (2) are now taken into
account by using cascaded pi-equivalents with parallel series
branches. The number of pi-sections depends on the modelling
needs and consequentially on the bandwidth of the cable model
demanded in the state-space representation. This is illustrated in
Figs. 5c and d, which show the results of using 1, 5 and 15
pi-sections for a cable model with five parallel branches.

The picture indicates that the method as such does not pose any
theoretical restrictions on the level of detail that can be
represented, but the model order increases with the number of
pi-equivalents and the number of parallel branches.
3.3 State-space representation

The linear model from Fig. 4a can be directly written in a state-space
form

ẋc = Acxc + Bcuc (17)

with xc [ Rnc as the cable state variable vector, uc [ R2 as the cable
input vector and Ac [ Rnc×nc , Bc [ Rnc×2 as the cable coefficient
matrices. Considering the cable separately, Fig. 4a can be
represented by a state-space model by considering external current
sources at both cable ends as inputs and the internal currents and
voltages as states. In this paper, however, the cable is connected to
a converter model with a capacitor at the dc side. Since in this
case the dc voltages at both cable ends are already state variables
of the converter, the shunt elements (G/2 and C/2 in Fig. 4a) of
the pi-equivalents at the cable ends need to be treated as a part of
the converter instead, by adding C/2 to the converter capacitance.
Hence, for the general case of a cable with p pi-equivalents and N
parallel branches the cable can be written as a state-space model
with vectors xc and uc given by (18) and (21) and matrices Ac and
Bc given by (19) and (20) respectively (see equations 18–20 at the
bottom of next page).

uc = vin
vout

[ ]
(21)
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The first and last sub-blocks of Ac in (19) differ as the voltages at the
beginning and at the end of the cable are treated as inputs to the
model [see Bc in (20)]. Similarly, in case only one pi-equivalent is
used, matrices Ac and Bc, respectively, simplify to an N ×N and an
N × 2 matrix, with vector xc only retaining the N currents as state
variables.
3.4 Time-domain verification

In this section, different modelling approaches are compared by
simulating a cable section in PSCAD/EMTDC. Cable geometries
are taken from the open four-terminal test network presented in
[28]. The cable has been implemented as ULM cable model, as
well as using a model relying on a conventional cascaded
pi-section approximation and the proposed cascaded pi-section
model with parallel branches.

Figs. 6a and b show the open-circuit response of the different
cable models. The ULM clearly shows the expected reflection
patterns of the voltage at the cable ends. The conventional
cascaded pi-section model with 15 pi-equivalents poorly represents
the time response of the cable, resulting in a dominant oscillation
with higher amplitude, much longer settling time and different
oscillation frequency compared with the ULM’s reflection pattern.
IET Gener. Transm. Distrib., pp. 1–12
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The conventional pi-section model also results in high-frequency
oscillations superimposed to the poorly damped low-frequency
oscillation. The equivalent high-frequency dynamics are negligible
in the ULM response, and are well damped for the models with
parallel branches. It can be seen from these figures that all models
with parallel branches provide a reasonably accurate representation
of the open-end cable dynamics, with the most accurate results
observed for the models with 15 pi-sections. The difference in
response between the models with 5 and 9 parallel branches is
negligible. It is also noted that among the models with parallel
branches, the case with a single pi-section and five parallel
branches has the lowest accuracy in representing the reflections at
the cable ends: the model does not accurately represent the
delayed increase in the voltage due to the travelling wave effect
and has an initial peak value in the time response that is slightly
lower than the other models. However, the oscillation frequency
and settling time are much closer to the ULM model than those of
the conventional cascaded pi-section model. Thus, a single section
model with multiple parallel branches can more accurately
represent the cable dynamics than a conventional model with
multiple cascaded pi-sections.

