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Abstract 
This paper provides an overview of models and methods for estimation of lifetime of 
technical components. Although the focus in this paper is on wind turbine applications, the 
major content of the paper is of general nature. Thus, most of the paper content is also valid 
for lifetime models applied to other technical systems. The models presented and discussed 
in this paper are classified in different types of model classes. The main classification used 
in this paper divides the models in the following classes: 1. Physical models, 2. Stochastic 
models, 3. Data-driven models and artificial intelligence, 4. Combined models. The paper 
provides an overview of different models for the different classes. Furthermore, advantages 
and disadvantages of the models are discussed, and the estimation of model parameters is 
briefly described. Finally, a number of literature examples are given in this paper, providing 
an overview of applications of different models on wind turbines.  
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1 Introduction 
An essential question for design and operating of technical components is their useful life. 
The estimation of useful life is important for designers and manufacturers for design 
improvements and marketing purposes, as well as product users (customers, operators) for 
making decisions on which product to buy. Furthermore, the estimation of remaining useful 
life (RUL) after the product has been put into operation is important for making decisions 
on maintenance, repair, reinvestments and new investments. The RUL estimation is not 
only important for the user/operators but also for the manufacturer, especially in guarantee 
periods and when there are service agreements between users/operators and manufacturers. 

A large number of different models for estimation of lifetime and RUL exists. The 
purpose of this paper is to provide an overview of different models, to classify the models 
in different groups and to discuss advantages, disadvantages and methods for parameter 
estimation. 
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The main target group of this paper are readers that are not familiar with the topic. This 
paper provides an introduction to the topic of lifetime modelling by providing a brief 
overview of different types of models that often are applied. The paper may also serve as a 
good starting point for further reading. Readers that are familiar with only some models 
that are presented here may also contributed from this paper to become more familiar with 
models that they not have been applied before. 

Lifetime models are often an integrated part of more complex models, for example, 
maintenance models and logistic models. The lifetime model is then sub-model in a more 
complex and larger main model. Consequently, the lifetime model is in this cases an 
integrated part of the main model where the lifetime model processes data and generates 
results related to lifetime, and where the other parts of the main model processes the results 
of the lifetime model further to results that are useful for making decisions on, for example, 
maintenance and logistics. 

An important aspect of lifetime modelling is uncertainty. The lifetime of a technical 
component is an uncertain quantity that can never be predicted exactly. Thus, a lifetime 
model will result in an estimate rather than a certain and exact lifetime prediction. The 
overview in the paper includes different models and methods that can be used for handling 
and expressing uncertainty. 

The paper is organized as follows: A Classification of models for lifetime estimation is 
presented in Section 2. Typical model properties – including their advantages and 
disadvantages – and approaches for parameter estimation are discussed in Section 3. In 
Section 4, examples of different models are presented. In addition, references to 
publications presenting applications to wind turbines are given in Section 5. The paper is 
summarized in Section 6. 

A previous version of this paper has been published in the proceedings of the IWAMA 
2013 workshop [1]. 

2 Classification of models 
Models for lifetime estimation may be classified according to different aspects. The 
following main classification – representing different main classes or main types of models 
– is used in this paper: 

• Physical models 
• Stochastic models 
• Data-driven models and artificial intelligence 
• Combined models  

Brief general descriptions of these types of models are given below. Further possibilities 
of model classification are discussed in section 2.1.  
Physical models 
Physical models (also called process-based models or mechanistic models [2]) are based 
on a physical mechanism (failure mechanism) or process (failure process) that finally leads 
to a failure of an item.  
Stochastic models 
Stochastic models are based on probability theory and statistical methods. If a model is 
"purely" stochastic it does not represent a physical process or mechanism, but is used to 
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make a relation between model inputs and outputs using any mathematical equation or 
expression that provides a good fit given the data [2]. 
Data-driven models and artificial intelligence 
Data-driven models (or data-based models) are based on methods to identify and abstract 
information and/or relationships from large sets of data [2]. Data-driven methods are in 
particular suitable for data from continuous monitoring. Many data-driven models belong 
to the field of artificial intelligence. 

