
Integer Programming Techniques for Train Dispatching in
Mass Transit and Main Line

Leonardo Lamorgese ∗ Carlo Mannino ∗ Mauro Piacentini †

Abstract

Trains moving in railway systems are often affected by delays or cancellations. This in
turn may produce knock-on effects and propagate to other trains and other regions of the
network. These undesired effects may be alleviated by suitably re-routing and re-scheduling
trains in real-time. Train dispatching is thus a central task in managing railway systems as it
allows recovering from undesirable deviations from the timetable, and a better exploitation
of railway resources. With few exceptions, dispatching is still almost entirely in the hands of
human operators, despite the problem amounts to solving a complex and large optimization
problem which does not lend itself to be handled manually. In this chapter we describe how
integer programming can be exploited to quickly find optimal solutions to large dispatching
problems, and describe real-life implementations of these ideas. The first of these was a fully
automated system put in operation in some terminal stations in Milano Underground in 2007.
An official test campaign showed how the system was able to improve the performances of
dispatchers in terms of train punctuality and regularity. Main Line applications have also
followed in the years, from small single-track regional lines to more complex multiple-track
lines and large stations.

1 Train dispatching

Railway transportation represents a significant share of the overall transportation sector accounting
for 11% of freight and 9% of passenger transport (per kilometer) [17]. Perceived as the “greenest”
transportation mode, railway is expected to play an increasing role in future communications.
Indeed, railway operators over the world are renewing rolling stock, infrastructure, signalling
systems and their organization. This in turn is demanding more research in managing and better
exploiting the different components of railway systems. Optimization models have been studied
and proposed for, e.g., personnel and crew scheduling, maintenance operations, train composition,
timetable creation, dispatching, etc. Integer programming, in particular, has often been exploited
to model and solve the associated railway optimization problems. Such models are generally
developed to provide middle or long term plans, and are based on predictions on the number of
passengers, personnel availability, trains speed, etc. However, in daily operations, disturbances
or disruptions may occur, generating deviations from the planned or expected behaviour. As a

∗SINTEF ICT, Oslo, e-mail: leonardo.lamorgese@sintef.no, carlo.mannino@sintef.no
†University of Rome, La Sapienza, e-mail: piacentini@dis.uniroma1.it

1

Final verison available at SIAM : https://doi.org/10.1137/1.9781611974683.ch6

consequence, actions must be taken to alleviate the effects of such deviations. A first, possible
approach is to take uncertainty into consideration already at a planning stage, by utilizing robust or
stochastic models [4]. Another, complementary way is to carry out real-time replanning decisions
when such deviations occur (for a very recent survey on rescheduling in railway operations see [7]).
Train dispatching may be viewed as a series of replanning actions, carried out in real-time when
running trains deviate from the official timetable. In the following we outline today’s dispatching
process in railway systems (see, e.g. [12]).

Railway systems can be classified as Mass Transit (typically urban systems such as subways)
and Main Line. In either case, a railway is basically an intricate network of interconnected tracks.
In the current fixed block signaling systems, tracks are segmented into block sections. Each block
section can accommodate at most one train and is always preceded by a traffic light: incoming
trains must stop at red light. In railway networks we may identify regions (sub-networks) with
specific features and roles. Stations are complex sub-networks where trains can perform various op-
erations (services), such as embark or alight passengers, reverse direction, etc. Sections in stations
are classified as stopping points (where train can actually stop, such as platforms) or interlocking
routes, which are sequences of track segments connecting stopping points. The schematic rep-
resentation of a small terminal station is given in Figure 1. In the scheme, stopping points are
identified by a green label. In the figure, a possible train route is represented by the directed
path going through stopping points En, P1, S2, P3, Ex. Each arc of the path corresponds to an
interlocking route. So the train enters the station from stopping point En, runs the interlocking
route from En to P1 (which is a platform) where it disembarks passengers, continues through the
next interlocking route to stopping point S2 where it reverses direction, and then proceeds along
the remaining part of the route to exit from exit point Ex.

Finally, we refer to tracks connecting distinct stations as links. Links are often single-track, that
is trains must use the same physical connection in both directions. Other relevant sub-networks
are stops (along links) where trains can embark and alight passengers, junctions where a track
splits into two, equipped with switches to allow trains to switch between alternative tracks, and
so forth.