Figs. 6c and d show the current through the cable for the different
models after a step in the voltage of 1 V at one cable end with the
other cable end short-circuited. No notable difference is observed
5



Fig. 5 Cascaded pi-section model approximation – series impedance z and cable impedance using five parallel branches

a Series impedance – impedance magnitude
b Series impedance – impedance angle
c Cable impedance – impedance magnitude
d Cable impedance – impedance angle
with respect to the number of pi-equivalents added. Indeed, the three
curves representing the different models using five parallel branches,
as well as the two models using nine parallel branches are largely
overlapping. In general, all models correctly represent the
steady-state behaviour (due to a good fitting at low frequencies),
but the rise time is significantly different for the conventional
cascaded pi-section model with 15 pi-equivalents. Furthermore, the
resonances are also triggered to a much higher extent than in the
other, more accurate models (Fig. 6d ). The same oscillation
Fig. 6 Time-domain cable model verification – open-circuit and short-circuit res

a Open circuit – step response (detail)
b Open circuit – step response
c Short circuit – step response (full response and detail)
d Short circuit – step response

6

frequencies as observed in Fig. 6b are excited for the conventional
cascaded pi-section model, whereas the ULM and the pi-section
models with multiple parallel branches show a smooth and
well-damped response. Figs. 6c and d indicate that all models
using parallel branches give a rather good approximation of the
short-circuit response of the system. However, the number of
parallel branches does alter the step response slightly and
correspondence is best for the model with nine parallel branches
(Fig. 6c – detail).
ponses
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4 Test system modelling

4.1 Reference configuration

To validate the proposed modelling approach, simulations are carried
out for a ±320 kV, 900 MW two-terminal VSC HVDC link with a
length of 300 km. Fig. 7a shows the system configuration, with
converters a and b, respectively, set to constant voltage and
constant power control.

The converter model used in this paper is based on the model
described in [15], assuming an averaged model of a two-level
converter including filter bus dynamics. The connection to the grid
is taken into account using a complex impedance, which
represents the combination of the transformer and the grid
Thevenin impedance. Fig. 7b shows the averaged model that is
used and indicates the different converter control loops.

A phase-locked loop is used to synchronise the dq reference frame
to the voltage at the filter bus, whereas other control loops include
decoupled inner current controllers and active power or dc voltage
control. The structures of the outer control loops are depicted in
Figs. 7c and d. The active power proportional–integral (PI)
controller has been tuned to obtain an equivalent time constant of
25 ms (hence ten times slower than inner current controller), while
the dc voltage controller has been tuned according to symmetric
optimum tuning. Further features of the model include an active
damping algorithm to prevent filter bus voltage oscillations from
entering the control loops, as well as dynamics related to the low-
pass filtering of dc voltage and active power measurements. The
first-order measurement filters on the dc voltage and ac power
signals have been tuned in order to obtain a 40 dB attenuation at the
switching frequency, assumed to be 2.1 kHz. Outer control loops for
the reactive power have been left out of the study. The current at
the dc side is considered as an input to the converter model, as are
the ac voltage source and the references for the controllers.
Fig. 7 System modelling and control implementation

a Two-terminal test system configuration
b Converter model
c Constant dc voltage control loop
d Constant power control loop
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4.2 System state-space modelling

To write the non-linear converter model in a linear state-space form,
the equations are linearised around a steady-state operation point
x0 [ Rn

Dẋ = ADx+ BDu; x(0) = x0 (22)

with Dx [ Rn as the converter state vector, Du [ Rm as its input
vector and A [ Rn×n, B [ Rn×m as the coefficient matrices. The
different components in the HVDC system are first modelled as
independent linear time-invariant subsystems. With all different
subsystems described in the form of (22), a state-space model of
the entire system is assembled. To find the steady-state operation
point for the entire system, which is needed to linearise the
converter equations, a dc power flow solution is calculated,
accounting for the dc system losses.

The overall system matrix At can thereafter be assembled by
accounting for the state variables of the different models that are
input variables to the model of other components. More
specifically, these are the dc currents at the cable ends and the
converter dc voltages.

The total state-space model is given by

Dẋt = AtDxt + BtDut (23)

with

Dxt = Dxa
T Dxb

T Dxc
T

[ ]T
(24)

Dut = Dura
T Durb

T
[ ]T

(25)
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For this two-terminal HVDC system, subscripts a, b and c,
respectively, refer to the first and second converters and the cable
connecting the two converters.