Artificial intelligence (AI) is a field of research that studies and develops intelligent 
machines and software. A more formal definition of artificial intelligence is [3]: "The field 
that studies the synthesis and analysis of computational agents that act intelligently" where 
"an agent is something that acts in an environment". The agent is the modelling object, e.g. 
an animal, a machine, humans, companies, etc. The interest is "in what an agent does; that 
is, how it acts." Many different subfields, techniques and models are associated with AI, 
see section 4.4 for more details. AI is based on general basic concepts such as search, 
learning, reasoning and others. 
Combination of models 
The combination of different models offers the possibility to establish new models. Both 
the combination of different types of models and the same type of model may improve a 
single model. 

2.1 Other possibilities of classification 

2.1.1 Model quantity 

Another possibility of classification is according to the quantity that is modelled. Two 
quantities that are often the prediction variable of lifetime models are the number of failures 
and failure times, respectively, and degradation. Thus, the models either belong to the class 
of failure (time) models or to the class of degradation models. 

Failure models are used to model and predict failure events. The quantity that usually is 
modelled is the failure time and time to failure, respectively, the time between failures or 
the number of failures (in a given time interval or up to a given point in time). It might be 
more appropriate in some cases to use other measures of usage than time [4], e.g. 
revolutions (e.g. for rotating machines), number of operations (e.g. for switchgear), running 
times (e.g. for machines where it must be distinguished between operating and standstill) 
or load cycles (e.g. for structural components). 

Degradation models are used to model and predict degradation of items. Degradation 
can be expressed and measured by a quantity which describes in a suitable way the 
changing of the technical condition or strength over time (or another measure of usage). 
This quantity is denoted degradation variable. Failure is assumed to occur when the value 
of a degradation variable crosses a failure level (threshold). In some applications, there may 
be more than one degradation variable [4]. 

2.1.2 Model uncertainty 

One could also classify the models according to how they take into account uncertainty: 
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• Deterministic: uncertainty is not taken into account 
• Stochastic: uncertainty is modelled by probability theory 
• Fuzzy: uncertainty is modelled by fuzzy logic theory 

2.1.3 Model generality 

A further possibility of model classification is the generality/universality of the model. 
Some models can be applied to all types of items and failure mechanisms, whereas others 
are specific models that only can be applied to the specific items and failure mechanisms 
they are designed for. Usually, specific models are more accurate than general models. 
However, the more specific and accurate a model is, the more complex it usually is. 

3 Model properties and parameter estimation 

3.1 Physical models 
Since physical models usually are based on a physical mechanism (failure mechanism) or 
process (failure process), they are valid for all problems where the process/mechanism 
leads to a failure. Sometimes, they are restricted to specific types of components. Typical 
for physical models is that the input parameters have a clear meaning and represent real 
(and often measurable) quantities or natural, physical or material constants. Thus, the 
models provide a clear understanding about the model input and the output, resulting in a 
so-called white-box model. Therefore, physical models are appealing for those who wish to 
get better understanding of the mechanisms and processes leading to failure [2]. Physical 
models are in particular useful for design improvement.  

In a first step, a physical model must be established if a good model is not available. 
This can be a challenging work and requires good knowledge about the problem that is 
modelled. However, once a good model is available, it can be applied to all comparable 
problems where good estimates or measurements of the model input parameters are 
available. Since the processes in real world may be quite complicate and may be affected 
by many mechanisms and effects, one usually has not the possibility to take into account 
all of them. Thus, a physical model may be restricted to include the main mechanisms and 
main effects only. 

Physical models are often empirical, which means they are based on observation or 
experiments. Physical models can basically be used for all kinds of predictions, both long-
term and short-term, depending on what they are designed for. 

3.2 Stochastic models 
Most stochastic models are of general nature and can be applied for many different 
problems. An advantage of stochastic models applied to lifetime prediction is that both an 
estimate of the mean lifetime and various estimates of uncertainty can be established, such 
as variance of the lifetime, confidence intervals for parameters and predictions, etc. 

Parameter estimation in stochastic modelling is based on the observation of the model 
output. Thus, observations of the model output, such as observations of lifetime or 
degradation, are usually collected as basis for parameter estimation. When possible, one 
should fit different stochastic models to the data and choose the model that gives the best 
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prediction. Many techniques exist to choose the best model and to check the goodness of 
fit (e.g. p-value, confidence intervals, comparison of maximum likelihood values and 
various graphical methods such as probability plots). 

As alternative to data collection, expert judgement can be used for parameter estimation. 
There exist different techniques for expert judgement, see e.g. [5-6]. 