En P1

Ex P2

P3

S2

S3

Track circuit Track segment

Stopping point

Interlocking

route

Figure 1: A subway terminal station

A train moving in the railway will run through a sequence of sections, called route. The official
timetable defines, for each train, when it should pass through specific sections of its route, as a

2

platform in a station (i.e. arrival) or the exit point (departure). Timetables may also specify the
entire route schedule. Generating good and robust timetables is a hard task, and an entire line of
optimization research is devoted to it ([8]).

The task of controlling trains running through a railway network is carried out by experienced
operators, dispatchers, with support by software tools and remote equipments called Train Man-
agement Systems (TMSs). The railway network is typically subdivided into small control areas,
each assigned to a dispatcher. Dispatchers are constantly updated about the status of the network,
the position of trains, their speed, the status of signals and switches, etc. When trains are running
according to the official timetable, their role is limited to ensuring that signals and switches are
set according to the plan; actually, in many modern route-setting systems, this task is performed
by the TMS, while dispatchers only have supervising responsibilities. On the contrary, when one
or more trains are running late (or some disruption occurs on the line) dispatchers are required
to intervene and apply recovery or control actions. These include: change of dwell times between
trains; advising modified train speed; modifying train routes (e.g. by assigning a new platform in
a station); changing train order at junctions; changing arrival or departure orders at stations; etc.
To give an example, suppose train A is arriving at a station and, according to the timetable, will
stop in platform 1. However, the platform is currently occupied by train B, which was supposed
to leave the station before the arrival of A but is actually out of order and cannot release the
platform. As a consequence, a dispatcher will establish a new platform for train A and possibly
change the departure order of trains A and B. In a more complex setting, other trains may also be
involved, forcing train A to wait at the signal before the station. Another typical situation occurs
when stations 1 and 2 are connected by a single-track link, trains A and B run it in opposite
directions with A running from 1 to 2, and A and B are supposed to meet in station 1. Now,
assume B is running late. The dispatcher may decide to keep A waiting in station 1, or let B wait
in station 2 until A reaches. Or, if B is very late, the dispatcher may even decide to let B wait
in a station preceding station 2 on its route. All such control actions are taken in the attempt of
reducing the effects of deviations on the future. Based on a general assessment of the situation,
on the relative (often simply perceived) importance of the trains involved, on a rough evaluation
of the consequences of different recourse actions, on personal experience, rules of thumb and op-
erational rules, the dispatcher is presented with the daunting task of taking, in a few seconds,
decisions which may impact the overall network for many hours to come. With some effort, it
is possible to define the cost of a real-time train schedule as a function of its deviation from the
official timetable. Such cost function may take into account delays of trains in stations (weighted
by train relevance), loss of connections between trains, headway between successive trains, etc. It
follows that the decisions taken by dispatchers may be interpreted as approximated solutions to a
large optimization problem, which consists in finding a new feasible timetable of minimum cost.
We refer to this problem as the Train Dispatching Problem.

Today’s dispatching is supported in various ways by TMSs. Besides interfacing dispatcher
decisions with the field, TMSs show the current status of the network in the dispatching area,
the position of trains, the status of signals and switches. They are also able to predict train
movements and identify potential conflicts in the use of resources. A conflict is the simultaneous
occupation by two trains of a block section. As mentioned above, this must never occur, and, in
general, it is prohibited by protocols and physical devices. However, when trains deviate from the
official timetable, potential conflicts may arise. When identified, such conflicts are presented to
dispatchers which take and implement recovery decisions. Today’s TMSs are in general unable to

3

take such decisions and implement them autonomously. In Section 4 we describe a few exceptions
in operation in Europe, based on the modeling and algorithmic ideas presented in Section 2 and
Section 3. Actually, according to two very recent studies [7, 25], there are no other examples
currently in operation.

