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Abstract—One essential and challenging task in data science
is data cleaning – the process of identifying and eliminating
data anomalies. Different data types, data domains, data ac-
quisition methods, and final purposes of data cleaning have
resulted in different approaches in defining data anomalies
in the literature. This paper proposes and describes a set
of basic data anomalies in the form of anomaly patterns
commonly encountered in tabular data, independently of the
data domain, data acquisition technique, or the purpose of data
cleaning. This set of anomalies can serve as a valuable basis
for developing and enhancing software products that provide
general-purpose data cleaning facilities and can provide a basis
for comparing different tools aimed to support tabular data
cleaning capabilities. Furthermore, this paper introduces a set
of corresponding data operations suitable for addressing the
identified anomaly patterns and introduces Grafterizer – a
software framework that implements those data operations.

Index Terms—data anomalies, data cleaning, tabular data, data
cleaning and transformation operations

1. Introduction

The research literature in the field of data science very
often assumes that the input data that serves various data
analytics processes is already in a clean and correct state for
data consumption [1]. However, an essential part of time and
effort of data workers is concentrated on cleaning data of
problems in their values or structure. Recent surveys show
that the time spent on data cleaning constitutes up to 60%
of data scientists’ tasks [2].

According to [3], data is a set of discrete objective
facts describing a set of items (events, objects). In other
words, data are the quantitative or qualitative values for the
attributes or characteristics of an item. The most commonly
used classification of data distinguishes three types of data,
depending on how the data are organized:
• Structured data are represented mostly by tables in rela-

tional databases, and are characterized by strict adher-
ence of data to the associated schema.

• Semi-structured data may have some certain structure,
but are not organized as strictly as structured data.
Examples of semi-structured data are simple tabular
formats (e.g., CSV), XML and JSON documents. Data

stored in NoSQL databases are also considered as semi-
structured data.

• Unstructured data don’t have any structural organization.
Typical examples are text documents or multimedia
content [4].

Some authors propose narrower definition of data. In [5],
the authors distinguish between data and information, where
information is defined as a broader concept that includes all
the organizational types mentioned above, and data refers
only to structured data in a database. In this way data quality
and information quality differ significantly in their scope.

Semi-structured data, particularly in tabular format, are
well-known and widely used by data scientists. For example,
an analysis of Open Data portals shows that most of the data
openly available on the Web are in tabular format [6]. In this
paper we investigate data cleaning as a way to increase the
quality of tabular data.

When a dataset does not satisfy a given data quality
criteria, it means that it contains data anomalies. In order
to provide higher data quality, data anomalies have be first
detected and then addressed. The state of the art research
literature includes several taxonomies of data anomalies
[7], [8], [9], [10], [11], [12], [13], [14], however, there is
currently no universal and agreed upon definition of data
anomalies. One of the reasons for this is the large number
of possible data quality violations due to the variety of data
types and domains. Thus, [11] distinguishes between data
cleaning tasks for quantitative data, categorical data, postal
addresses and identifiers. Several taxonomies are based on
sources of data anomalies [7], [12]. Some authors investigate
data anomalies in the context of data integration [8], [15],
whereas other authors describe only anomalies in single-
source data. Our strategy in this paper in defining a set
of data anomalies is more practical. We aim to provide an
insight into basic data anomalies independent of the data
domain, data acquisition technique, or the purpose of data
cleaning. Such a set can serve as a central reference for basic
data anomalies, can be used for developing and enhancing
software products that provide general-purpose data cleaning
facilities and can make it easier to compare different tools
incorporating data cleaning capabilities.

To compile the set we make use of the notion of pattern.
A pattern can be defined as ”the abstraction from a con-
crete form which keeps recurring in specific non-arbitrary
contexts” [16]. The data anomaly patterns collected and
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categorized in this paper are defined through the scope
of the anomaly, conditions under which the anomaly can
occur, a description of the problem associated with each
data anomaly, and example dataset containing the anomaly.
Furthermore, based on the identified patterns, we propose a
set of data cleaning and transformation operations suitable
for addressing the identified data anomalies and introduce
Grafterizer - an interactive tool and reference implemen-
tation for the proposed data cleaning and transformation
operations.