Stochastic models can basically be used for both short-term and long-term predictions. 
However, for lifetime prediction, they are mostly used to make medium and long-term 
predictions. Furthermore, they are often used in system modelling or as input in other 
models (such as maintenance and optimization models) where the main interest is in long-
term averages (such as failure rates). They can also successfully be applied for comparing 
and explaining the lifetime influence of different designs or other factors either by looking 
on the results from different samples or by incorporating explanatory variables (see section 
4.3.4) in the model. 

3.3 Data-driven models and artificial intelligence 
Data-driven techniques utilize monitored operational data related to system health. They 
can be beneficial when understanding of first principles of system operation is not 
straightforward or when the system is so complex that developing an accurate alternative 
model is prohibitively expensive. An added value of data-driven techniques is their ability 
to transform high-dimensional noisy data into lower dimensional information useful for 
decision-making [7]. Furthermore, recent advances in sensor technology and refined 
simulation capabilities enable us to continuously monitor the health of operating 
components and manage the related large amount of reference data. 

Many data-driven models can be classified as black-box models because the relation of 
input and output variables and the model parameters is unclear in such types of models. 
Parameter estimation in black-box models is often based on learning and training. Thus, 
the models require data, and often data covering a time period where a failure was observed, 
in order to make a prediction of the lifetime. Learning can be based on data from a situation 
identified as normal. Then, all situations that are different from the normal situation may 
be defined as abnormal and (potentially) erroneous. Such an approach is appealing for 
diagnostic applications, because the observation of failures is not required. However, this 
approach is not sufficient for making predictions of the remaining lifetime.  

Data-driven models are mostly suitable for making short-term predictions when the 
component reaches the end of life and when a potential failure becomes apparent in 
monitoring data. 

Since there are many models and methods in the field of AI, that in addition often are 
quite different (see also examples of AI models in section 4.4), it is difficult to make general 
statements about models properties and the ways of parameter estimation. Many models 
can be considered as black-box models. Some others however, as for example expert 
systems, are white-box models where the internal model logic is based on expert 
knowledge. 
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4 Examples of models 

4.1 Physical models 
When looking on wind turbine applications (see also section 5), most models that have 
been applied from the class of physical models are models for fatigue lifetime prediction. 
Two of the basic material fatigue models are Miner’s rule and Paris’ law, where the former 
can be classified as failure model, and the latter as degradation model. 

4.2 Fatigue and fatigue crack growth models 

4.2.1 S-N-curves and Miner's rule 

S-N-curves and the Palmgren-Miner rule (also simply called Miner's rule) are failure 
models for fatigue life assessment of many types of materials. 

If a material is subject to a sufficient number of stress cycles that are above the fatigue 
limit, a fatigue crack or damage will develop, leading finally to failure [8]. The higher the 
stress level, the less stress cycles are required until the item fails. This relation is illustrated 
by S-N-curves (stress versus life curves) where N is the number of cycles to failure. In a 
situation with constant amplitude loading, the number of stress cycles leading to failure, 
and the remaining lifetime, can be estimated by applying S-N-curves. In a situation with 
variable amplitude loading, the Miner's rule can be used together with S-N-curves. More 
details about the approaches and their application can e.g. be found in [8, chapter 9]. 

4.2.2 Paris' law for fatigue crack growth 

Paris' law is a physical degradation model that describes the growing of a fatigue crack. 
The model can be used to predict the growing of a fatigue crack and to estimate the RUL 
until fracture of the material. More details about the approach can be found in [8, 
chapter 11]. 

4.3 Stochastic models 

4.3.1 Stochastic failure rate models 

One of the main concepts in stochastic failure and reliability modelling is the failure rate 
(also called hazard rate). Constant failure rates, i.e. λ(t) = λ, are probably the most often 
applied failure and reliability model. Reasons for the popularity of using constant failure 
rates in lifetime and reliability analyses are: 

• The constant failure rate model is a simple model that has only one parameter. 
• The model parameter (the failure rate) has a clear meaning: Expected number of 

failures within a time interval; the inverse of the failure rate is the mean time to 
failure (MTTF) or mean time between failures (MTBF). 

• Both data and expert judgment can easily be applied for estimating the failure 
rate. Methods exist for combination of data and expert judgement and updating of 
failure rate estimates; e.g. Bayesian methods [9, p. 542]. 
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• Failure rates for different types of components can be found in databases and in 
the literature. 

