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Abstract

Performing hydrodynamic model testing of ultra-deep water floating systems at a reasonable scale is chal-
lenging, due to the limited space available in existing laboratories and to the large spatial extent of the
slender marine structures that connect the floater to the seabed. In this paper, we consider a method based
on real-time hybrid model testing, namely the active truncation of the slender marine structures: while their
upper part is modelled physically in an ocean basin, their lower part is simulated by an adequate numerical
model. The control system connecting the two substructures inevitably introduces artefacts, such as noise,
biases and time delays, whose probabilistic description is assumed to be known. We investigate specifically
how these artefacts influence the fidelity of the active truncation setup, that is its capability to reproduce
correctly the dynamic behaviour of the system under study. We propose a systematic numerical method to
rank the artefacts according to their influence on the fidelity of the test. The method is demonstrated on
the active truncation of a taut polyester mooring line.

Keywords: ultra-deep water, active truncation, slender marine structures, real-time hybrid model testing,
fidelity, control system, artefacts, sensitivity

1. Introduction

Floating structures used in the oil&gas, offshore wind or aquaculture industries require significant in-
vestments and must operate according to high safety and environmental standards. Therefore, the design
of such structures is in general verified by means of hydrodynamic model testing prior to their construction.
When performing such laboratory testing, the floating structure under study is constructed at reduced scale,
and exposed to selected environmental conditions (wave, wind and current) that may be experienced during
its design life. It is verified that the motions of the platform, the loads in the mooring and riser systems,
or other quantities of interest (QoI) are acceptable under these conditions. The test campaign is in general
also a final risk mitigation campaign, during which events not yet fully described by engineering numerical
tools, such as green water and wave impact, could be detected and analyzed [1].

Floating structures are, however, installed at locations with increasingly large water depths. Oil ex-
ploitation takes nowadays place down to nearly 3000 m water depth [2], and deep-sea mining of minerals
is considered in water depths reaching 6000 m [3]. Modelling such systems with a reasonably large scale
factor in existing hydrodynamic laboratories is challenging, due to both the vertical extent of the mooring
system, but also due to its horizontal footprint, that ranges from two to four times the water depth [4]. This

Email addresses: thomas.sauder@ntnu.no (Thomas Sauder), marelli@ibk.baug.ethz.ch (Stefano Marelli),
klars@statoil.com (Kjell Larsen), asgeir.sorensen@ntnu.no (Asgeir J. Sørensen)

1



Figure 1: Model testing of an offshore structure with taut mooring and a flexible riser system in water depth d. Illustration of
active truncation with truncation ratio α = 0.8.

challenge has been identified two decades ago, and has been addressed in details in [5]. The state-of-the-art
approach, up to now, consists in performing passive truncation of the slender marine structures, as described
briefly in the following. In a first stage, a truncated version of the mooring/riser system is designed such
that it is statically equivalent to the full-depth system, and fits in the ocean basin [6]. It should be em-
phasized that the dynamic properties of the truncated system, such as the level of drag-induced damping
of the horizontal motions of the floater, are generally not representative of the full-depth system, except
possibly on a narrow range of sea-states. Model testing is then performed using the truncated system, and
the experimental results are used to calibrate a numerical hydrodynamic model of the floater connected
to the truncated system. The truncated system is finally replaced by the full-depth one in the numerical
analysis, and the QoI, such as extreme motions and mooring line tensions, are evaluated numerically. In
spite of recent improvements in the truncation procedures, which have been reviewed for example in [7, 8],
passive truncation still requires to calibrate a numerical model of the floater, which is time consuming and
induces additional uncertainties. Furthermore, since the truncated system used in the model tests is only
statically equivalent to the full-depth system, it can be argued that some highly nonlinear effects driven
by the floater’s dynamics (such as the occurrence of negative air gap or green water on deck) could remain
undetected.

In the present paper, we consider an alternative solution denoted active truncation. It is based on the
ReaTHM R© testing1 paradigm, already applied to solve issues related to model testing of floating wind
turbines [9], and with applications beyond the field of marine technology [10, 11]. When performing active
truncation, the floating structure and the upper part of the slender structure system are modelled physically
in the ocean basin, while its lower part, which does not fit in the basin, is simulated on a computer. This is
illustrated in Fig. 1. At the truncation point, the numerical and the physical substructures interact through
a control system, including sensors and actuators. Therefore, active truncation intrinsically represents the
full-scale system, and allows to obtain the QoI directly after the test, without the need for numerical
extrapolation. Note that a strict pre-requisite to perform active truncation is the validity of the numerical
model describing the truncated portion of the slender marine structure. In most cases, state-of-the-art
programs based on the nonlinear Finite Element (FE) method can describe the low-frequency and wave-
frequency dynamics of slender marine structures in a satisfactory manner, as for example illustrated in
[12, Figure 2]. However, some phenomena, such as complex soil-structure interaction or Vortex-Induced
Vibrations (VIV) can still not be simulated with a sufficiently high level of confidence, at least not in real-

1ReaTHM R© testing stands for ”Real-Time Hybrid Model testing“, and is a registered trademark of SINTEF Ocean AS.
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time. This means that, as of today, if these phenomena are very subject or play a significant role in the
empirical study, ReaTHM testing can not be applied.

The uncertainties that affect purely empirical and numerical approaches have been extensively studied
in the past [13, 14]. However, when performing active truncation (and ReaTHM testing in general), a new
source of uncertainty should be considered, namely the one originating from an imperfect coupling between
the substructures. Indeed, various types of artefacts, such as noise, biases and time delays, are inevitably
introduced by the presence of the control system [15]. Such artefacts, could jeopardize the fidelity of the
setup, in the sense that they could make the system’s dynamical properties deviate significantly from those
of the real system under study. In the worst case, this could happen without the operator of the test, or the
final user of the empirical data, being aware of it. In this paper, we will neglect the uncertainties related to
the physical and numerical substructures, to isolate and focus on those related to the control system.

This paper proposes a quantitative definition of fidelity, and presents a method to evaluate it for an
active truncation setup. We then show how to systematically identify the control system-induced artefacts
that jeopardize the most the fidelity (sensitivity study). This latter aspect is believed to be a significant
scientific contribution, in addition to be of great operational relevance when such testing methods are to be
applied in practice.

The paper is organized as follows. In Section 2, a general method for the analysis of fidelity is outlined,
and we show how it can be applied to the active truncation of slender marine structures. This method
requires the capability of simulating an active truncated setup, including artefacts, which is the object of
Section 3. In Section 4, the method is demonstrated on the truncation of a taut polyester mooring line,
which is a widely used component for the positioning of offshore structures in deep water.

2. Fidelity analysis and its application to active truncation

In this Section, we first introduce some concepts and terminology which will be used throughout the
paper. We then define a quantitative measure of fidelity, and outline a general method to evaluate it and
study its sensitivity to artefacts. We finally show how it can be applied to address the active truncation
problem.