2 Basic MILP models for the Train Dispatching problem

In this section we limit ourselves to present the basic MILP models for the Train Dispatching
problem. For sake of simplicity we consider the case in which train routes are fixed; extensions to
include the routing problem may be found in the literature ([7]). In order to describe train move-
ments we associate, with every section of a train’s route, a continuous variable which represents
the time the train enters the section. The vector t of entry times, for all trains and all sections in
their route, is called schedule. Our target is to find a feasible schedule t∗ which minimizes some
cost function c(t) (which in turn is the measure of the deviations from the official timetable earlier
introduced). Next, we introduce the basic constraints which must be satisfied by any feasible
schedule t. If l is the minimum running time of a train through a block section, tu is the time the
train enters the section and tv is the time it enters the next section, then tv − tu ≥ l holds. Other
temporal constraints such as release times and due dates may be represented by similar simple
precedence constraints. Now, when the routes of two distinct trains, say trains i and j, share a
block section, one of the two trains must exit the section before the other one enters it. So, if tz
and tu represent the time in which train i enters and exits the section, and tv and tw are the times
in which train j enters and exits the section, then either tz ≥ tw or tv ≥ tu. This is referred to as
a disjunctive precedence constraint, and is identified by two ordered pairs (u, v), (w, z).

Junction

First Section

i

j
Next Section

j follows i : tv tu

i follows j : tz tw

Figure 2: A junction, two incoming trains and associated scheduling variables

The number of such disjunctions may grow very large with the number of trains and the length
of their routes in terms of block sections. Every feasible schedule t must satisfy one of the two
precedence constraints for every disjunction. So, the dispatching problem may write as:

4

min c(t)

s.t.
(i) tv − tu ≥ luv (u, v) ∈ A

(ii) tv − tu ≥ 0
∨

tz − tw ≥ 0 {(u, v), (w, z)} ∈ F

t ∈ IRV

(1)

where A,F, V are the set of indices of the simple precedence constraints, of the disjunctive prece-
dence constraints and of the variables, respectively. Disjunctive programs [3] as the one above were
introduced in the context of job-shop scheduling problems. Indeed, trains may be viewed as jobs
performing certain operations (occupying a block section) on a set of machines (block sections). In
particular, the dispatching problem belongs to the class of blocking, no wait job-shop scheduling,
which is known to be hard to solve in theory and in practice [23].

Disjunctive programs may be represented and solved by means of mixed integer programming.
Two major approaches compete in the literature: Time-Indexed Formulations and big-M Formu-
lations. In big-M formulations, we associate with each disjunctive constraint {(u, v), (w, z)} ∈ F
a binary variable xuvwz, with xuvwz = 1 if tv − tu ≥ 0 holds, and xuvwz = 0 if tz − tw ≥ 0 holds.
In order to ensure this, we introduce a suitably large coefficient M (the notorious big-M) and we
replace each disjunctive constraint (1.ii) with two (conjunctive) constraints

(iia) tv − tu ≥M(xuvwz − 1) {(u, v), (w, z)} ∈ F

(iib) tz − tw ≥ −Mxuvwz {(u, v), (w, z)} ∈ F
(2)

It is easy to see that, when xuvwz = 1, (2.iia) reduces to tv − tu ≥ 0 while (2.iib), due to the
large coefficient M , becomes redundant, as it is satisfied by any schedule t (satisfying all simple
precedence constraints). Similarly, when xuvwz = 0, (2.iia) becomes redundant. It is well known
that this kind of formulation tends to provide weak lower bounds. Computing strong bounds is
important because they provide quality assessments when a solution to problem is at hand and
they are crucial in limiting the search space in enumerative solution methods.

Time-indexed formulations for scheduling problems were introduced precisely to cope with
this issue. The idea is to discretize the time horizon H into a finite number of periods, i.e.
H = {1, 2, . . .}, and replace each original continuous variable tv with a set of |H| binary variables,
yv1, yv2, . . . with the interpretation that yvq = 1 implies tv = q. Time-indexed formulations produce
better bounds than big-M formulations (see [16]) but, in general, at the cost of increased computa-
tional burden. The trade-off typically depends on the ability to limit the number of time-indexed
variables, and to work with implicit representations of the overall formulation.

Both representations have been exploited in the literature on train dispatching. Time-Indexed
formulations are exploited, e.g., in [9, 20], whereas big-M formulations are developed, e.g., in
[2, 6, 13, 15, 25, 26, 27, 28, 29]. However, in our experience, big-M formulations appear to be more
suitable for train dispatching, as time-indexed formulations tend to grow too large and become
untractable for instances of practical relevance, mostly due to the difficulty in fixing a small time
horizon for the scheduling variables.