Without overlapping states in the modelling of the components,
Dxt [ Rnt with nt = na + nb + nc. The total input vector Dut [ Rmt

only consists of reduced versions Dura [ Rmr
a , Durb [ Rmr

b of the
converter input vectors Dua [ Rma and Dub [ Rmb , since the dc
currents and voltages are no longer inputs to subsystem models,
but state variables of the cables and converters, respectively.
5 Impact of cable model on system interactions

5.1 Identification of interaction modes

Following the procedure presented in [19], this paper uses the concept
of interaction modes to identify the system interactions in the test
system and to address the effect of the cable modelling on these
modes. These interaction modes are defined as those system modes
in which the two converters participate. Using participation factors
as defined in [9], let pki denote the participation factor of state
variable xk in mode i, pi [ Rnt the vector with the participation
factors for all system states associated with mode i and pa, i [ Rna

the vector with the participation factors for all states of subsystem α.
A parameter ηαi is now defined as a measure for the overall
Fig. 8 System, converter and interaction modes and cable model reduction

a Eigenvalues Aa (converter a)
b Eigenvalues At (system)
c Interaction modes – eigenvalues At with ηa > 5% and ηb > 5%
d Cable model reduction preserving interaction modes

8

participation for each subsystem α in mode i such that

hai =
‖pa, i‖
‖pi‖

(26)

with ‖·‖ denoting the L1-norm. ηai, ηbi and ηci are a measure for the
degree to which the two converters and the cable participate in each
mode. Using a threshold χ, we define an interaction mode i as a
mode for which both ηai > χ and ηbi > χ, resulting in a subset of
interaction modes S.
5.2 Interaction analysis with cascaded pi-section model
with parallel branches

Fig. 8a shows the eigenvalues of Aa (converter a), the dc voltage
controlling converter. The bandwidth of both converter models fB is
equal to 581 Hz. The states that are mainly associated with these
modes are resulting from the LC circuit at the ac side, and hence little
impact on their position can be expected when connecting the cable.
The conservative assumption that the model for the cable needs to be
accurate until this frequency, results in a cable model with 9 parallel
branches and 15 pi-sections. Thus, the impedance angle deviation is
limited to less than 0.5° in the low-frequency region and is limited to
2° at fB. Similarly, the impedance magnitude deviation is limited to
7% at fB. Fig. 8b shows the resulting eigenvalues for the combined
system. The eigenvalues with real parts lower than −103 and
IET Gener. Transm. Distrib., pp. 1–12
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Fig. 9 Conventional cable state-space representations and their effect on the interaction modes (reference case: 9 parallel branches, 15 cascaded pi-sections)

a Cascaded pi-section approximation
b Single pi-section approximation
c Single pi-section approximation without inductance
imaginary parts over 104 have not been depicted in this figure as these
modes are well-damped and mainly related to internal cable states.
Fig. 8c shows eigenvalues that are the result of the interaction study
after defining ηαi for the different components α for mode i with a
threshold χ = 5%. In total, seven interaction modes are identified
between the two converters.

The required cable bandwidth is now reduced to 297 Hz,
corresponding to the frequency of the highest interaction mode of
interest. Fig. 8d shows the effect of lowering the number of
parallel branches and pi-sections. The figure shows that a model
with five parallel branches and five pi-equivalents provides a
good compromise to still accurately represent the eigenvalues of
interest. The picture indicates that keeping the number of parallel
branches equal to nine whilst lowering the number of pi-sections,
leaves the poles C–G largely unaltered and only impacts A and
B, the poles with the highest imaginary parts. Lowering the
number of parallel branches to five, impacts the poles C and D as
well. The number of parallel branches can be lowered to three,
which forms a lower limit to still represent the complex
conjugate poles A and B. It is clear from this picture that
including a number of parallel branches whilst only using one
pi-equivalent still allows a reasonably accurate representation of
the poles C and D. It is also clear from Fig. 8d (see detail) that
all models accurately represent the interaction modes F and G,
Fig. 10 Time-domain comparison of linearised model with non-linear two-termin
controlling converter

a Filter capacitor voltage (d-component)
b dc voltage
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with the lowest accuracy for the simplest models with only three
parallel branches. These models are slightly conservative with
respect to the damping of modes C, D, F and G and can in this
case still be used for stability assessment.
5.3 Conventional state-space cable modelling effects on
interaction modes

The result of the simplifications that are commonly encountered in
state-space representation and their effect on the placements of the
poles involved in the interaction modes are shown in Fig. 9.