2.1. Background and terminology

The real system (Fig. 2a) is the subject of the study, whose performance under given load conditions
should be documented. It is for example the marine system (floater, mooring and riser) represented in
Figure 1. For analysis purposes, it is assumed that the real system can be fully represented by an emulated
system (Fig. 2b). The emulated system consists of a numerical model capable of simulating the behaviour of
the real system in a wide range of operational conditions, including extreme environmental conditions. For
slender marine structures, the requirements and nature of this model strongly depends on the considered
problem. Indeed, when VIV are neglected, top tensioned risers or taut polyester mooring lines in deep water
can be satisfactorily simulated with linear time-domain (FE) methods, based on bar elements, and including
nonlinear drag loads [16]. Other types of structures, such as flexible risers or steel catenary risers, require
the modelling of geometric nonlinearities, bending stiffness, and possibly nonlinear material properties and
soil-structure interaction [17].

Performing active truncation consists in splitting the slender marine structure into two substructures
located on either side of a truncation point (Fig. 1). The truncation ratio α is defined as the ratio between
the height of the water column occupied by the numerical substructure, and the total water depth d. At the
truncation point, kinematic compatibility (equality of translational and rotational velocities) and dynamic
equilibrium between the two substructures must be ensured at each instant. In more generic terms, the
compatibility of flow and effort should be ensured at the interface between the substructure (Fig. 2c). To
realize this in practice, a control strategy is chosen. As depicted in Fig. 2d, it can for instance be decided
to measure the effort from the physical substructure (and prescribe it to the numerical substructure), and
prescribe the flow (evaluated from the numerical substructure) to the physical substructure. In this way, the
two substructures interact in real-time through a control system that includes sensors, actuators, as well as
related software components such as force controllers and observers [15] (Fig. 2e).
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Figure 2: The various steps, and associated terminology, in the design and analysis of real-time hybrid model testing in general,
and active truncation in particular.

In reality, however, the control system inevitably introduces artefacts, such as measurement noise, time-
delays due to communication, or imperfect actuation due to the actuators’ own dynamics (Fig. 2f). The
effects of some selected artefacts on a reference signal are illustrated in Fig. 3. Few authors have investigated
the influence of such artefacts on the dynamics of substructured slender structures. The effect of interface
time delays on substructured cables and beams have been studied analytically by [18] and [19], respectively.
However, in both cases, the authors focus on the stability of the substructured system only. While stability
is indeed a necessary condition for the execution of active truncation, it does not guarantee that the active
truncation setup represents the real system in a satisfactory way. In a recent study, [20] compared the
displacement field of a substructured beam to the one of the original beam (the emulated system) by
using an L2-based error measure. In this work, the beams were described by Bernoulli-Euler equations and
subjected to harmonic loading. The artefacts introduced at the interface were constant amplitude and phase
mismatches, which modelled imperfect actuators.

Studying fidelity of the active truncation problem with similar analytical approaches is challenging when
marine structures are involved. The first and main reason is that such structures must in most cases be
described by purely numerical methods, such as the nonlinear FE method, which are difficult to exploit in
analytical derivations. Analytical formulations could admittedly be obtained by making strong assumptions
on the behaviour of the structure, but this would lead to an emulated system that does not necessarily
reflect the real system anymore, and would make the resulting analysis questionable. The second reason
is related to the fact that a control system introduces not only one, but several types of artefacts at the
same time. Suitable frameworks exist for studying the individual effect of each of these artefacts: stochastic
differential equations, delayed differential equations, networked control systems theories allow for example
to study the effect of noise, delays, and jitter, respectively. However, combining these frameworks leads to
formulations that are intractable in practice. Also, making simplifying assumptions in this regard, by for
example considering only one selected type of artefact, is questionable, since it is unclear a priori which
artefact jeopardizes the fidelity, and which one can be neglected, if any. In the following subsection, we will
outline a method to address these two issues.

2.2. Fidelity analysis method

Proposed definition of fidelity. The fidelity ϕ is calculated by comparing selected QoI, evaluated on the one
hand from the emulated system (Fig. 2b), and on the other hand from the substructured system including

4



0 0.2 0.4 0.6 0.8 1

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Reference signal (nondimensional ramp)

Scaling (1.4)

Bias (-0.2)

Noise (variance 0.0025)

Constant delay (7 samples)

Signal loss (PoO 0.07, duration parameter 0.2)

Figure 3: Various types of artefacts affecting a non-dimensional ramp signal, with their describing parameter in parentheses.

artefacts (Fig 2f), when these two systems are subjected to the same external excitation. The comparison
function is chosen so that the value of ϕ tends to infinity when the QoI for the two systems are identical, and
takes low values when the artefacts make the substructured and the emulated systems differ significantly.
The selection of the external excitation, QoI, and comparison function is problem dependent, and we will
propose a definition applicable to our active truncation problem in the next subsection.

Modelling of artefacts. As indicated in the legend of Fig. 3, each artefact is characterized by one or several
parameters. For instance, white noise is described by its variance, and signal loss is described by both its
probability of occurrence and its duration parameter. By gathering these parameters, the heterogeneous set
of artefacts affecting the substructured system can be parametrized by a single M -components vector θ. In
practice, the amount of noise or time delays present in an active truncation setup cannot be perfectly known
until the setup has been realized. It is therefore considered that θ is the realization of a random vector Θ,
with joint probability density function fΘ(θ). In the scope of this paper, the components of Θ are assumed
to be statistically independent.

For a given realization θ of the artefacts’ parameter, the fidelity ϕ(θ) can then be evaluated from co-
simulations of the substructured system. The term co-simulation is used, since in the analysis, the physical
and the numerical substructures are represented by separate numerical models, which are coupled at the
truncation point in a dynamic simulation that includes the effect of the artefact. In Section 3, we will detail
how this co-simulation is performed for slender marine structures.

Polynomial chaos expansions. Due to the random nature of the artefacts’ parameter Θ, the fidelity ϕ(Θ)
will also be a random variable, whose variance is assumed to be finite. It can then be approximated by the
following (truncated) polynomial chaos expansion (PCE) [21]:

ϕ̂(Θ) :=
∑
α∈A

aαψα(Θ) (1)

where A a finite subset of NM , (aα)α∈A is a family of real numbers, (ψα)α∈NM a family of orthonormal
polynomials with respect to the input variable Θ, i.e.

E[ψα(Θ)ψβ(Θ)] =

∫
D
ψα(θ)ψβ(θ)fΘ(θ)dθ := δαβ (2)
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where δαβ is the Kronecker delta. Note that since the orthogonality condition in (2) depends on fΘ(θ), so
does the chosen family of polynomials (ψα) in (1). We will demonstrate by an example in Section 4 how ϕ̂
is determined in practice.

Uncertainty propagation. Thanks to the orthogonality property (2), estimates of E[ϕ(Θ)] and of Var[ϕ(Θ)]
can be obtained from the aα coefficients by:

E[ϕ̂(Θ)] = a0 (3)

Var[ϕ̂(Θ)] =
∑

α∈A\{0}

a2
α (4)

These estimates can then be related to a minimum admissible fidelity ϕadm, defined by the experimentalist,
or the final user of the test results. Note that the value of ϕadmwill depend on the exact definition of the
fidelity, and will differ depending on the purpose of the test. For instance, if the active truncation tests aim
at the final verification of a concept, one will aim at a high fidelity, and therefore a high value of ϕadm. If,
on the contrary, they are related to a preliminary feasibility study, lower values of ϕadm could be accepted.