The main contributions of this paper include:
• Collecting, categorizing, and documenting basic tabular

data anomalies as patterns, to serve as a reference
resource for tabular data anomalies;

• A set of corresponding tabular data cleaning and trans-
formation operations to address tabular data anomalies,
to serve as a reference resource for tabular data clean-
ing operations; and

• A prototype implementation of tabular data cleaning
and transformation operations, to demonstrate the prac-
tical feasibility of the proposed tabular data cleaning
and transformation operations.

The rest of this paper is structured as follows. Section 2
describes data cleaning as a process. Section 3 describes the
tabular data anomaly patterns. Section 4 introduces the data
cleaning and transformation operations as a way to address
the basic tabular anomalies and presents Grafterizer — our
reference implementation for the proposed data cleaning
and transformation operations. Finally, Section 5 presents
relevant related works on data cleaning and transformation,
and Section 6 summarizes the paper.

2. Data Cleaning and Transformation as a Pro-
cess

Comprehensive data cleaning consists of four general
phases [10] and is iterative by nature. The phases of data
cleaning are:

1) Data auditing aimed to detect data anomalies;
2) Definition of a transformation workflow aimed to sug-

gest a way to remove detected data anomalies;
3) Execution of a transformation workflow aimed to apply

suggested transformation to data;
4) Verification of the executed transformation aimed to

evaluate the data cleaning results.
This process is cyclic and has to be repeated until data
quality satisfies desired criteria.

The first phase in a typical data cleaning process is data
auditing. During this phase, the data anomalies in a dataset
are detected. Some of the existing software products for data
cleaning have data anomalies detection capabilities. Never-
theless, user participation cannot be completely excluded
and human judgment is crucially important in the process
of evaluating identified data anomalies and for choosing an
appropriate method to address them [17]. When automated
data auditing is not supported by the data cleaning system or
it cannot help with detecting data anomalies, data workers

need to inspect the data manually. In this scenario, an
important role is played by appropriate data ordering [18].
Changing a way of data ordering can make it easier to scan
data values in order to identify anomalies. The output of the
first phase of data cleaning process is a list of data anomalies
residing in the audited dataset.

During the second phase—the definition of a transfor-
mation workflow—the data worker specifies data cleaning
and transformation operations to be performed on the data
in order to eliminate data anomalies, enrich the data, or
transform it into a form more suitable for further audit. The
result of the definition of a transformation workflow phase is
a sequence of data cleaning and transformation operations.

The third phase, the transformation workflow execution,
implies the execution of the constructed workflow. The
output of this phase is data transformed in accordance with
the data cleaning and transformation operations specified in
the previous step.

The last phase of data cleaning and transformation cycle
is verification of executed transformation. During this phase,
the data worker verifies whether the anomalies detected
during the first phase have been removed. Although some
authors such as [19], [20] do not distinguish verification
as a separate step of data cleaning and transformation, this
phase is very important since it gives an evaluation of the
performed transformation and determines a plan for further
action. After the verification of the performed transforma-
tion, the transformed data may be suitable for further usage
and the cleaning and transformation cycle is completed. In
other cases, data may still contain anomalies or require
further enrichment, and the cycle of data cleaning and
transformation starts again from the phase of data auditing.

Thus, phase one (data auditing) requires knowledge of
what data anomalies can affect data quality in the particular
data cleaning task. Phase two (definition of the transforma-
tion workflow) requires knowledge about data cleaning and
transformation operations. Phase four (the verification of the
transformation workflow) requires the data worker to evalu-
ate the effect of data cleaning and transformation operations
on the data anomalies. Consequently, all the phases of data
cleaning that expect data worker’s involvement make use of
the set of data anomalies and the set of corresponding data
cleaning and transformation operations.

3. Tabular Data Anomaly Patterns

Despite a great number of publications on data anoma-
lies, there is currently no basic set of data anomalies that
is being used as a central reference, for example to com-
pare different tools incorporating data cleaning capabilities.
The taxonomies of data anomalies described in literature
differ in terminology, coverage and ways of mapping data
anomalies to the affected data quality dimensions [14], [21].
Different authors use also various names for data anomalies,
such as data quality problems [8], discrepancies [19], data
distortions [7], data errors [20], data defects [14], or just
problems with data.