It is clear from this figure that the simplifications based on using
one parallel branch (and either one or multiple pi-sections) give
misleading impressions about the relative stability of the cable
modes (denoted A, B, C and D in Fig. 8c): the corresponding
eigenvalues not only appear at different frequencies, but are also
poorly damped. The representation of the lower-order cable modes
is also less accurate than the representations from Fig. 8d, and even
than the model using one pi-section and three parallel branches.
Similarly, the representation of the real pole (E in Fig. 8c) is less
accurate. It can be noted that the simplest representation, only using
the resistive cable value and leaving out the current as a state
variable (Fig. 9c), results in similar values for modes E, F and G,
al model with ULM cable model – ac voltage step change (0.1 pu) at power
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Fig. 11 Time-domain comparison of linearised model with non-linear two-terminal model with ULM cable model – dc voltage reference step change (0.05 pu),
voltage at the power controlling converter

a Symmetric optimum controller tuning
b Increased dc voltage controller gains (Kdc scaling factor 3)
c Increased dc voltage controller gains (Kdc scaling factor 4.85)
but does not include thewrongly predicted oscillatory modes from the
conventional (cascaded) pi-section models.
6 Cable modelling effects on dynamic response
and system stability

The state-space models are verified against a time-domain model
using MATLAB/Simulink. The overall aim is to illustrate how the
typical time response of the two-terminal system changes when the
frequency dependency of the cable parameters is accounted for in
the state-space model or when, alternatively, a conventional
cascaded pi-model is used. The ‘benchmark’ study case is a
non-linear three-phase averaged model in MATLAB/Simulink
SimPowerSystems, with the cable implemented using the
WideBand Line model from the OPAL-RT ARTEMiS-SSN library.

The results of the benchmark model have been compared against
the response of a linear state-space model using a cable model with
five parallel branches and five pi-sections, as well as the
conventional cascaded pi-model with five pi-sections. Fig. 10
shows the response of the system when subjected to a 10% step
change of the equivalent ac grid voltage at the power controlling
converter station. From Fig. 10b, it is clear that the step change in
ac voltage causes an oscillation of the dc voltage in the system.

Comparing the results of the conventional cascaded pi-section
model with the others, it is clear that the perturbation at the ac
side triggers a poorly damped oscillation at the dc side which is
not present in the ULM model and in the model with parallel
branches. The small differences between the ULM model and the
Fig. 12 Time-domain comparison of different conventional cascaded pi-section m
reference step change (0.05 pu), voltage at the power controlling converter

a Cascaded pi-section model
b Single pi-section model, with and without inductances
c Detail including all models from (a) and (b)
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cascaded pi-section model with parallel branches are mainly a
result of the linearised state-space modelling when operating away
from the linearisation point. On the ac side, the two linearised
models show a good match with the non-linear averaged model.

In a next step, the effect of the cable modelling on the stability
analysis of the system is investigated by scaling the controller gain
Kdc of the dc voltage PI controller (Fig. 7c). Fig. 11 shows the dc
voltage response at the power controlling converter after a 5% step
change in the dc voltage reference with different controller tuning.
Under symmetric optimum controller tuning (Fig. 11a), the
erroneous dc voltage oscillations are mainly present during the
initial phase of the step response and do not significantly influence
the time response. When increasing both PI gains by factors of,
respectively, 3 (Fig. 11b) and 4.85 (Fig. 11c), the oscillations
become more and more persistent and will eventually lead to
instability in the conventional cascaded pi-section model when
increasing the controller gains even further.