Sensitivity analysis. If E[ϕ(Θ)] is deemed too low, or the uncertainty Var[ϕ(Θ)] too large, the natural
course of action is to determine which artefacts influence the most the variations of the fidelity. To do so,
we will use the variance decomposition method (ANOVA), based on the Sobol’ decomposition [22]. Under
the assumption of finite variance, which we assume to be fulfilled for our physical problem, the following
decomposition exists and is unique:

ϕ(θ) = ϕ0 +

M∑
i=1

ϕi(θi) +
∑

1≤i<j≤M

ϕi,j(θi, θj) + ...+ ϕ1,2,...,M (θ1, θ2, ..., θM ) (5)

where ϕ0 is constant, and the integral of each summand over any of its independent variables is zero. In
this setting, Var[ϕ(Θ)] =

∑M
i=1 Vi +

∑
1≤i<j≤M Vi,j + ... + V1,2,...,M , where each term corresponds to the

variance of the corresponding term in (5). Normalizing the above decomposition by Var[ϕ(Θ)], the Sobol’
indices are defined, which satisfy

M∑
i=1

Si +
∑

1≤i<j≤M

Si,j + ...+ S1,2,...,M = 1 (6)

The Si are called first-order Sobol’ indices, Si,j second order Sobol’ indices, etc... The total Sobol’
indices ST,i are defined as the sum of all Sobol’ indices involving the ithparameter θi. By ranking the ST,i,
the θi having the greatest impact on the variations of the fidelity can be identified. Also, by comparing
each ST,i to Si, it is possible to evaluate whether parameter θi influences ϕ alone (in the case Si ≈ ST,i), or
jointly with other parameters of Θ.

The evaluation of Sobol’ indices used to be computationally expensive, in the sense that numerous
evaluations of ϕ(θ), and therefore numerous co-simulations of the substructured system, were required.
However, it was recently shown in [23] how Sobol’ indices could be computed analytically from the expansion
(1). This result, associated with the significant advances on adaptive sparse PCEs [24], makes PCE a tool
of choice for for uncertainty propagation and sensitivity analyses.

2.3. Fidelity indicators for the active truncation problem

Let us now show how this framework applies to our problem. We consider the active truncation of a
mooring line connecting the floating structure to the sea bottom, as shown in Figure 1. Without loss of
generality, we assume that the problem is two dimensional, and we define a direct x-z coordinate system,
whose z axis is vertical and pointing upwards.

The fidelity will be evaluated by studying the response of the slender structure to a characteristic external
load vector τ(t), with a duration T , in seconds. This load is meant to be representative, in terms of
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amplitude, frequency content and direction, of a severe load that can be encountered during the testing
of a truncated mooring line. The dynamic part of this load represents wave loads transferred from the
floater to the slender structure, and is therefore applied to the top of the slender marine structure. It has
two components. The first low-frequency component acts mainly axially, has an amplitude of 1MN, and
a frequency content sweeping [0, 0.02] Hz. It mimics the effect of second-order difference-frequency wave
loads. The wave-frequency component has an amplitude of 250kN, and a frequency content sweeping [0,0.2]
Hz, and a direction with constant rate of change. This dynamic load comes in addition to the static top
tension applied to the slender structure, and to the drag load associated to a shear current, whose velocity
varies linearly throughout the water column for 0m/s at the seabed to 0.5m/s at the free surface. Time
series of the top load can be seen in Fig. 5.

We will now focus on the definition of the fidelity indicator ϕ for the active truncation problem. In
hydrodynamic model test campaigns, the focus is generally on the behaviour of the floater, and on extreme
tensions in the slender marine structures, but not on their local deflection or curvature. The objective is
therefore to make the interaction between the truncated slender marine structure, the (physical) floater and
the (numerical) sea bottom reflect the corresponding interactions in a fully physical setup. In other words,
the exact behaviour of the slender structure throughout the water column is assumed of minor importance,
as long as its interactions with the floater and the sea bottom are modelled properly.

Based on this reasoning, two fidelity indicators are suggested. Let Vx,top and Vz,top be the components
of the top velocity of the slender structure, and Fx,bottom and Fz,bottom the components of the force vector
at its lower end. These values are calculated by co-simulation of the substructured system, that includes
the artefacts parametrized by θ. Let V̄top and F̄bottom be their ideal counterparts, obtained by simulation of
the emulated system. Then, the first indicator

ϕ1(θ) = −1

2
log10

(∫ T
0

(
Vx,top(t|θ)− V̄x,top(t)

)2
dt∫ T

0
V̄x,top(t)2dt

+

∫ T
0

(
Vz,top(t|θ)− V̄z,top(t)

)2
dt∫ T

0
V̄z,top(t)2dt

)
(7)

quantifies how well the top end of the structure responds to the prescribed external load τ , and thus how
well the substructured system manages to replicate the mechanical impedance of the slender structure. ϕ1

is therefore important when motions of the floater are investigated. The second indicator

ϕ2(θ) = −1

2
log10

(∫ T
0

(
Fx,bottom(t|θ)− F̄x,bottom(t)

)2
dt∫ T

0
F̄x,bottom(t)2dt

+

∫ T
0

(
Fz,bottom(t|θ)− F̄z,bottom(t)

)2
dt∫ T

0
F̄z,bottom(t)2dt

)
(8)

quantifies how well the external load is transferred to the sea bottom, and is then more relevant when the
focus is on loads on e.g. anchors or blow-out preventers. If both aspects are important, ϕ1 and ϕ2 could
easily be combined into a single indicator.

To summarize, in this Section, we have (1) suggested two possible expressions of the fidelity ϕ for the
active truncation problem. (2) We discussed how ϕ could be jeopardized by heterogeneous and random
artefacts, described by a random vector Θ. (3) We showed how E[ϕ(Θ)] and Var[ϕ(Θ)] could be evaluated
(uncertainty propagation) from the PCE of ϕ, and (4) we introduced the Sobol’ indices characterizing the
sensitivity of ϕ to the various components of Θ. This analysis method will be demonstrated by a practical
case study in Section 4. This case study requires the ability to co-simulate an active truncation setup
including artefacts. This will be the object of the next section.

3. Co-simulation of slender marine structures including artefacts

The first part of this section describes a method to co-simulate the system presented in Fig. 2f, when
the substructures are slender marine structure. As an example, the taut polyester mooring line, whose
properties are given in Table 1, will be substructured, and a co-simulation will be performed, corresponding
to a deterministic value of θ, to put in evidence the effect of selected artefacts on the dynamics of the system.
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Table 1: Properties of the polyester mooring line used in the case studies.

Parameter Unit Value
Length m 1934
Diameter mm 264
Mass per unit length kg/m 44.7
Young modulus GPa 8.513
Submerged weight per unit length N/m 93.2
Rayleigh damping coefficient α2 s 4.77.10−2

Top tension module kN 2500
Top tension angle o 50
Normal added mass coefficient - 1.0
Tangential added mass coefficient - 0.0
Normal drag coefficient - 1.6
Tangential drag coefficient - 0.0

3.1. The fixedFreeCableSegment model

The FE method is used to simulate the slender marine structure. The analysis is two-dimensional, and
the structure is represented by a bar element model (2 degrees of freedom per node) as shown in Fig. 4a.
The boundary condition of the structure is fixed-free which means that the velocity of lower end of the
structure, and the force on the upper end, are prescribed. Inertia, added-mass, drag and effective weight
loads are included in a similar way as in [16]. The stiffness matrix has both an elastic and a geometric
component. Since the geometric component strongly depends on the configuration of the structure, the
static equilibrium is found by Newton-Raphson iterations.