TABLE 1: List of data anomaly patterns for tabular data

N Scope Anomaly pattern Description

1

Cell values
Illegal values Values outside of domain range

2 Inconsistent values Syntactically correct but contradicting with other attribute values

3 Missing values Column values are not present

4
Column headers

Column headers containing attribute values Column headers are attribute values themselves, not attribute names

5 Incorrect column headers Column headers are inconsistent with the attribute they hold

6
Column headers and
cell values

Columns not related to data model Column headers are inconsistent with the attribute they hold

7 Multiple values stored in one column Several attribute values of the data model are stored in one column

8 Single value split across multiple columns One attribute value of the data model stored across several columns

9
Rows

Rows not related to data model Records in the source dataset describe unrelated entities

10 Duplicate rows The same entity (having the same primary key according to the data
model) is described more than once in the dataset

Due to the inevitable diversity in source dataset quality
levels and the diversity of the purposes of data cleaning,
identifying and agreeing upon all data anomalies is unreal-
istic. However, it is possible to identify patterns of the most
common data anomalies.

In order to obtain the list of possible data anomalies, we
investigated the research literature on data quality, statistics,
and data cleaning, including literature containing interview
results with data workers [22] and literature using pure
logical reasoning to describe data quality issues [7], [8],
[9], [10], [11], [12]. We narrowed the scope of our inves-
tigation to anomalies related to single-source tabular data
that are the most commonly encountered in tabular data.
The most common anomalies were identified during doing
practical work on data cleaning. In particular, the reference
implementation introduced in this paper (see Section 4.2)
was used for data cleaning and transformation in various
data-driven large-scale projects, e.g. proDataMarket [23],
SmartOpenData [24], DaPaaS [25], amongst others.

The proposed set of data anomalies is classified based
on the scope of a data anomaly in a tabular dataset. Tabular
datasets are composed of rows and columns [9]. Columns in
tabular data are almost always labeled with column headers.
The values on the intersection of rows and columns are
cell values. According to the proposed classification, data
anomalies can occur in cell values (attribute values for
particular records), column headers (attribute names), in cell
values and column headers at the same time or in rows
(entire records).

Data tables are intended to represent some part of the
real world and each row in a table should be mapped to
objects of a real world. Therefore, any high-quality tabular
dataset should follow these rules:

1) Each row represents an entity, which can be, for ex-
ample, a person, place, physical object or an event.
Entities have a unique existence in the real world.

2) Each column header represents an entity attribute.
3) Each column value represents a value of the corre-

sponding attribute of an entity.
4) Each table represents a collection of entities.

5) All entities in a collection have the same entity type.
Deviations from these rules can indicate a data anomaly.
A summary of resulting data anomalies (identified with

the help of above mentioned analysis and practical work) is
provided in Table 1.

Data anomalies may concern either just data itself or
data with respect to a given data model, which is closely
connected with further data consumption. Thus, anomalies
6 - 10 in Table 1 concern data with respect to the data model.

The sources of problems with the data may differ. The
most common reason of erroneous data is human errors
during the manual production of the data and data acqui-
sition as merging from multiple sources [15], [26]. Another
source for data quality issues is data schema evolution over
time, which can cause misinterpretation of new entity types
or attributes. Finally, automated data generation, such as
information derived from sensors, carries its own issues,
such as errors due to the inferences or wrong calibration
[18].

In this paper we focus on the effect of data anomalies
on data quality rather then their origin, and the identified
set of data anomalies is independent of the anomaly source.

In the following, we provide details on each pattern.

Anomaly pattern #1: Illegal values
• Scope: Column cells.
• Conditions: The attributes in a dataset have certain con-

straints.
• Description: Values in column cells are outside of do-

main range. Domain range here should be understood as
the set of possible values for the attribute (interval, set
of distinct values, pattern). The anomaly occurs when
the cell values violates the constraints of the attribute
domain. The most common examples are mismatch of
the attribute data type and misspellings (as values outside
the dictionary domain).

• Examples: See Tables 2 and 3.