We remark that a fundamental requirement of a dispatching system is that solutions must be
found and returned in real-time or, more precisely, within the time limit set by the application.

5

Typically, this implies that time available for computation is limited to a few seconds. Now, a sim-
ple approach to solving a train dispatching instance could consist in generating the corresponding
big-M formulation and then invoking a state-of-the-art MILP solver to solve it. Unfortunately, for
real-life instances of practical interest, this naive approach tends to fail in finding within the time
limit not only the optimal solution, but often even a feasible solution.

For this reason, almost all works presented in the literature resort to some type of heuristic, i.e.
algorithms which search for feasible solutions but are unable to provide optimality certificates.1

Instead, we decided to follow a different path and developed a decomposition approach which can
return and certificate optimal solutions to the dispatching problem.

3 The decomposition principle in dispatching.

Decomposition is a natural way to tackle complex control or optimization problems. In train
dispatching, this is how normal operations are carried out in practice. Indeed, even though the
railway network is a huge connected graph, each dispatcher only controls a small portion of it,
possibly coordinating with other dispatchers who control adjacent areas. The size of each control
area is carefully determined so that one dispatcher suffices to manage it. Regional lines, for
example, are often controlled by one or two dispatchers. Large stations are typically subdivided into
smaller sub-stations, each controlled by a different dispatcher. Even if some communication with
neighboring dispatchers is possible, a dispatcher has no authority on dispatching areas assigned to
others, and can only inherit decisions without any possibility to affect them.

Another example of decomposition in practical dispatching is the way a dispatcher controls the
assigned stretch of regional line. In a broad representation, such railway regions may be viewed
as a sequence of stations connected by links. When potential conflicts are identified by the TMS,
the dispatcher in charge decides where trains should meet or pass each other on the line (e.g. a
station or a double-track link). In taking this decision, a station is considered as an aggregated
resource with a given capacity. Detailed decisions about the sequencing of trains in the station are
taken in a second phase, as trains approach the station.

Remarkably, this practical decomposition has a counterpart in MILP approaches to train dis-
patching. The original railway network is again decomposed into sub-networks each with its own
controlled stations and links. We associate with each sub-network a corresponding dispatching
problem and solve it, possibly to optimality. Then, the solutions to each sub-problem must be
recomposed into a unique solution for the overall original problem. Different implementations of
the decomposition principle mainly differ in the way sub-problems are generated, in the solution
technique, in the way solutions of subproblems are recomposed, and in how the case in which
sub-solutions cannot be recomposed is handled.

One version of the decomposition paradigm is the so called macroscopic/microscopic approach
[5] recently introduced in the optimization literature for train timetabling and dispatching. At a
microscopic level, all block sections are considered. At a macroscopic level, every sub-network,
such as a station or a dispatching area, is represented in each train route as one section. Indeed,
at this macro level, for each train, only (tentative) arrival and departure time at and from each
sub-network are actually computed. In the standard approach, a good (possibly optimal) tentative
macro-solution is found first. Then the macro-solution is turned into a global solution by extending

1The literature on heuristics is very large, and we refer to the comprehensive survey [7] for further details.

6

it to the sub-regions. If this attempt fails, the initial macro-solution is modified and the scheme
iterated. This approach is followed, e.g. in [14] where the macro problem is modeled as a MILP, and
where micro problems are solved by means of heuristics. In [15] both macro and micro problems
are modeled as MILPs, but again combination and communication between levels is implemented
by heuristics. Similar decomposition ideas are also exploited in [11], where the macro problem is
obtained by shrinking sub-networks corresponding to dispatching areas.

Next, we will show how the macro-micro approach, and in general the decomposition principle
in dispatching, has a counterpart in a classical method in linear and integer optimization, namely
Benders decomposition. We will actually refer to a generalization of the classical Benders’ decom-
position to cope with integer sub-problems, as presented in [10, 30]. For simplicity’s sake, we will
consider the case of a single railway line and let the sub-networks in our decomposition be the
stations of such line. However, the scheme may apply also to different hierarchies. If we let t be
the scheduling vector, and x be the binary variables corresponding to precedence decisions, then
the overall MILP may write as2:

min c(t)

s.t.
(i) AxL+ Bt ≥ b,

(ii) Dt + ExS ≥ q

(iii) t real, xL, xS binary

(3)