The dynamic analysis is linear, in the sense that it uses the mass matrix M and the stiffness matrix K
determined by the static analysis, throughout the time domain simulation. Nonlinearities due to drag loads
are modelled exactly. These modelling choices are adequate to simulate structures with minimal changes of
configuration, such as top tensioned risers or taut mooring lines in deep water, for which lateral deflections
are about two orders of magnitude smaller than the structure’s length. The structural damping matrix is of
the form C = α1M+α2K (Rayleigh damping) where α1 is chosen to be null. In that case, the damping ratio
associated to a vibration mode with circular frequency ωi is λi = ωiα2/2. The model is implemented as a
MATLAB R© class named fixedFreeCableSegment. The verification of this class is presented in AppendixA.
It is also shown how the eigenmodes of the taut polyester mooring differs from those of a string, due to the
combined effects of elasticity, varying tension, and oblique configuration, which would be inconvenient to
represent in a purely analytical model.

In the following, we will show how an active truncation setup can be modelled by coupling two such
fixedFreeCableSegment objects.

3.2. Co-simulation without artefacts

The active truncation setup is represented in Fig. 4b. The water depth is d =1200 m, and the truncation
ratio is α =0.8. The physical substructure (in red) and the numerical substructure (in blue), denoted p and
n, respectively, are each modelled by a fixedFreeCableStructure object. The top velocity Vtop in (7) will
hence be evaluated from p, and the bottom force Fbottom in (8) from n. Focusing now on the truncation
point, the selected boundary conditions in fixedFreeCableSegment are such that the bottom velocity of p
and the top force acting on n can be prescribed. Their dual values, that is the bottom force on p, and the top
velocity of n, can be evaluated by time integration. The dynamic equilibrium and kinematic compatibility
at the truncation point is satisfied by the iterative procedure described in Algorithm 1.

There are three important parameters in this algorithm. The synchronization time step δt is the duration
between two time instants at which equilibrium and compatibility at the truncation point are enforced. In
practice, δt will be chosen equal to the minimum loop time of the control system orchestrating the active
truncation. During the iterations (lines 6-14), εf and εv are force and velocity tolerances, below which
dynamic equilibrium and kinematic compatibility at the truncation point are assumed to be achieved,
respectively. These parameters influence both the results and the computational time of a co-simulation,
in the same way as the number of elements nel, so their value must be chosen carefully. To this end,
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Figure 4: Subfigure (a): bar element model as implemented in the fixedFreeCableSegment class. Element numbers are circled.
Nodal forces are represented by arrows: effective weight force (grey), current forces (blue), prescribed external top force (red)
and prescribed bottom displacement (green). Subfigure (b): overview of active truncation problem on the top left, with the
physical substructure in red and the numerical substructure in blue. Main plot: snapshots of the upper part of the polyester
line at t = 30s and t = 70s, when subjected to the characteristic excitation τ . The dashed lines correspond to the envelope of
the line’s displacement during the analysis.

Algorithm 1 Co-simulation of two coupled fixedFreeCableSegment objects, denoted n and p.

1: for t ∈ {0, δt, ..., T − δt} do
2: v ←top velocity of n at time instant t
3: v next ←∞
4: f ←bottom force of p at time instant t
5: f next ←∞
6: while true do
7: Perform time-integration of p from t to t+ δt with varying external excitation and bottom velocity varying linearly to v
8: f next ←bottom force of p at t+ δt
9: Perform time-integration of n from t to t+ δt with varying external excitation and top force varying linearly to f next

10: v next ←top velocity of n at t+ δt
11: if ||v next− v||∞ > εv OR ||f next− f||∞ > εF then: v ← v next ; f ← f next

12: else: Jump to next synchronization time step
13: end if
14: end while
15: end for
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a convergence study is performed and reported in AppendixB. The selected values are nel=80 elements,
δt=10 ms, εv=10−6 m/s and εf=0.1 N.

We have outlined how a co-simulation could be performed that satisfies equilibrium and compatibility
criteria at the truncation point. Performing the fidelity analysis described in Section 2 requires now artefacts
to be introduced in this coupling, which will be the object of the next subsection.

3.3. Co-simulation including artefacts

An artefact class was developed, which allows simulating calibration errors (multiplicative errors), bias
(additive errors), white noise, delay, zero-order hold and signal loss. The class has a signalIn method to
get an input, a signalOut method to retrieve an output, and in the particular case when no artefact should
affect the signal, it works simply as a First-In-First-Out (FIFO) queue. When artefacts are present, the
input is modified before being returned. As an example, in Fig. 3, successive calls to signalOut were made
on artefact objects with different properties, which received identical samples of the reference signal via
the signalIn method.

As shown in Fig. 2f, two artefacts objects are needed, one acting on the effort (here, force) obtained
from the experimental substructure, and the other one acting on the flow (here, velocity) obtained from the
numerical substructure. Because they act on signals which are obtained from sensors, or used as reference
to actuators, they will be denoted aS and aA, respectively. In this setting, performing a co-simulation that
includes the effect of these artefacts requires only minor modifications to Alg. 1. (1) At line 8, f next

should be input to aS.signalIn, and the output of aS.signalOut should be used instead of f next in line
9. (2) Similarly, v next should be passed through aA after line 10 before being used. (3) At line 11, the
convergence criterion should be evaluated on the values affected by the artefacts.

3.4. Example: effect of signal loss in active truncation

We will now illustrate the capabilities of this algorithm, and of the artefact and fixedFreeCableSegment

classes with an example. We will consider a co-simulation in which signal loss affects both the measured
force and the applied velocity. Signal loss may for example be due to sensor and communication issues, or
to unfinished calculations in the numerical substructure [15]. It is parametrized by a probability of occur-
rence ζ1 ∈ [0, 1) and a characteristic duration parameter ζ2 > 0. The duration D of the signal loss (during
which the signal is “frozen” to the last received value) is modelled as a random variable distributed as
fD(d) = e−ζ2d/ζ2. With this model, longer signal loss durations are expected for smaller values of ζ2. In
the present case, ζ1 is set to 1%, and ζ2 to 0.1. So in this case, the artefacts can be parametrized by M = 4
components, and θ = (1%, 0.1, 1%, 0.1)>.

The mooring line is subjected to the characteristic excitation τ described in Section 2. The results of
the co-simulation are presented in Fig. 5. The dynamic excitation at the top node (first row) is identical
for the emulated structure (black) and the physical substructure (red). This disturbance travels along the
physical substructure (p), and reaches the truncation point where a force is measured (second row, red line).
This force is possibly subjected to signal loss (aS) before being transferred, as a top force, to the numerical
substructure (second row, blue line). The numerical substructure (n) responds to this top force (third row,
blue line), and this response, which may also be affected by some signal loss (aA), is used to command the
bottom velocity of the physical substructure (third row, red line). The effect of these signal loss on the QoI,
which are the top velocity and the bottom force, are shown in the fourth and fifth rows, respectively. The
fidelity is evaluated by comparing these signals to the ones obtained with the emulated system (black lines).
By applying (7) and (8), it is found that ϕ1 = 1.30 and ϕ2 = 1.99.

The right column in Fig. 5 shows a selected time window during which signal losses happen on the
measured force and on the applied velocity. On the second row, we can for instance observe that the signal
of the force sensor freezes for about half a second shortly after t = 174 s, since the red and blue lines differ
from each other. On the third row, it can be seen that the velocity command signal freezes twice, first at
t = 176 s for half a second, then for about 300ms.