TABLE 2: Illegal
date value

Order ID Date of order

17004 28.02.2016

17005 30.02.2016

17006 01.03.2016

TABLE 3: Illegal
integer value

Department Number of
employees

Purchasing 7

Sales 15

IT 6.5

Anomaly pattern #2: Inconsistent values
• Scope: Cell values.
• Conditions: A functional dependency between attributes

in dataset exists.
• Description: Syntactically correct but contradicting with

other attribute values. This anomaly takes place when
the cell values violate functional dependencies on other
attributes within a record.

• Example: See Table 4.

TABLE 4: Inconsistent values

Municipality Occupational class Employed
men

Employed
women Total

Breda Communications 482 49 531
Breda Credit and banking 35 1 37
Breda Insurance 32 2 34

Anomaly pattern #3: Missing values
• Scope: Cell values.
• Conditions: The ”not-null” constraint for the attributes

in dataset exists.
• Description: Cell values are not present.
• Example: See table 5.

TABLE 5: Missing values

Municipality Occupational class Employed
men

Employed
women Total

Breda Communications 482 49 531
Breda Credit and banking 37 37
Breda Insurance 32 2 34

Anomaly pattern #4: Column headers containing at-
tribute values
• Scope: Column headers.
• Conditions: Several column headers in a dataset charac-

terize the same data attribute.
• Description: Column headers are the attribute values

themselves, not the names of the attributes.
• Example: See Table 6.

Anomaly pattern #5: Incorrect column headers
• Scope: Column headers.
• Conditions: No special conditions.
• Description: Column headers are inconsistent with the

actual attribute they hold.
• Scope: Column headers.

TABLE 6: Column headers containing attribute values

Municipality Occupational class 2011 2012 2013
Halden Service and sales workers 3432 3367 3335

Halden
Skilled agricultural,
forestry and fishery
workers

210 228 213

Halden Plant and machine opera-
tors and assemblers 1744 1700 1694

• Example: See Table 7.

TABLE 7: Incorrect column headers

Occupational
class Municipality Employed

men
Employed
women Total

Breda Communications 482 49 531
Breda Credit and banking 35 2 37
Breda Insurance 32 2 34

Anomaly pattern #6: Columns not related to data model
• Scope: Column headers and cell values.
• Conditions: The dataset should confirm to a certain data

model.
• Description: Dataset describes attributes not relevant in

scope of the given data model.
• Example: See Table 8.
• Data model: See Table 9.

TABLE 8: Columns not related to data model

Name Social security
number Address Hobbies

Alice Smith 1234567 New York, Harrison
Street, 507 Skiing

Bob Johnson 2345678 Richmond, Main
Street, 17 Chess

TABLE 9: Data model example

Customer
Name
Social security number
Address

Anomaly pattern #7: Rows not related to data model
• Scope: Rows.
• Conditions: The dataset should confirm to a certain data

model, where certain inclusion constraints exist.
• Description: The records, contained in the source dataset

describe entities not related to the data model. This
anomaly takes place when the records in a dataset violate
the constraints of the record inclusion.

• Example: See Table 10.
• Data model: See Table 11.



TABLE 10: Rows not related to the data model

Owner name Owner Id
number

Property
Id number

Owned
from

Owned
until

Alice Smith 1234567 124931510 03.05.2004 03.05.2024
Bob Johnson 2345678 124931511 10.10.2003 01.01.2017
MyCompany,
Inc. 971032081 124931526 21.01.2008 01.01.2018

TABLE 11: Data model example

Ownership [Inclusion constraint: physical persons]
Owner name
Owner Id number
Property Id number
Owned from
Owned until

Anomaly pattern #8: Multiple values stored in one col-
umn
• Scope: Column headers and cell values.
• Conditions: The dataset should confirm to a certain data

model.
• Description: The values, described by several attributes

of the data model are stored in one column.
• Example: See Table 12.

TABLE 12: Multiple values stored in one column

Name Social security number Address

Alice Smith 1234567 New York, Harrison
Street, 507

Bob Johnson 2345678 Richmond, Main
Street, 17

• Data model: See Table 13.

TABLE 13: Data model example

Customer
Name
Social security number
City
Street address

Anomaly pattern #9: Single value split across multiple
columns
• Scope: Column headers and cell values.
• Conditions: The dataset should confirm to a certain data

model.
• Description: The values, described by one attribute of

the data model are stored across several column.
• Example: See Table 14.