Fig. 12 shows clearly that adding more pi-sections, which results
in an increased bandwidth of the cable model, does not result in a
more realistic time-domain response, hence confirming the results
from Fig. 9. There is almost no notable difference between the
models with 5, 15 and 25 pi-sections (Fig. 12a) and also the
model with a single pi-section indicates a similar oscillatory
pattern (Figs. 12b and c). The time-domain response of the single
pi-section model with the inductance omitted does not suffer from
the wrongly predicted oscillation, but faces a slightly lower
overshoot and a somewhat faster response than the ULM model
(Fig. 12b). None of the conventional pi-section models succeed in
representing the system response as accurately as the cascaded
pi-model with parallel branches (Fig. 11).
odels with ULM cable model for Kdc scaling factor equal to 3 – dc voltage
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Fig. 13 Change of system modes and interaction eigenvalues when changing the voltage controller gain Kdc

a All modes – five parallel branches, five pi-sections
b Interaction modes – five parallel branches, five pi-sections
c All modes – conventional cascaded pi-section model, five pi-sections
d Interaction modes – conventional cascaded pi-section model, five pi-sections
Finally, Fig. 13 shows the effect of this parameter variation on the
location of the overall system modes (Figs. 13a and c) and on the
interaction modes (Figs. 13b and d ) in particular when changing
gain Kdc of the dc voltage controller (Fig. 7c) at converter a from
0.1 to 10 times the original settings. The intensity indicates the
participation of the converters in these modes: the lighter, the
more the mode is related to the cable, the darker, the more it is
related to the converters. Changing the gains slightly alters the
interaction pattern (Figs. 13b and d ) in terms of new poles
appearing compared with the results from the previous sections.
These real poles are related to the integrator of the dc voltage
controller at converter a and the dc filtered voltage at this
converter, as well as with the dc voltages at both cable ends.
Comparing the interaction pattern from Figs. 13b and d confirms
the time-domain analysis. Namely, an increase of the controller
gains causes the poles which are strongly linked to the first cable
resonance (modes C and D from Fig. 9a, encircled in Fig. 13d ) to
move into the right-hand plane, hence making the system unstable
for the case of the conventional cascaded pi-section model. On the
other hand, in the model with parallel branches (Fig. 13b), the poles
linked to the first cable resonance (modes C and D from Fig. 8d)
do not trigger any instability and are still well damped, even for the
higher controller gain settings. From the overall system poles in
Figs. 13a and c, it is clear that no other system instabilities are
triggered when changing the gains, other than the wrongly
represented dc resonance in case of using conventional cascaded
pi-section models. Investigation of the participation factors of these
unstable modes shows that they are about equally linked with the dc
voltages at both converters, and with internal cable state variables.
This confirms that the pole becomes unstable because of a wrongly
represented interaction between the converter controls and a cable
resonance that is well damped in reality, but poorly damped in a
conventional cascaded pi-section model.
IET Gener. Transm. Distrib., pp. 1–12
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7 Conclusion

In this paper, the effect of the frequency dependency of HVDC
cables on the small-signal stability has been assessed. The
traditional state-space models generally encountered in the
literature using the conventional cascaded pi-section modelling
result in a poor representation of the cable modes in the frequency
domain. This can lead to false conclusions on the dynamic
response and stability margin of HVDC systems. As an alternative,
a model with parallel branches based on a vector fitting of the
series elements of the cable has been proposed to account for the
frequency dependency of the cable parameters. The model allows
for an accurate representation of the cable in the frequency domain
and provides a time-domain response similar to that of wideband
cable models. Furthermore, the approach can also be applied for
other line or cable configurations. It is shown that the model
accurately represents the system interaction modes with a lumped
parameter model designed to cover the frequency range at which
such interactions can occur. The study leads to the general
conclusion that the cable should preferably be modelled by a
combination of parallel branches and pi-sections. In case a very
simple model is sought for, it is better to model the cable using
only parallel branches instead of merely cascading pi-sections.
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