The decision vector x has been written as x = (xL, xS) to distinguish between decisions asso-
ciated with stations (xS) and decisions associated with tracks between stations (xL). Correspond-
ingly, we may identify the two blocks (i) and (ii) in Program (3). In many relevant practical
contexts, as in the real-life implementations of Section 4,the two blocks “communicate” with each
other through a small subset of t variables. This happens when decisions taken in the line regions
and in the station regions do not“directly” affect each other, but only through their consequences
on the scheduling3. The idea in Benders’ decomposition is to solve a restricted problem (the mas-
ter) where block (3.ii) is dropped. Let (x∗

L, t
∗) be the optimal solution to the restricted problem.

Then, if t∗ can be extended to a a feasible solution (t∗, x∗
S) to (3.ii) (slave problem), we are done

as (x∗
L, t

∗, x∗
S) is an optimal solution to (3). Otherwise (x∗

L, t
∗) cannot be extended to a feasible

solution for the whole problem, and we identify an inequality qTxL + rT t ≤ k which is satisfied
by all of the feasible solutions to (3) but violated by (x∗

L, t
∗). Such inequality is added to the

master problem and the process is iterated. In our experience with real-life dispatching instances,
the number of iterations is quite small. A nice feature of the approach is that the slave problem
further decomposes into a number of independent sub-problems, one for each station.

We developed this approach in [18, 19, 21], enhancing the algorithm with delayed row and
column generation [1]. This allowed us to solve to optimality a number of real-life instances from
very different application contexts, as described in the next section.

2We assume here that the cost function c(t) is linear.
3The situation is different when routing decisions for the line region may affect routing decisions in the stations.

Consider for instance the case where a train can choose different routes in the line, involving different entry points
in a given station, which in turn may force different routing decisions in the station

7

4 Real-life Implementations

Systems based on the ideas sketched in this chapter (described in more detail in [18, 19, 21])
are already in operation on several lines in Europe. Also, new implementations are in progress
or scheduled in the near future. In particular, we will briefly describe real-life implementations
in Italy, Norway and Latvia. Furthermore, we will mention an application for a large station in
Italy and a Mass Transit system in operation in 2007-09 in some terminal stations of the Milan
underground.

All these TMSs are embedded with our optimization algorithms, either directly (Italy, Latvia)
or in a collaborative framework (Norway). Although most of the input is acquired remotely,
dispatchers may interact with the system by manually providing further information (e.g. train
delays or cancellations, fixing dispatching decisions, network disruptions, etc.). The optimization
algorithm will then return new dispatching decisions. Depending on local operative rules, such
decisions may be: (1) presented to dispatchers for validation; (2) forwarded directly to the field
through remote equipment. The systems deployed in Italy and Norway fall in case (1), while both
(1) and (2) apply to Latvia since freight trains are fully controlled by the system whereas decisions
regarding passenger trains require human validation. Remarkably, statistics show that, even when
the system does not control trains directly, dispatchers follow its suggestions in almost all cases.
Another important question regards the“degree of freedom” of the algorithm. For instance, the
Italian and Latvian railway operators have specific rules for resolving conflicts, which limit the
potential impact of the algorithm as some dispatching solutions are forbidden.

Regional Italian Lines. A first deployment on Main Line of a TMS embedded with our dis-
patching algorithms was carried out in Italy in 2011, on a minor, single track regional line: Trento
- Bassano del Grappa line (23 stops or stations). Since then, the tool has been extended to other
lines in Southern, Central and Northern Italy. Table 1 reports some data on these lines.

Regional Line Stations/Stops Network Complexity Station Link

Trento - Bassano 23 Single Line Single Track

Parma - San Zeno 17 Single Line Single Track

Foligno 53 Interconnected Lines Single and Double Tracks

Milano - Mortara 12 Single Line Single Track

Sicilia 111 Interconnected Lines Single Track

Table 1: Regional Lines in Italy

The algorithm identifies alternative solutions, which are ranked according to their cost and
presented to dispatchers: in practice the first solution in the ranking is the one often chosen. Since
validation is left to the dispatchers, the tool is equipped with an exact procedure for detecting
whether dispatching decisions lead to deadlock situations.