TABLE 14: Single value split across multiple columns

Name Social security
number City Street address

Alice Smith 1234567 New York Harrison Street, 507
Bob Johnson 2345678 Richmond Main Street, 17

• Data model: See Table 15.

TABLE 15: Data model example

Customer
Name
Social security number
Full address

Anomaly pattern #10: Duplicate rows
• Scope: Rows.
• Conditions: The dataset should confirm to a certain data

model where a primary key (one-attribute or composite)
is assigned.

• Description: The same entity (having the same primary
key according to the data model) is described more than
once in the dataset.

• Example: See Table 16.

TABLE 16: Duplicate rows

Name Social security
number City Street address

Alice Smith 1234567 New York Harrison Street, 507
Bob Johnson 2345678 Richmond Main Street, 17
Mary Williams 2345678 New York East 52nd Street, 55

• Data model: See Table 17.

TABLE 17: Data model example

Customer
PK Social security number

Name
City
Address

4. Addressing Data Anomalies

The list of tabular data anomaly patterns presented in
Section 3 can be used as a basis for developing methods
and practical solutions for data cleaning. As discussed in
Section 2, in order to eliminate data anomalies, the data
cleaning and transformation operations should be executed.

We define the actions needed to detect or remove data
anomalies as data cleaning operations. Very often, preparing
data for further usage includes both identifying and remov-
ing data anomalies, and data enrichment with transformed or
computed values to facilitate further consumption. Therefore
in this paper we introduce data cleaning and transformation
operations rather than just data cleaning operations.

In this section, we propose a set of data cleaning and
transformation operations suitable to address tabular data
anomaly patterns introduced above. In addition, we also
introduce a reference implementation of data cleaning and
transformation operations.

4.1. Data Cleaning and Transformation Operations

In this paper we consider data cleaning and transfor-
mation operations as atomic units of work performed on a
dataset to convert the data to the more usable form.



The data cleaning and transformation operations can
affect data in one of following ways:
• Data reordering operations do not modify cell values,

number of entities or their attributes. Instead, they are
used to discover data anomalies in data auditing phase.

• Data editing operations modify cell values and are used
to resolve data anomalies.

• Data extraction operations do not modify cell values, but
change the number of entities or their attributes and are
often used to resolve data anomalies.

• Data enrichment operations enrich the data with new
values (e.g., compute values, provide summaries).

One of the difficulties of performing data cleaning with
the set of pre-defined data cleaning operators is that the
more data quality problems the input dataset has, the more
difficult is to clean data with the limited by the set of data
cleaning and transformation operations [27]. Therefore, one
of the key requirements to the set of data cleaning and
transformation operations is to make them adjustable to the
variety of data quality problems. Data cleaning and transfor-
mation operations can be used for detecting data anomalies,
eliminating them or enriching the data. The relationship
between data cleaning and transformation operations and
their function is given in Table 18.

The requirements to the data cleaning and transformation
operations are as follows:
1) Completeness: the set of operators should be complete

and address all identified tabular data anomalies;
2) Clear logical specification: data cleaning operators are

easy to understand and use;

3) Independence of implementation: data cleaning opera-
tors are independent of their technical implementation;

4) Flexibility: operators have adjustable parameters, thus
making it possible to extend the number of data quality
problems that can be resolved with the help of each
operator. As a special case of such parameter, operators
may make use of user-defined utility functions, contain-
ing data-dependent treatment of data quality problems.
The proposed operations are parameterized dataset-to-

dataset functions. One special case is a ”Derive column” op-
eration. This operation takes as a parameter a value(array)-
to-value function and provides a great degree of flexibility
to the transformations that can be performed on a dataset.

An overview of the resulting set of data cleaning oper-
ators is provided in Table 19.

4.2. Reference Implementation: Grafterizer

The resulted set of data cleaning and transformation
operations was implemented in Grafterizer [28], [36] – a
web-based framework for data cleaning and transformations,
that is a part of DataGraft1 [29], [30] platform for data
transformation and publishing. This section describes both
the library for data cleaning and transformation operations
(targeting software developers to facilitate data cleaning
tasks in their applications) and the graphical user interface
of Grafterizer that facilitates interactive data cleaning for
data workers.