• Constant failure rates can often be applied in more advanced reliability and 
maintenance models, for example, in models for systems consisting of several 
items, Markov models or models for maintained items or systems; see e.g. [9]. 

Obviously, the use of a very simple model like constant failure rates has restrictions. 
Constant failure rates are often not very realistic, because the failure rate for real 
components will often change during the lifetime, for example, due to ageing or due to 
variable loading. One of the distributions, which offers a time dependent failure rate 
function and which is often used in practical applications, is the Weibull distribution. 

Different types of failure rate models exist for both repairable and non-repairable 
systems, for example: 

• Stochastic failure rate models for non-repairable systems 
o Failure time distributions (e.g. Weibull distribution) 

• Stochastic failure rate models for repairable systems 
o Renewal process 
o Homogenous Poisson process (HPP) 
o Non-homogenous Poisson process (NHPP) 
o Trend renewal process 

Failure time distributions are not further discussed here. It is referred to [4] and [9] for 
further details. The stochastic processes for repairable systems listed above belong to the 
group of counting processes. A counting process is a general stochastic process for 
modelling of phenomena which may be described by the number of events (e.g. failures) 
that occurred. The counting process is a stochastic process (i.e. collection of random 
variables) which represents the total number of events n which occurred up to time t. More 
information about application of different failure rate models and stochastic processes can 
be found in [4, 9-12]. 

The term failure rate is often ambiguously used for both non-repairable and repairable 
systems. Failure rate may refer in the former case to force of mortality (FOM) and in the 
latter case to rate of occurrence of failures (ROCOF). Whereas the FOM is a relative rate 
of hazard for a single item, the ROCOF is the absolute rate of change of an expected number 
of failures; see Ascher and Feingold [13, p. 19 & p. 153] for a more detailed discussion. 

4.3.2 Stochastic degradation models 

If degradation data is available, different stochastic degradation models could be used to 
model further degradation and to predict the remaining useful life. Some useful models are 
stochastic processes (e.g. Markov process, gamma process, Wiener process) or the general 
degradation path model presented in [4]. Further information about stochastic processes 
can be found in [10]. A good overview of application of the gamma process in lifetime and 
maintenance modelling is given in [14]. 
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4.3.3 Other approaches and models 

Other stochastic models that might be of interest are models for imperfect repair (see e.g. 
[9, Chapter 7.5.1]), additive regression models of failure rate, relative risk regression, and 
frailty models (see [12]), and Bayesian belief networks, also called Bayesian networks (see 
[15]). 

4.3.4 Stochastic models with explanatory variables 

Stochastic models may include explanatory variables. Explanatory variables are also called 
covariates. An explanatory variable is a variable that may predict changes of the quantity 
of interest (i.e. the dependent variable; e.g. the lifetime or deterioration). In contrast to the 
parameters of the underlying stochastic model, explanatory variables have a clear/physical 
meaning, such as the parameters in physical models. When using stochastic models with 
explanatory variables, data must be collected on the value of the explanatory variables in 
addition to the value of the observation. 

Examples of explanatory variables are environmental factors that may influence 
degradation and the lifetime, or accelerating factors such as higher stresses (often applied 
in accelerated life testing). Different types of technical designs can also be modelled by 
explanatory variables. Important factors for the wind industry one might to incorporate in 
the modelling are, wind speed, location of turbine or turbine concept/design. 

4.4 Data-driven models and artificial intelligence 
It is difficult to classify models belonging to this model class. There exist a number of sub-
fields/groups of models that are partly overlapping. AI includes sub-fields and groups such 
as machine learning, pattern recognition, computational intelligence (CI), expert systems, 
etc. Data-driven approaches can be divided into two categories: Statistical techniques 
(regression methods, autoregressive-moving-average models, etc.) and CI techniques. The 
main focus in this section is on CI. However, other methods are briefly discussed in section 
4.4.2. 

4.4.1 Computational intelligence 

Computational intelligent algorithms include artificial neural networks (ANN), 
evolutionary computation (EC), swarm intelligence (SI), artificial immune systems (AIS), 
and fuzzy systems (FS) [16]. CI-techniques have their origins in biological systems: "NNs 
model biological neural systems, EC models natural evolution (including genetic and 
behavioural evolution), SI models the social behaviour of organisms living in swarms or 
colonies, AIS models the human immune system, and FS originates from studies of how 
organisms interact with their environment" [16]. For detailed information about the 
different CI models and their application, the reader of this paper is referred to [16] and 
[17]. Some CI models and their potential contribution and application to RUL estimation 
are presented below. 
Artificial neural networks 
With respect to AI/CI techniques, the most commonly used prediction methods are based 
on artificial neural networks (ANN), see [18-20]. For prognostic tasks, the most promising 
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methods are back-propagation (BP) ANNs and recurrent neural networks (RNNs), see [17] 
and [21]. 