An important remark is that the substructure from which the signal comes has no direct information of
the occurrence of a signal loss, but is anyway affected indirectly by the feedback it receives from the other
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Figure 5: Active truncation setup subjected to the characteristic load τ . The red curves are obtained from the physical
substructure, and the blue curves from the numerical substructure. The black curves represent the emulated system. Signal
loss occurs at the force sensors level (as visible on the second row) and at the velocity actuation level (third row). The right
column is a zoom on the time series at a location of interest.

Figure 6: Stylized version of the active truncation problem, used to illustrate the effect of signal loss on the response of the
substructures. The red mass-spring-damper (MSD) system represents the physical substructure, and the blue MSD system
represents the numerical substructure. The flag-shaped box represents the truncation point, where signal loss occurs. F0

represents the top excitation. f and v represent the force and velocity at the truncation point, respectively: fn and vn are
seen from the numerical substructure, and fp and vp from the physical substructure.
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substructure. Let us illustrate this by constructing a stylized version of our setup, represented in Fig. 6.
We assume that signal loss occurs on the force measurement only, and that the velocity actuation is perfect,
that is vp = vn at all times, while fn 6= fp when signal loss occurs. Starting from static equilibrium, when F0

increases, all other variables fp, fn, vp and vn will increase. If signal loss occurs in the force measurement,
fn keeps a constant value (instead of increasing), and vn will eventually decrease due to the stiffness and
damping of the numerical substructure. Since vn directly steers the actuator command, vp will decrease
immediately, causing the stretching of the physical substructure, and an in increase in fp. When the signal
on the force senors is recovered, fn will jump to to the (larger) fp value, causing a sudden increase of vn,
and thus vp. This simplified example describes well the mechanism causing the significant decrease and
increase of the velocity of the truncation point (on the physical substructure side) observed in Fig. 5 for
t ∈ [174, 176] s. This perturbation propagates according to the nonlinear dynamics of the slender structure,
to the top and bottom ends of the line, and is clearly observed both on the top velocity and bottom force
time series. It will thus affect both ϕ1 and ϕ2.

We have, in this Section, shown how the active truncation problem could be modelled, and with this last
example, illustrated qualitatively the - possibly complex - interaction mechanisms resulting from e.g. signal
losses at the truncation point. We will now extend the analysis to a larger set of random and heterogeneous
artefacts, representing a more realistic case.

4. Fidelity analysis for a truncated taut mooring line

We will in this section show how the method presented in Section 2 can be applied to study the active
truncation problem when multiple, heterogeneous and random artefacts are present. We consider the same
polyester mooring line as in the previous example (see Table 1), installed in a water depth of d = 1200 m.
Active truncation is performed with α =0.8. We assume that the model tests are performed at a scale λ =
1/60. This means that the depth of the ocean basin laboratory, where sensors and actuators are installed,
is (1 − α)dλ = 4 m. The two force components fx and fz at the truncation point are measured by two
independent force sensors, and an actuator prescribes the velocity (vx, vz) of the truncation point. The
mooring line is subjected to the characteristic load introduced in Section 2, and the fidelity indicators based
on top velocity (ϕ1) and bottom force (ϕ2), defined in (7) and (8) are considered.

As shown in Figure 7 and Table 2, ten individual artefacts, described by M = 12 parameters, are
assumed to affect the setup. The choice of including these artefacts, and neglecting others, is based on
insight gained from the experimental work reported in [15], but note that the core method would apply also
if other artefacts were selected. Each component of the force measurement is assumed to be contaminated
by calibration error, bias, and noise. In the acquisition process, the force signals can be delayed, or lost,
before entering the numerical substructure. Signal loss at the output of the numerical substructure models
the fact that the calculations in the numerical substructure may not complete on time. An additional delay
on the actuation side models computation and communication processes. The probabilistic description of
these artefacts is summarized in the last column of Table 2. Since only estimates of upper bounds, lower
bounds, mean values, or standard deviations of the θi parameters were available, the maximum entropy
principle [25] was used to define fΘ(θ), which could be improved by dedicated surveys.

4.1. LHS sampling and uncertainty propagation

As outlined in Section 2, the first objective is to estimate E[ϕ(Θ)], that is the expected fidelity for the
active truncation setup, when it is affected by the set of artefacts described in Table 2. Var[ϕ(Θ)] is also
estimated, indicating how much the fidelity may vary due to the uncertainties on Θ. As explained in Section
2, this is done by establishing a PCE surrogate model of ϕ (in the following, ϕ may designate either ϕ1

or ϕ2), denoted ϕ̂, whose structure allows to evaluate efficiently E[ϕ(Θ)] and Var[ϕ(Θ)]. Such a surrogate
model is a function of the twelve-dimensional variable θ, and must mimic the behaviour of ϕ over its whole
domain of definition. To establish ϕ̂, ϕ(θ) must therefore be evaluated for a space-filling set of samples of
Θ denoted E . This set is generated with the Latin Hypercube Sampling method (LHS), and ϕ is evaluated
by co-simulation, as explained in Section 3, for each sample in E . In Figure 8, the markers show 208 points
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Figure 7: Block diagram of the active truncation setup, modelled artefacts, and their describing parameters. τn represents the
current loads acting on the numerical substructure, and τp represents the current loads and varying wave-induced loads acting
on the physical substructure.

Table 2: Description of the artefacts affecting the setup, including their probabilistic description. U(a, b) refers to the uniform
distribution with support [a, b]. N (µ, σ) refers to the normal distribution with mean µ and variance σ2. Here λ=1/60 and
δt=10 ms.

Type of artefact Affected signal Describing parameter(s) Unit Probabilistic description

Calibration error fx Θ1 (scaling factor) - N (1, 0.015)
Calibration error fz Θ2 (scaling factor) - N (1, 0.015)
Bias fx Θ3 (bias value) N N (0, 0.05λ−3)
Bias fz Θ4 (bias value) N N (0, 0.05λ−3)
Noise fx Θ5 (noise variance) N2 U((0.025λ−3)2, (0.05λ−3)2)
Noise fz Θ6 (noise variance) N2 U((0.025λ−3)2, (0.05λ−3)2)
Delay fx,fz Θ7 (duration) s U(0, 5δt)
Signal loss fx,fz Θ8 (probability of occurrence) - U(1%, 10%)

Θ9 (duration parameter) s−1 U(0.1, 0.5)
Delay vx,vz Θ10 (duration) s U(0, 5δt)
Signal loss vx,vz Θ11 (probability of occurrence) - U(1%, 10%)

Θ12 (duration parameter) s−1 U(0.1, 0.5)
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Figure 8: Scatter diagrams showing the value of ϕ1 (fidelity indicator based on the top velocity of the line), as a function of the
twelve parameters describing the artefacts. The dots correspond to 208 samples of Θ obtained by Latin Hypercube Sampling
(set denoted E in the text).

generated by LHS in the twelve-dimensional space, with the associated value of ϕ1 plotted against each
component of θ. Note that these co-simulations are independent from each other and can therefore be
performed in parallel. Also, nested LHS can be used [26], to sequentially add samples to E , while ensuring
that the updated set E contain samples still distributed according to fΘ(θ). The distribution of ϕ can be
estimated from E (see Figure 9), and in Figure 10, the realization of Θ leading to the median value of ϕ1 is
shown for illustration.