1DataGraft is accessible at https://datagraft.net.
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Add rows •
Take rows •
Delete rows •
Shift row •
Filter • •
Deduplicate •
Sort •
Reshape (Melt) •
Reshape (Cast) •
Group and Aggregate •
Take columns •
Add columns •
Derive columns • • • •
Shift columns •
Merge columns •
Split columns •
Rename columns •
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TABLE 19: List of data cleaning and transformation operations

Effect Operation Description

Data reordering
Shift Row Change rows order number
Shift Column Change columns order number
Sort Sort dataset by given column name(s) in given order

Data editing

Reshape (Melt) Move columns to rows
Merge Columns Merge several columns in one using specified separator between them
Split Columns Split specified column into multiple by separator
Rename Columns Change column headers

Data extraction

Take Rows Take a subset of rows by their order numbers
Delete Rows Delete a subset of rows by their order numbers
Filter Take a subset of rows by value or condition
Deduplicate Remove duplicate rows based on the specified simple or composite primary key

Take subset of columns Take a subset of columns by specifying either names or indexes of columns to
extract or names or indexes of columns to exclude

Data enrichment

Add new row Add new row to dataset
Reshape (Cast) Move rows to columns

Group and Aggregate Group dataset by given column (set of columns) and create specified aggregations
on other columns

Add column Add new column with manually specified value
Derive column Add new column with calculated value

Data Cleaning and Transformation Operations Library.
The basis for tabular transformations in Grafterizer is
Grafter2 – a powerful software library and DSL for pro-
ducing linked data graphs from tabular data, which provides
extensive support for tabular-to-tabular data conversions and
powerful ETL data transformations, suitable for handling
large datasets.

The Grafter suite of tools is implemented in Clojure3 – a
functional programming language and Lisp dialect that runs
on the Java Virtual Machine (JVM). The use of the JVM
allows Clojure to have access to the numerous libraries,
available for JVM-based languages. Using a functional pro-
gramming language, such as Clojure, also provides benefits
in terms of data processing including:
• Functional programs typically operate on immutable data

structures. Since the data structures cannot be modified,
they can be shared without the need to ensure con-
currency, which allows more efficient memory use and
therefore allows to process bigger amounts of data.

• Most of functional languages, including Clojure, support
lazy evaluation. Lazy evaluation implies deferring the
computation of values until they are needed, which helps
to avoid unnecessary computations and allows to use
infinite data structures.

• Functional languages use higher-order functions. This
means ability to process code as data and improves pro-
gram modularity.
The tabular data transformation process in Grafter is

realized through a pipeline abstraction, i.e., each step of
a transformation is defined as a pipe - a function that per-
forms simple data conversion on its input and produces an
output. These functions are composed together in a pipeline,
whereby the output of each pipe serves as input to the next.

2http://grafter.org
3https://clojure.org

Pipeline functions may be combined arbitrarily, whereby
each combination produces another pipeline. Each of these
pipes is a pure Clojure function from a Dataset to a Dataset,
where Dataset is a data structure used to handle data in
Grafter. The example can be seen in Listing 1:

1 -> (read-dataset data-file)
2 (drop-rows 1)
3 (make-dataset move-first-row-to-header)
4 (mapc {:gender {"f" (s "female")
5 "m" (s "male")}}))

Listing 1: Example of Grafter’s pipeline

Line (1) reads the tabular data and produces a Dataset,
and, using the thread-first macro, denoted by ”->”, takes
this initial value as its first argument, and threads it through
the following expressions, thus constituting a pipeline. Each
following line from the example above is a function call that
takes a Dataset and, optionally, other parameters as an input,
and returns a modified Dataset.

The functions’ uniformity in terms of input and output
makes it very intuitive for users to use pipelines for data
manipulation.

The Grafter library provides a set of useful functions
for processing tabular data4, to large extent overlapping the
data cleaning and transformation operations described in this
paper. However, some of the operations are not available or
were implemented with the different specification from the
one identified in Table 19. For this reason we developed a
subset of routines as an extension to Grafter. These routines
are accessible at Clojars5 – a public repository for open-
source Clojure libraries.