We have tried to quantify the benefit of relaxing current operative rules and allowing a larger
solution space. In particular, we compared restricted and full solution space optimization on a
test set of instances from the O-T-F line over a week in January 2013. In this setting, an instance

8

represents the status of network and trains at a given moment in time. In Table 2 we cluster trains
in three groups according to their computed delay at final destination.

Solution Space delay ≤ 5 delay≤ 10 10<delay≤15

Restricted 90% 91% 93%

Full 95% 98% 99%

Table 2: Average delay distribution of instances of the O−T −F
line over a week in January 2013. The time unit is minutes. Mean
number of controlled trains 86, standard deviation 27. Average
number of trains running late is 9.

Results show an increase in the number of trains on time or with little delay (+5%), with
virtually all trains (99%) arriving at destination with at most 15 minutes delay. On the other hand,
restricted solution space solutions averaged 7% of trains arriving at destination with more than
15 minutes delay. In Table 3 we present some computational results and algorithmic information
regarding a day of experiments in the above mentioned week in January 2013. On this day, the
average number of controlled trains on this line was 107, with the highest number throughout the
day being 130 and the lowest 67, while the average number of trains simultaneously on the line
was 10. Results are aggregated in five time ranges (four-hours each).

Periods Instances Iterations Time (s) Conflicts
Potential Solved

[04:08] 982 9 3.99 13777 154

[08:12] 941 9 4.58 11639 151

[12:16] 1127 9 3.85 7056 126

[16:20] 1433 5 4.02 3164 49

[20:24] 1232 5 4.57 3617 61

Table 3: Algorithmic information

Column “Periods” represents the time range (hh-hh), column “Instances” is the number of dis-
tinct instances solved within that time range, column “Iterations” expresses the average number
of macro-iterations (i.e. master-slave) of the algorithm, column “Time” shows the average com-
putation time (in seconds) and finally the two sub-columns under “Conflicts” express the average
number of potential conflicts and those solved by the algorithm, respectively. The information
regarding how many conflicts are solved in practice with respect to their potential number is
expressed to give a measure of the importance of using a delayed column generation approach.
Assuming (roughly speaking) that each conflict is expressed in the model by an integer variable,
the delayed approach saves from adding around 98% of such integer variables on average, which
in turn brings considerable computational benefits.

9

Although the current implementation represents already an important step towards improved
and automatic railway management, these figures show that further improvements may be obtained
by applying new regulations and an effective, exact optimization algorithm. This was allowed for
the first time in a recent implementation in Norway.

Norwegian Lines. A pioneering dispatching system which exploits the decomposition approach
described in the previous section has been tested on some regional lines in Norway (Trondheim-
Domb̊as, Stavanger - Moi) and operated on one of these (Stavanger-Moi). The novelty of such
system lies in the possibility of exploring the full solution space, allowing a complete exploitation of
the exact algorithm. The system was released in February 2014, displaying the real-time optimized
train graph4 on a screen in the dispatching central. Each time the network status changes (train
delayed, deviation etc), a new solution is computed and the graph is updated accordingly. The
dispatcher may then decide whether to accept the suggestion or to discard it. At the time of
writing, the use of system was on hold until the release of the tender for renovating Norway’s entire
signalling system, as the system is considered a candidate competitor by the network operator.

We now give some information regarding the Stavager - Moi line. The railway stretching from
Moi to Stavanger is 123 km long and visits 16 stations. Every 12 hours, up to and, in some cases,
over 100 trains run this line (on average). In particular, around 40% of this traffic is exclusive to
the (entirely double-track) portion connecting Stavanger and Sandnes (stations which are more or
less 15 km and 5 stops apart), while the remaining traffic also passes this area. As a consequence,
this portion of the network is particularly dense and presents a challenge for local dispatchers.

Freight Lines in Latvia. TMSs equipped with our optimization algorithms are currently5 under
commissioning on an extended railway network in the East of Latvia. The overall network is
composed by several lines: Daugavpils-Eglaine, Daugavpils-Krustpils, Rezekne-Krustpils, Zilupe-
Krustpils, Karzava - Rezekne. In total, there are 52 stations, with 10 communication points and
8 station gates. These lines are characterized by high traffic volumes and are mainly used for
freight transportation. The TMS’s dispatching decisions regarding freight trains are automatically
forwarded to the field, without requiring a dispatcher’s validation. Dispatchers accordingly will
only focus on solving conflicts involving passenger trains, where, as described above, they will be
presented with the best solutions identified by the algorithm.