Based on this initial set E and on the associated values of ϕ, the PCE model ϕ̂ in (1) is established
by using a degree-adaptive sparse PCE, based on least-angle regression (LARS, [24]), implemented in the
UQLab software [27, 28]. These two references may be consulted by the interested reader for more details
on the theoretical and practical aspects of PCE identification. The values of E[ϕ(Θ)] and Var[ϕ(Θ)] can
then be evaluated from (3) and (4):

E[ϕ̂1(Θ)] = 1.32 and Var[ϕ̂1(Θ)] = 0.132

E[ϕ̂2(Θ)] = 1.77 and Var[ϕ̂2(Θ)] = 0.172

This means that the active truncation scenario selected in Figure 10, where ϕ1=1.33 and ϕ2=1.62, corre-
sponds to an average fidelity for the top velocity of the slender structure (when compared to E[ϕ1]), and to
a quite poor fidelity for the bottom force (when compared to E[ϕ2]).

As this will be used in the following, let us mention that we can quantify how well ϕ̂ reproduces the
behaviour of ϕ by using the Leave-One-Out cross validation (LOO) error. It is established as follows. For

14



0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Cumulative distribution functions of ϕ1 and ϕ2 obtained from sets E of different sizes.

0 20 40 60 80 100 120 140 160 180

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180

-2

0

2

0 20 40 60 80 100 120 140 160 180

-4

-2

0

2

4

0 20 40 60 80 100 120 140 160 180

1

1.5

2

2.5

157 157.5 158 158.5

0.8

1

1.2

1.4

157 157.5 158 158.5

0.9

1

1.1

1.2

1.3

157 157.5 158 158.5

-2

0

2

157 157.5 158 158.5

-4

-2

0

2

4

157 157.5 158 158.5

0.8

1

1.2

Figure 10: Co-simulation of active truncation with a set of the artefacts leading to the median value of ϕ1. For this realization,
the measurement of fx (resp. fz) is affected by a -0.3% (resp. -3%) calibration error, a -0.012 N (resp. 0.28 N) bias, and noise
with a standard deviation of 0.040 N (resp. 0.037N), in model scale. The force measurement is delayed by 2.6ms, and has a
probability of signal loss of 7.5%, with a duration parameter of 0.47, which corresponds to frequent and short periods of signal
loss. On the actuation side, the delay is 1.3ms, and the probability of occurrence and duration parameter of signal loss are 6.8
% and 0.17, respectively. The resulting fidelity indicators are ϕ1=1.33 and ϕ2=1.62.
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Figure 11: Upper plot: normalized Leave-One-Out cross-validation error for the PCE metamodel of ϕi. Middle plot: expected
value and variance of ϕi estimated from initial empirical designs of five different sizes. Lower plot: first-order Sobol’ indices of
ϕi estimated from these initial experimental designs. The corresponding total Sobol’ index of each θi is plotted in grey in the
background.

each sample θ∗ ∈ E , a PCE model is established based on the set E \ θ∗, and the values of ϕ(θ∗) and
ϕ̂(θ∗) are compared. Even if this means that, in principle, as many PCE models should be established as
elements in E , the LOO error can under some circumstances be estimated directly from the single PCE
model established from the whole set E [28]. The LOO error (normalized by the variance of ϕ̂) is usually
deemed satisfactory for uncertainty propagation and sensitivity analyses, when it does not exceed 10−1 [29].
This will be commented on later on.

4.2. Sensitivity analysis

In some cases, visual inspection of scatter diagrams such as Figure 8, allows one to determine directly
which artefact component(s) affects the most the fidelity. This becomes however more difficult for increasing
values of M (the dimension of θ), and particular for the present case with M = 12. As introduced in
Section 2, Sobol’ sensitivity indices can instead be used, which are directly deduced from ϕ̂. Before looking
at the Sobol’ indices, let us recall that the absolute values of the total Sobol’ indices ST,i are of secondary
importance: the ST,i should be compared to each other to identify the most influencing artefacts’ parameters.
Furthermore, ST,i can be compared to the first order Sobol’ index Si, to understand whether the artefact
parameter θi influences the variance of ϕ alone, or in an interaction with another parameter θj , or several
others.

With these interpretation keys in mind, let us consider the bottom plots in Figure 11, showing the ST,i
and Si, estimated from various sizes (or cardinality) card(E) of E . It is seen that for the present problem,
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reliable insight into the main mechanisms of sensitivity can be obtained for card(E)=208. If card(E)=416,
finer conclusions can be made regarding the sensitivity to less important parameters, which do not change
when card(E)=832. For both card(E)=208 and 416, the estimated statistical moments are within 1% of
the value obtained with for card(E)=832 samples. Note that the recommended values of the LOO error in
[29] are rather conservative for the present situation, since good convergence of the statistical moments and
meaningful sensitivity information are obtained, in spite of an LOO error exceeding 0.1.

Let us first outline the main conclusions that can be drawn from the total Sobol’ indices ST,i, represented
by grey bars in Figure 11b (consider for example card(E)=416). The fidelity indicator based on the top
velocity response, ϕ1, is very sensitive to θ9 (the duration of the signal loss on the force signal) and to the
calibration errors of the fx and fz measurement (θ1 and θ2). ϕ1 is much less sensitive to the other θi, and
clearly insensitive to noise (described by θ5 and θ6). Focusing now on the bottom force, we see that ϕ2 is
mostly sensitive to θ1, then θ2 (calibration errors), and then to a much less extent to the biases θ3 and θ4,
which have both comparable total Sobol’ indices. ϕ2 is slightly sensitive to θ9, the duration parameter for
signal loss on the force measurement, and insensitive to the other θi parameters. We will now relate these
results, obtained by a systematic approach, to their physical causes.

The effect of white noise. It is clear from Figure 10 that the noise affecting force measurements (parametrized
by θ5 and θ6) induces a significant velocity response at the truncation point. This response is however filtered
mechanically by drag and, to a less extent, structural damping, before reaching the top and bottom of the
mooring line. Therefore noise does not significantly affect the fidelity indicators ϕ1 and ϕ2. The fact that
the ST,i associated to this artefact are negligible, means that the corresponding parameters θ5 and θ6 (noise
variances) could have been set to deterministic values (here, zero), without affecting the variance of ϕ.

Signal loss. A natural question when looking at Fig. 11a, is why the top velocity (or ϕ1) is more sensitive to
signal loss, when it acts on the force sensor (duration parameter θ9) rather than when it acts on the velocity
actuation (parameter θ12). Indeed, the force sensors feeds the numerical substructure, while the actuator
controls the bottom part of the physical substructure, whose response directly enters in the definition (7)
of ϕ1. The reason is the following. When signal loss on the velocity command happens, the velocity of the
truncation point keeps a constant value. On the other hand, signal loss on the force sensor may cause large
variations of the truncation point’s velocity, due to the interaction with the numerical substructure that was
commented in detail in Section 3 and seen in Figure 5. Both the amplitude of these perturbations and their
duration increase when the signal loss characteristic duration increases, which enhances their propagation
to the top of the mooring line.