For example, an ANN may be trained to predict a vibration value at one increment ahead 
of the previously sampled value. During training process, the previous sample are taken as 
training input, and the sample one time increase ahead is used as the train target output. 
The network is then trained by back propagation learning algorithm. During querying 
process of a trained ANN, we take the samples before the time interest as input. The output 
is then the predicted value for the next time interval. 

ANNs are usually not directly used for lifetime estimation. However, they are a powerful 
tool for fault diagnosis, and in combination with other models (e.g. stochastic models or 
fuzzy logic) they may result in a good combined model (see Section 4.5) for lifetime 
estimation. 
Fuzzy logic systems 
An opportunity for increased transparency and openness of data-driven model is offered by 
fuzzy logic methods, which are increasingly proposed in modern diagnostic technologies. 
Based on the principles of Zadeh’s fuzzy set theory, fuzzy logic provides a formal 
mathematical framework for dealing with the vagueness of everyday reasoning [22]. As 
opposed to binary reasoning based on ordinary set theory, within the fuzzy logic framework 
measurement uncertainty and estimation imprecision can be properly accommodated. 
Thus, fuzzy logic can be considered as an alternative to probability theory to describe 
uncertainty. 

Yan et al. [23] and Zio and Maio [24] presented a similarity-based approach for 
prognostics of the RUL of a system. Data from failure dynamic scenarios of the system are 
used to create a library of reference trajectory patterns to failure. Given a failure scenario 
developing in the system, the remaining time before failure is predicted by comparing by 
fuzzy similarity analysis its evolution data to the reference trajectory patterns and 
aggregating their times to failure in a weighted sum which accounts for their similarity to 
the developing pattern. The prediction on the failure time is dynamically updated as time 
goes by and measurements of signals representative of the system state are collected. The 
approach allows for the on-line estimation of the RUL. 

4.4.2 Other methods and models 

Statistical methods 
The most natural data-driven technique for RUL estimation is to fit a curve of the available 
data of the component degradation evolution using regression models and extrapolate the 
curve to the criteria (threshold) indicating failure. However, the available data history 
sometimes may be short and incomplete, so that extrapolation may lead to large errors. The 
same problem arises when employing autoregressive-moving-average (ARMA) models, 
although the method can handle also situations in which more run-to-failure data are 
unavailable or insufficient [23]. 
Pattern recognition 
Pattern recognition covers models and techniques to recognize patterns in data. Pattern 
recognition might be of interest for lifetime prediction in combination with case-based 
reasoning in order to extract an input case in form of a pattern that has been identified in 
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connection with a failure. Then, the identification of the same or a similar pattern may 
provide a warning for a similar situation. 
Expert methods 
Case-based reasoning (CBR) is based on the principle to identify and solve problems based 
on experience from previous situations and similar problems. CBR can mean "adapting old 
solutions to meet new demands, using old cases to explain new situations, using old cases 
to critique new solutions, or reasoning from precedents to interpret a new situation (much 
as lawyers do) or create an equitable solution to a new problem (much as labor mediators 
do)" [25-26]. Obviously, data related to a potential (future) failure situation may be 
recognized from a similar case that has been observed before. The methods require the 
building of a data base with relevant cases. 

Also rule-based expert systems [27, section 17.4] may be utilized for lifetime prediction. 
Expert knowledge and experience from observed failures may be utilized to establish 
suitable rules (e.g. if-then-rules). 

4.5 Combined models 
Some examples of models that may be classified as combined models are briefly described 
in the following. 

4.5.1 Physical models with uncertainty 

Deterministic physical models, for example, can be transferred into models that take into 
account uncertainty by modelling one or several model parameters as stochastic or fuzzy 
variable. 
Stress-strength models 
The stress-strength approach, also called load-strength approach [28, chapter 4], is based 
on the general principle that failure occurs when the load or stress l exceeds the strength s 
of the item. Thus, the model is based on the simple deterministic relation that a failure 
occurs when l > s. For most items neither load nor strength are deterministic quantities, but 
are distributed statistically. This means that the value of both the load and the strength are 
uncertain, and this uncertainty is modelled by assuming that load and strength are modelled 
as stochastic variables. 