4http://api.grafter.org/docs/0.6.0/grafter.tabular.html
5https://clojars.org/grafterizer/tabular functions

http://grafter.org
https://clojure.org
http://api.grafter.org/docs/0.6.0/grafter.tabular.html
https://clojars.org/grafterizer/tabular_functions


The Grafterizer Graphical User Interface. Grafterizer
provides an interactive user interface with end-to-end sup-
port for data cleaning and transformation based on the
Grafter library. The resulting framework supports building
data transformations in an easy and interactive way. Tabular-
to-tabular transformations use data cleaning and transforma-
tion operations described in Section 4.2 and are specified in
a visual presentation of a pipeline, clearly separating the
order of data cleaning and transformation operations, used
to process the data (Figure 1). The basic functionalities are:
• Defining and editing data cleaning and transformation

operations – data cleaning and transformation operations
can be easily added, edited, reordered or removed. All
operations are defined with editable parameters (See Fig-
ure 2).

• Live preview – the framework interactively displays the
transformed dataset, thus supporting a real-time evalua-
tion of a defined transformation workflow. Live preview
also supports error reporting by notifying users about er-
rors during transformation execution in a pop-up window.

• Sharing and reusing the transformation workflows – the
feature is supported by the integration with the Data-
Graft platform. Transformations created with the help of
Grafterizer are stored as a sequence of operations on data
and can be reused and copied.
The Grafterizer framework was successfully used to per-

form data cleaning and transformation in different domains.
Notable examples include datasets from the biodiversity
and environment protection domain in the SmartOpenData6

project [24], infrastructure components and natural hazards
domain in the InfraRisk 7 project [31] and property related
datasets from the proDataMarket8 project [23].

5. Discussions and Related Work

The problem of data cleaning is well-known and is
covered by a number of publications in the state-of-the-art
research literature. In particular, many publications study
the data anomalies taxonomies [7], [8], [9], [10], [11],
[12], [13], [14]. The set of data anomalies discussed in
this paper covers tabular data anomalies and represents a
superset of tabular data anomalies described in data cleaning
literature. Furthermore, we categorize and document the
data anomalies as patters, and use the patterns to propose a
set of operations to address the anomalies, which we then
implemented in a prototype.

At the same time, a number of practical solutions were
developed in order to facilitate data cleaning. Currently
available software products for data cleaning and transfor-
mation for tabular data can be divided into several groups
as follows:
• Spreadsheet software still remains ubiquitous among data

workers [32]. This is mainly because spreadsheets are
a well-known abstraction to most data workers, have

6http://www.smartopendata.eu
7http://www.infrarisk-fp7.eu
8http://blog.prodatamarket.eu

a simple intuitive interface, and require no advanced
technical skills for their usage. Examples of spreadsheet
tools that can be used for tabular data cleaning are Libre
Office Calc9, Microsoft Excel10, Google Spreadsheet11

and many others. However, despite their simplicity and
interactive design, spreadsheet software products have a
number of limitations and disadvantages. Firstly, working
with spreadsheets is error-prone. Perhaps, the one most
well-known error made during spreadsheet data trans-
formation occurred in Reinhart and Rogoff’s austerity-
justifying paper [33]. Two Harvard economists published
a highly influential piece of work, which contained a
wrong conclusion due to an erroneous Excel spreadsheet
formula. Transformation workflow definition errors in
spreadsheets are rather difficult to identify – data and
transformation code are mixed together, significantly hin-
dering the process of code review. Furthermore, conven-
tional spreadsheets are typically limited in functionality
and so are incapable of coping with the most sophisticated
data quality problems. One more substantial disadvantage
of spreadsheet tools is that they are not suitable for
processing large amounts of data.

• Command line interface (CLI) tools are typically reliable,
provide a broad set of functionalities, give the ability to
automate data cleaning and conversion, and allow to make
this task repeatable. Examples of command-line tools are
csvkit12, CSVfix13 and others. Although the tools from this
group provide good functional coverage for data cleaning
and are able to handle large volumes of input data, they
suffer from the lack of convenient user interface.