Effect of the anisotropic properties of the mooring. The fact that ϕ2 is more sensitive to θ1 (calibration
error for fx measurement) than to its counterpart θ2 (acting on fz) can be explained as follows. Transverse
motions of the mooring line are subjected to drag damping forces, while axial motions are only damped by
structural damping, which means that, with the present choice of α2 and the present frequency range of
motions, transverse motions will be subjected to a significantly higher level of damping than axial motions.
Consequently, an axial dynamic force error will be less damped than its transverse counterpart. Since the
mooring line forms an angle of γ = 39.2 o with respect to the x-axis at the truncation point, the axial forces
have an x-component larger than their z− component, and a calibration error on fx (parametrized by θ1)
will play a greater role for ϕ2 than a calibration error on fz (parametrized by θ2).

Also, as explained earlier, Total Sobol’ indices and first-order indices differ when there is an interaction
between two (or more) θi. The nature of this interaction can be determined by considering higher-order
Sobol’ indices (not shown here). Note that in principle, a finer PCE model (with lower LOO error) would
be needed to obtain accurate estimates of the higher-order Sobol’ indices, so only trends will be commented
here. We found for example that the interaction between θ1 and θ2 explains ≈ 20% of the variance of ϕ1,
and ≈ 15% of the variance of ϕ2. This is due to the fact that if θ1 and θ2 differ significantly from each
other, the direction of the force at the truncation point will be affected. Since the stiffness and damping
properties of the line are not isotropic, as explained earlier, this change in direction will have a significant
effect on the fidelity.
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Effect of the bias. From Figure 11, we see that biases have a significant influence on ϕ1 and ϕ2 (total Sobol
indices), and that this influence is due to interactions (S5 � ST,5 and S6 � ST,6 in both cases). Here, the
mechanisms in play are slightly different for ϕ1 and ϕ2.

By again studying higher-order Sobol indices, it can be shown that the interaction between θ1 and θ3

(resp. θ2 and θ4) explains ≈ 10% of the variance of ϕ2. This interaction is induced by the pretension at the
truncation point, denoted T ∗0 . Indeed, for example, when a scaling error θ1 affects fx only, it is equivalent
to a bias of (θ1−1)T ∗0 cos γ being added to θ3, and transferred to the anchor point. Coupling terms between
θ1 and θ3 will therefore be generated in the Sobol’ decomposition (5) of ϕ2, due to the logarithm in (8).

Biases should, in principle have little influence on ϕ1, since constant force will simply lead to a constant
offset, and not change the (linear) dynamical properties of our substructures. However, about ≈ 10% of
the variance of ϕ1 is due to one-to-one interactions between θ1, θ2, θ3, and θ4. This is due to the following
effect. In the horizontal direction, for t < 0, the component of the pretension is T ∗0 cos γ at the truncation
point. For t ≥ 0, it suddenly changes to θ3 + (θ1− 1)T ∗0 cos γ, when artefacts are applied to the force signal.
This impulsive load causes a transient response, visible in Figure 10, which has a minor, but noticeable,
influence on ϕ1.

5. Conclusion

In the present paper, we considered active truncation as an alternative technique to perform model
testing of ultra-deep water floating systems in existing ocean laboratories. We assessed the performance of
an active truncation setup through its associated fidelity. We showed how the fidelity could be jeopardized
by multiple, heterogeneous and random artefacts, originating from the control system (including sensors,
actuators and controllers) that connects the numerical and physical parts of the setup. We outlined a method
to evaluate the expected fidelity of the setup, and its variability due to the uncertainties on the artefacts.
Finally, a systematic analysis method based on Sobol’ indices allowed us to determine the sensitivity of the
fidelity to each of the involved artefacts. This latter result provides valuable and objective indications to
improve fidelity in an operational context. Using the polynomial chaos expansions of the fidelity made this
sensitivity analysis possible at a reasonable computational cost.

A case study addressing a taut polyester mooring line allowed to gain insight in the complex mechanisms
taking place in active truncation, combining the dynamics of the slender structures and the imperfect
coupling at the truncation point. A total of ten artefacts were included in the analysis, and the importance
of calibration errors and signal loss at the force sensors level was put in evidence. It must be emphasized
that, since the fidelity is a nonlinear function of the artefacts parameters, these conclusions are valid for the
present system and set of artefacts only.

The present method is currently extended to a complete framework, which also allows to (1) determine
the feasibility of an active truncation test, by evaluating its probability of failure due to too low fidelity, and
(2) determine the corresponding admissible bounds on the artefact parameters.
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AppendixA. Verification of fixedFreeCableSegment

As verification of the FE implementation, the eigenvalues and associated modeshapes computed from
fixedFreeCableStructure are compared to a known analytical solution. We consider a polyester line,
commonly used in mooring systems, whose nominal properties are given in Table 1. Its length is L = 1934
m and it is subjected to a vertical top tension of T0 = 2.5 MN. Under the assumptions of infinite axial
stiffness and zero submerged weight, its eigenfrequencies ωi and associated modeshapes φi are given by:

∀i ∈ N∗, ωi =
(2i− 1)π

2L

√
T0

m
and φi(z) = (−1)i+1 sin

(
(2i− 1)πz

2L

)
(A.1)

where m is the mass and added mass per unit of length, and φi is normalized so that φi(L) = 1. The six
first modeshapes obtained from this analytical solution are represented with solid lines in Fig. A.12, and
the values of the 15 first eigenperiods are tabulated in the second column of Table A.3. These eigenmodes
are compared to the results obtained for a fixedFreeCableSegment object with nel=500 elements, whose
axial stiffness has been increased by one order of magnitude (to mimic the infinite stiffness assumption
used in the analytical model), and whose submerged weight has been set to zero. The eigenmodes of a
fixedFreeCableSegment object are obtained numerically from the eigenvalue analysis of M−1K, where M
and K are obtained from the nonlinear static analysis. The corresponding eigenperiods are tabulated in the
third column of Table A.3, and the difference with the analytical solution is found to be insignificant. When
nel is decreased to 80 elements (fourth column of Table A.3), the error is less than 1% for the 13 first modes,
and the first modeshapes, compared in Fig. A.12a, also show excellent agreement. For higher modes, with
eigenperiods less than 1.80 s, the model with nel=80 becomes too coarse, with less than 12 elements per
wavelength 4L/(2i − 1), and the estimated eigenperiods become erroneous. So provided that nel is chosen
adequately, the dynamic system modelled by fixedFreeCableSegment can be considered as verified against
the corresponding analytical solution.

In reality, several physical effects will make the eigenmodes of a a polyester line deviate from the
ideal solution (A.1). (1) First, the elasticity of the polyester somewhat influences the dynamics of long
lines. This is shown in the fifth column of Table A.3, in which eigenperiods are evaluated from a verti-
cal fixedFreeCableSegment, now featuring its nominal stiffness. While the elasticity of the line does not
influence significantly the ten first transverse modes, it must be accounted for when higher modes (with
associated eigenperiods lower than 2.41s, in the present case) need to be modelled. (2) The submerged
weight of the slender structure causes tension variations throughout the water column, which also affects
the eigenmodes. By considering the the sixth column of Table A.3, it is seen that this effect has an impact
on all modes, including the the lower modes, making the corresponding eigenperiods deviate by 2 to 3%
from the previous solution. (3) Then, since such a polyester line is in general installed in an oblique way, it
will exhibit static lateral deflections (of the order of 1% of the structure’s length in the present case), due
to its submerged weight. As shown in the sixth column of Table A.3, this change of static configuration has
some effect on all eigenmodes. (4) Finally, the oblique line is subjected to the shear current introduced in
the previous section. It is found to have an insignificant additional effect on the eigenmodes (last column in
Table A.3). Note however that current has an important effect on the drag-induced damping of transverse
motions.
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Figure A.12: Modeshapes corresponding to the six first eigenmodes of the fixed-free cable structure. Corresponding eigenperiods
can be found in Table A.3. In both figures, the analytical solutions for an ideal (weightless and infinitely stiff) cable are plotted
with solid lines, and numerical results using the fixedFreeCableSegment class with 80 elements are plotted with circle markers.
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Table A.3: Eigenperiods in seconds corresponding to the 15 first modes of a 1934m long cable subjected to a top tension of 2.5MN. In italic: deviation in percents between
the analytical solution (transverse vibrations of a weightless and infinitely stiff string) and various numerical solutions computed with the fixedFreeCableSegment class.