4.5.2 Finite element methods - FEM 

Modern computer technology allowed reducing complicate problems to simple 
computational steps that can easily be solved. These steps are usually based one or several 
simple laws or computational rules, such as physical models or stochastic models. A 
repetition of the simple steps, following by an aggregation and combination of the 
calculation results, makes the solution of larger problems manageable. FEM, for example, 
utilizes this principle. 

4.5.3 Neuro-fuzzy systems 

Hybrid CI models are able to integrate ANN models and fuzzy logic system models to 
make a better performance [29]. 
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5 Applications to wind turbines 
This section provides a short overview of applications to wind turbines (see also Table 1). 
The aim of this section is not to provide a complete literature review, but a brief overview 
of selected applications presented in the literature.  
 

Table 1 Applications to wind turbines. 

Physical models Stochastic models  Data-driven models/AI 
Paris law, S-N-curves and models 
related to fracture mechanics 
[30- 37] 

Weibull distribution 
[34, 38-39] 
Poisson process 
[38, 40- 42] 
Power law process 
[43- 46] 
Gamma/Markov process 
[47-49] 
Bayesian network 
[32] 

 ANN, Fuzzy sets 
[50] 

5.1 Physical models 
Paris law, the S-N-curves approach and related approaches have frequently been applied to 
fatigue life analysis of wind turbine rotor blades. A comprehensive overview can be found 
in [30] and [31]. Other references with applications on wind turbines are [32-37]. 

5.2 Stochastic models 
The Weibull distribution has been used in [34, 38-39] to model failures of wind turbines or 
different turbine components. 

In [38, 40-41], the Poisson process is applied to carry out analyses of failure data 
available from existing wind power plants. Rademakers et al. [42] used the homogenous 
Poisson process to model gearbox bearing failures. The power low process has been used 
in [43-46] to model failures of wind turbines and different wind turbine components. The 
data for parameter estimation in these models was taken from different European data bases 
(Danish and German data sources such as Windstats and LWK).  

The Markov and Gamma process was applied in [47] to model gearbox failure. In [48] 
the Markov process is used to model cracks and sudden failure of wind turbine blades. In 
[49], a general Markov process model is presented. 

The use of Bayesian networks in wind turbine reliability modelling is described in [32]. 

5.3 Data-driven models and artificial intelligence 
Applications of data-driven models and AI models to wind turbine lifetime prediction are 
difficult to find. As already stated in section 3.3, these models are mostly suitable for 
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making short-term predictions. Thus, they are often applied for fault detection where the 
model provides a warning a short time period before the failure actually occurs, without 
providing an estimate of the remaining time to failure. Case studies using real SCADA and 
condition monitoring data from wind turbines showed that the models presented are capable 
to provide warnings of potential failures either hours [51-53] or days [54] before they 
actually occur. Some of the models and methods that have been applied in these studies are 
ANNs, support vector machines, principle component analysis, auto-associative neural 
networks and self-organizing feature maps. 

A model for prediction of the remaining useful life can be found in [50]. The paper 
presents a model where an ANN is used for measurement value prediction and where the 
residuals between predicted and observed values are the basis for comparing data related 
to observed failures with a current fault evolution. The comparison of the residuals in 
combination with fuzzy sets results in a fuzzy remaining time to failure prediction. 

6 Summary 
This paper showed that there are many different models that may be used for lifetime 
estimation. All models can be classified in a large multi-dimensional space of model classes 
representing different aspects, e.g. as suggested in this paper: main class/type of model, the 
quantity that is modelled, the way uncertainty is handled and the model generality. 

In addition, this paper discussed different model properties and parameter estimation. 
Based on the information presented in the paper, it should be possible for a reader to select 
one or several models, or a class of models, that may be appropriate for lifetime estimation 
given a specific application, given the data and knowledge available and given the 
preferences regarding handling of uncertainty, prediction interval (long- or short term) and 
generality. 

Of course, it is not possible to list all available models and groups of models in such a 
paper. Thus, the descriptions are restricted to a general and overview level. Nevertheless, 
the paper may be a useful starting point for getting a general overview of the specific field 
of lifetime modelling. Finally, the paper may be helpful in selecting lifetime models, 
especially for readers not familiar with the specific field. 
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