• Programming languages and libraries for statistical data
analysis include, for example, Agate14 Python library for
data analysis, R15 programming language for statistical
computing and the data manipulation tools based on this
language, e.g., dplyr16 and tidyr17. The disadvantage of
the tools from this group is that they require users to have
considerable knowledge in programming.

• Complex systems designed to be used for interactive data
cleaning and transformation in ETL process. Examples of
relevant complex systems supporting data cleaning as a
part of ETL process include Pentaho Data Integration18,
Trifacta Wrangler19 and OpenRefine20. These systems are
designed specifically to support an ETL process and offer
a number of useful data manipulation functionalities.
Several factors should be considered when choosing the

right tool for data cleaning. The general-purpose functional-

9http://www.libreoffice.org/discover/calc
10https://products.office.com/en/excel
11https://www.google.com/sheets/about
12https://csvkit.readthedocs.io/en/1.0.1
13http://neilb.bitbucket.org/csvfix/manual/csvfix16/csvfix.html
14https://agate.readthedocs.org/en/1.3.1
15https://www.r-project.org/about.html
16https://cran.r-project.org/web/packages/dplyr/index.html
17https://blog.rstudio.org/2014/07/22/introducing-tidyr
18http://community.pentaho.com/projects/data-integration
19https://www.trifacta.com/products/wrangler
20http://openrefine.org
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Figure 1: Overview of Grafterizer’s interface

Figure 2: Overview of Grafterizer’s pipeline function

ity of the tool can be assessed by testing whether the tool can
be used to eliminate the basic data anomalies. The flexibility
of the tool defines how easy is it to eliminate more specific
data anomalies and perform complex data transformations.
Programming languages and systems providing a possibility
to use custom programming code provide the most flexibil-
ity, whereas command-line interface tools, spreadsheets and
some ETL tools are less flexible. Another factor that plays
an important role in choosing the tool for data cleaning is
ease of use. Given the fact that most of the data workers are
domain experts rather than IT-specialists [22], data cleaning
tools should be easy to use and understand. The ease of
use is inherent in spreadsheets and GUI ETL tools, while
programming languages require users to have considerable
knowledge in programming. The Grafterizer framework de-
scribed in Section 4.2 was designed to provide flexibility of
programming languages and at the same time keep ease of
use. An evaluation of the usability and ease of use has been
performed in [35].

6. Summary and Outlook

A simple analysis of a typical data cleaning and trans-
formation process indicates that most of the phases of
such a process require knowledge about data anomalies,

and mechanisms to address the anomalies. Thereby, this
paper focuses on tabular data anomalies. Although some
of the basic data anomalies appearing in tabular data are
known in the literature, no unified and generally agreed upon
approach in defining tabular data anomalies exists, making
it difficult to compare capabilities of existing data cleaning
solutions and identify possible extensions to make them
more comprehensive. In this paper we collected, categorized,
and documented basic tabular data anomalies as patterns in
a uniform way, independent of the data domain, the way
of data acquisition or the purpose of data cleaning, with
the aim of creating a reference resource for tabular data
anomalies. The proposed set of data anomalies patterns can
be used as a reference resource for tabular data anomalies
and can be of a great value for developing and enhancing
tools aimed to support general-purpose tabular data cleaning
capabilities. As a plan of future work we plan to do a
thorough comparison of software products for tabular data
cleaning and transformation based on the data anomaly
patterns.

Furthermore, we proposed a set of corresponding data
cleaning and transformation operations suitable for address-
ing tabular data anomalies, which can be used as a reference
resource for tabular data cleaning operations. The practical



feasibility of the the proposed data cleaning operations
was shown by the Grafterizer prototype — a data cleaning
framework implementing the proposed data cleaning and
transformation operations. As part of future work, we plan to
experiment with various Big Data back-ends for Grafterizer
to create a scalable solution for data cleaning. Furthermore,
to improve the user experience and usability of Grafterizer,
we plan to integrate aspects of visual data profiling and
predictive interactions as part of the process of data clean-
ing and transformation, which have been demonstrated and
evaluated in [35]. Finally, we plan to introduce spreadsheet-
like interactivity by allowing for direct manipulation of data
in the tabular preview.
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