A large station in Italy. TMSs also prove to be very useful for monitoring and controlling
traffic in large stations. Monfalcone (in Northern Italy) is being provided with one such automatic
TMS, able to re-route and re-schedule trains in an optimal way with respect to the timetable and
the current network situation. The system is scheduled to start commissioning as of March 2016.
The system in Monfalcone is required to control three connecting “satellite” stations: Monfalcone
Station (14 stopping points and 59 interlocking-routes), Ronchi Nord Station (7 stopping points
and 16 interlocking-route), Ronchi Sud Station (7 stopping points and 16 interlocking-routes) and
a communication point.

4A train graph is a standard graphical representation of a timetable.
5October 2015

10

Mass Transit To our knowledge the first fully automatic dispatching tool operated in some
terminal stations of Milano Underground System from 2007 to 2009 [22], managed by ATM (the
major Italian municipal transport company). Our optimization algorithm was embedded into
the TMS developed by Bombardier Transportation, a large multinational of the transport sector.
Prior to its activation, an extensive test campaign was carried out to compare the performances
of the system against those of dispatchers in charge at one of the terminal stations. Such direct
comparisons are very rare in the literature and in practice, and quite complicated to set up. The
difficulty stems from the impossibility for the system and the dispatchers to have control over
station and trains at the same time and compare them on exactly the same data input. To get
around this issue, during the test campaign 8 pairs of 1-hour time slots with equivalent traffic
patterns were identified by ATM engineers. For each of the eight pairs, one of the two time
slots was assigned to the automatic system, whereas the other was assigned to dispatchers. Two
objective functions were considered: the first measured deviations from the timetable; the second
measured deviations in regularity, namely in the difference between actual train headways and
desired ones. Final results showed that the system was able to improve both objectives by an
average of 8% over the dispatchers, despite the relatively small size of the terminal stations.

5 Concluding remarks

The literature abounds with models and solution algorithms for real-time train traffic management
- train dispatching and other related problems such as delay management - but presents very few
applications. This shortcoming can be attributed in part to the operators’ resistance to innovation,
but also, in some measure, to the first attempts in using optimization methods in practice not
delivering the bounty that had been “promised” to the industry (e.g. increased efficiency, lower
costs). However, as shown in this chapter, the landscape is slowly shifting. Applications of
optimization to traffic management are now starting to appear around Europe. Operators are
increasingly aware of the potential of optimization-based traffic management, as proven in recent
tenders, by explicitly requesting “intelligent” dispatching functionalities for new TMSs. In our
tests and real-life applications, we show that much improvement over the current practice can be
achieved by using optimization techniques, and mathematical programming in particular. The
limitation with our exact approach is that some of our assumptions do not apply to every railway
line. Therefore, work has to be done to extend this approach with a more general decomposition
scheme.

References

[1] D. Alvras, M.W. Padberg, Linear Optimization and Extensions: Problems and Soluzions.
Springer-Verlag, Berlin, Germany, 2001.

[2] M. Aronsson, M. Bohlin, P. Kreuger, MILP formulations of cumulative constraints for railway
scheduling - A comparative study, Proceedings of 9th Workshop on Algorithmic Approaches
for Transportation Modeling (ATMOS), 2009.

[3] E. Balas, Disjunctive programming, Annals of Discrete Mathematics, 5, pp. 3–51, 1979.

11

[4] A. Ben-Tal , L. El Ghaoui and A. Nemirovski , Robust optimization methodology and appli-
cations. Mathematical Programming, 92(3):453–480, 2002.

[5] R. Borndrfer, B. Erol, T. Graffagnino, T. Schlechte, E. Swarat Aggregation Methods for Rail-
way Networks ZIB-Report 10-23 (November 2010)

[6] M. Boccia, C. Mannino, I. Vasiliev, The dispatching problem on multitrack territories: Heuris-
tic approaches based on mixed integer linear programming, Networks, 62 (4), pp. 315–326,
2013

[7] V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, J. Wagenaar, An
overview of recovery models and algorithms for real-time railway rescheduling, Transportation
Research Part B, 63, pp. 15–37, 2014.