Analytical solution Numerical solution using the fixedFreeCableSegment class
Axial stiffness Infinite Nominal × 10 Nominal × 10 Nominal Nominal Nominal Nominal
Weight in water Weightless Weightless Weightless Weightless Nominal Nominal Nominal
Top force direction - Vertical Vertical Vertical Vertical Nominal Nominal
Current - None None None None None Nominal
Number of elements - 500 % 80 % 80 % 80 % 80 % 80 %
Mode 1 49.15 49.15 0.00 49.15 0.00 49.39 0.48 50.68 3.12 50.17 2.08 50.17 2.07
Mode 2 16.38 16.38 0.00 16.38 -0.01 16.46 0.47 16.78 2.42 16.66 1.71 16.66 1.71
Mode 3 9.83 9.83 0.00 9.83 -0.04 9.87 0.44 10.06 2.33 9.99 1.62 9.99 1.62
Mode 4 7.02 7.02 0.00 7.02 -0.08 7.05 0.41 7.18 2.28 7.13 1.57 7.13 1.57
Mode 5 5.46 5.46 0.00 5.45 -0.13 5.48 0.35 5.58 2.22 5.54 1.51 5.54 1.51
Mode 6 4.47 4.47 0.00 4.46 -0.19 4.48 0.29 4.56 2.15 4.53 1.45 4.53 1.44
Mode 7 3.78 3.78 -0.01 3.77 -0.27 3.79 0.21 3.86 2.07 3.83 1.37 3.83 1.36
Mode 8 3.28 3.28 -0.01 3.26 -0.36 3.28 0.12 3.34 1.98 3.32 1.27 3.32 1.27
Mode 9 2.89 2.89 -0.01 2.88 -0.46 2.89 0.02 2.95 1.87 2.92 1.17 2.92 1.16
Mode 10 2.59 2.59 -0.01 2.57 -0.58 2.58 -0.10 2.63 1.76 2.61 1.05 2.61 1.05
Mode 11 2.34 2.34 -0.02 2.32 -0.70 2.41 2.92 2.41 2.90 2.41 2.88 2.41 2.87
Mode 12 2.14 2.14 -0.02 2.12 -0.84 2.34 9.28 2.38 11.30 2.36 10.53 2.36 10.53
Mode 13 1.97 1.97 -0.02 1.95 -0.99 2.13 8.30 2.17 10.31 2.15 9.54 2.15 9.54
Mode 14 1.82 1.82 -0.03 1.80 -1.16 1.96 7.44 1.99 9.43 1.98 8.67 1.98 8.67
Mode 15 1.69 1.69 -0.03 1.67 -1.34 1.81 6.67 1.84 8.65 1.83 7.90 1.83 7.89
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AppendixB. Convergence and parameter study for the co-simulation

We consider the taut polyester mooring line, truncated with α=0.8, and exposed to the current and
wave-induced loads described in Section 2. The response of the substructured system is evaluated by the
co-simulation procedure outlined previously. Each of the four parameters is varied, keeping the other ones
constant and equal to the following nominal values: nel=80 elements, δt=10 ms, εv=10−6 m/s and εf=0.1
N. As discussed in the previous section, the QoI for our problem are the top velocity of p and the bottom
force of n. The following indicators are therefore used to study convergence:

ε1 =

(∫ T
0

(
Vx,top(t)− V∞x,top(t)

)2
dt∫ T

0
V∞x,top(t)

2dt
+

∫ T
0

(
Vz,top(t)− V∞z,top(t)

)2
dt∫ T

0
V∞z,top(t)

2dt

)1/2

(B.1)

ε2 =


∫ T

0

(
Fx,bottom(t)− F∞x,bottom(t)

)2

dt∫ T
0
F∞x,bottom(t)2dt

+

∫ T
0

(
Fz,bottom(t)− F∞z,bottom(t)

)2

dt∫ T
0
F∞z,bottom(t)2dt


1/2

(B.2)

where the ∞ superscript refers to the time series obtained with the finest mesh, smallest synchronization time
step or tolerance value, depending on which parameter is varied. Fig. B.13a to B.13d show the variations
of ε1 and ε2 as a function of each parameter, and Fig. B.13e shows the effect of the parameters on the
computational time.

As expected, ε1 and ε2 decrease when refining the mesh (Fig. B.13a), while the computational time
increases proportionally to n2

el (Fig. B.13e). As seen in Section 4, the present study requires a possibly large
number of co-simulations, nel=80 is selected, which allows keeping computational costs to an acceptable
level, with an ε1 error of the order of 2%.

Convergence is also clearly observed when the synchronization time step is reduced (Fig. B.13b). It can
be observed (Fig. B.13e) that the computational time is minimum for δt=10 ms, and increases significantly
when δt=100ms. Indeed, even if reducing total number of synchronizations during the given simulation time,
increasing δt leads to a larger required number of iterations (lines 6-14 in Alg. 1) at each synchronization
step. On the other hand, it can be observed that the computational time is larger for δt=5ms than for
δt=10ms. In that case, even if very few iterations are required to achieve compatibility and equilibrium, the
total computational burden increases due to some expensive operations (such as writing data), which are
performed at the end of each synchronization step.

Finally, as expected when considering line 11 in Alg. 1, εv and εf play a symmetric role. For a given εf
for example, decreasing εv will only have an influence on the outcome of the co-simulation (and thus on ε1
and ε2) if it is εv, and not εf , that forces the iteration process to continue. Indeed, when εv is chosen to be
very large, the dynamic equilibrium condition will be the limiting constraint, and the value of εf will thus
steer the number of iterations. When εv is decreased and reaches a certain threshold, which depends on the
mechanical impedance of the structure, it may be either the equilibrium or the compatibility condition that
steers the number of iterations, at a given synchronization step. Finally, decreasing further εv will enforce
an increased accuracy on the compatibility condition, which decreases the error, and increases the number
of iterations and the computational time. This shift is clearly happening for εv=10−7 m/s in Fig. B.13c. It
should however be noted, that within the range of investigated εv and εf , the errors ε1 and ε2 are extremely
small.
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(e) Computational time: number of seconds required per simulated second. The dashed lines
correspond to the mean value ± one standard deviation of the duration of the simulation
using the nominal set of parameters.

Figure B.13: Convergence study. Effect of varying the number of elements, the synchronization time step and synchronization
tolerances on the error indicators ε1 and ε2 (four top figures), and on the computational time (lower figure).
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