[8] V. Cacchiani, P. Toth, Nominal and robust train timetabling problems, European Journal of
Operational Research, 219, pp 727–737, 2012.

[9] G. Caimi, M. Fuchsberger, M. Laumanns, M. Lüthi, A model predictive control approach for
discrete-time rescheduling in complex central railway station areas, Computers & Operations
Research

[10] G. Codato, M. Fischetti, Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming,
Operations Research, 54 (4), pp. 756-766, 2006.

[11] F. Corman, A. D’Ariano, D. Pacciarelli, M. Pranzo, Optimal inter-area coordination of train
rescheduling decisions. Transportation Research E, Logistics and Transportation Review, 48
(1), 71-88.

[12] A. D’Ariano, Improving Real-Time Train Dispatching: Models, Algorithms and Applications,
TRAIL Thesis Series no. T2008/6, The Netherlands TRAIL Research School, 2008.

[13] A. D’Ariano, D. Pacciarelli, M. Pranzo, A branch and bound algorithm for scheduling trains
in a railway network, European Journal of Operational research, 183, pp. 643–657, 2007.

[14] T. Dollevoet, F. Corman, A. D’Ariano, D. Huisman, An iterative optimization framework for
delay management and train scheduling, No EI 2012-10, Econometric Institute Report from
Erasmus University Rotterdam, Econometric Institute, 2012.

[15] T. Dollevoet, D. Huisman, L. Kroon, M. Schmidt, and A. Schöbel. Delay management includ-
ing capacities of stations. Transportation Science, to appear.

[16] M. Dyer., L. Wolsey, Formulating the single machine sequencing problem with release dates
as a mixed integer program, Discrete Applied Mathematics, no. 26 (2-3), pp. 255-270, 1990.

[17] European Commission, EU transport in figures, Statistical Pocketbook 2013,
http://ec.europa.eu/transport/facts-fundings/statistics/doc/2013/pocketbook2013.pdf

[18] L. Lamorgese, C. Mannino, An exact decomposition approach for the real-time train dispatch-
ing problem, Technical Report N. A23274, SINTEF ICT, Norway, 2012.

12

[19] L. Lamorgese, C. Mannino, The track formulation for the Train Dispatching problem, Elec-
tronic Notes in Discrete Mathematics, 41, pp. 559–566, 2013

[20] R. Lusby, J. Larsen, M. Ehrgott, D. Ryan, A set packing inspired method for real-time junction
train routing,Computers & Operations Research 40, pp. 713–724, 2013.

[21] C. Mannino, Real-time traffic control in railway systems, Proceedings of Atmos’11, A. Caprara
and S. Kontogiannis (Eds.), OASICS Vol. 20, 2011

[22] C. Mannino, A. Mascis, Optimal Real-Time traffic control in metro stations, Operations Re-
search, 57 (4), pp. 10261039, 2009.

[23] A. Mascis, D. Pacciarelli, Job shop scheduling with blocking and no-wait constraints, European
Journal of Operational Research, 143 (3), pp. 498–517, 2002.

[24] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley-Interscience,
1999.

[25] P. Pellegrini, G. Marlire, J. Rodriguez, Optimal train routing and scheduling for managing
traffic perturbations in complex junctions, Transportation Research Part B, 59, pp. 58–80,
2014.

[26] G. Sahin, R.K. Ahuja and C.B. Cunha, Integer Programming Based Approached for the Train
Dispatching Problem, Tech. Rep. Sabanci Univerisity, 2010.

[27] K. Sato, K. Tamura, N. Tomii, A MIP-based timetable rescheduling formulation and algo-
rithm minimizing further inconvenience to passengers, Journal of Rail Transport Planning &
Management 3, pp 38-53, 2013.

[28] M. Schachtebeck and A. Schöbel, To Wait or Not to Wait - And Who Goes First? Delay
Management with Priority Decisions, Transportation Science, 44 (3), pp. 307–321, 2010.

[29] J. Törnquist Krasemann, Design of an effective algorithm for fast response to the re-scheduling
of railway traffic during disturbances, Transportation Research Part C 20, pp. 62-78, 2012.

[30] F. Vanderbeck, L. A. Wolsey, Reformulation and Decomposition of Integer Programs, in 50
Years Of Integer Programming, Springer, 2010

13

