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ABSTRACT 
Toxic effects of organic hydrophobic contaminants include impacts on fish heart rate 

and cardiac functioning. Thus, in ecotoxicology as well as aquaculture and even 

medicine, fish heart functioning has important application areas. We here present a 

pipeline of image processing and statistical techniques which has been assembled to 

extract heart rate information from microscopy videos of the embryo and larval stages 

of three species of fish (Atlantic cod, haddock and Atlantic bluefin tuna). The method 

allows for automatic processing in parallel of a large number of individuals, saving a 

significant amount of time compared with manual processing, while simultaneously 

eliminating the type of errors such a manual process can incur. 
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1. Introduction and Background 

The temporal and spatial overlap of the 2010 Deepwater Horizon (DWH) incident, in 
the Gulf of Mexico, with spawning of many commercially and ecologically important fish 
species resulted in a concern for potential effects of oil exposure on sensitive early life 
stages of large migratory and long-lived fish species, such as mahi-mahi (Coryphaena 
hippurus) (Incardona et al., 2014). Cardiotoxicity has been shown to follow from 
exposure of early life stages (ELS) of fish to polycyclic aromatic hydrocarbons (PAH) 
and other oil components (Incardona et al., 2006; Sørhus et al., 2015; Brette et al., 2014). 
Bradycardia (reduced heart rate) as well as other cardiotoxic effects (e.g. pericardial 
oedema, arrhythmia, cardiac looping and silent ventricle) have been observed in fish 
larvae exposed to PAHs, and such effects are linked to a reduction in the long-term 
survival and fitness of larvae (Incardona et al., 2014). Embryonic PAH exposure has 
been shown to cause bradycardia in hatchlings for several teleost species including cod, 
haddock (Sørhus et al., 2015), bluefin tuna and mahi-mahi (Incardona et al., 2014)). 
Embryonic bradycardia also appear to be a precursor for jaw, cranium and spine 
deformations in early larval development (Incardona et al., 2004). For a recent review 
of cardiac development in fish see (Incardona and Scholz, 2016). 
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Fast and robust methods to assess embryonic and larval health is of importance over 
a wide range of applications, including toxic exposure studies, aquaculture research, and 
environmental impact assessments. Video recording of embryos through a microscope 
may be used analytically to assess embryonic survival and health, and even used to 
predict delayed health effects. One endpoint which can be used for this purpose is heart 
rate, which can be extracted from videos. In medicine, zebrafish (Danio rerio) is used as 
an important in vivo vertebrate model to study the etiology of human cardiovascular 
diseases, for cardiovascular drug discovery, as well as for high-throughput screening of 
medicine (Kessler et al., 2015). Zebrafish bradycardia and atrioventricular block is used 
specifically as a model for screening the potential for drugs to induce repolarization 
abnormalities in humans (Milan et al., 2003). 

Measurements of cardiac function in toxicity studies are generally done using 
laborious, manual, and to certain extent subjective analyses of videos of embryos and 
larvae, and there is a great potential for time saving and quality improvement by 
automating and standardizing these analyses. More generally in the biological sciences, 
and particularly in medicine, image processing techniques have been used and 
developed for several decades. There is a continuing trend towards faster and cheaper 
computational resources, and evolving imaging technology that provides higher 
resolution and faster acquisition rates from off the shelf products. Combined with 
development of powerful, high-level software toolboxes for image processing (e.g. 
imageJ (Schindelin et al., 2015) and scikit-image (van der Walt et al., 2014)), there is 
today great potential for fast development of automated analysis tailored to specific 
application. A recent highlevel review of image acquisition and processing in the 
biological sciences illustrate the main components involved in such undertakings, as 
well as challenges that must be overcome (Eliceiri et al., 2012). 

In recent years, methods for automated image processing (Mikut et al., 2013; Pantazis 
and Supatto, 2014; Pylatiuk et al., 2014), and even machine learning techniques 
(Tharwat et al., 2015), have been developed to assist toxicology researchers in the 
analysis of video data. These recent efforts have focused mostly on zebrafish, a popular 
model species, which is particularly suited for such analysis due to very transparent 
tissue in early life stages. Many of these new advances in such automated analysis 
techniques have, however, been closely coupled to the hardware configuration used to 
obtain the images. This means that the analysis can become limited when applied to 
other microscope configurations or sampling procedures. There is therefore scope to 
widen the range of applications for automated analysis of heart function in microscope 
images, which may be obtained with sub-ideal conditions for computational analysis. It 
is often a challenge for automated image processing to handle unexpected features in 
images, which may appear relatively insignificant to a human. In the case of heart rate 
analysis, automated processing may become significantly more challenging if objects 
other than the heart itself move intermittently at the timescale of the heart rate, or if the 
frame rate, resolution or illumination conditions of the images is altered. Adapting 
image processing techniques to extract heart rates for multiple fish species with less 
optimal optical properties is possible, as we demonstrate here. 

In the following sections we present an automated analytical approach for 
multispecies fish embryos and larvae to extract heart rates from video data, for use in 
toxicological applications to determine the potential for pollutants to cause cardiotoxic 
and developmental effects. The work-flow of the method is specifically constructed to 
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handle a relatively wide range of microscope configurations and magnifications so that 
is can be applied to video microscopy data which may not have initially been intended 
for the purpose of detailed automated heart rate analysis. Advances to existing video 
microscopy analysis methods are achieved by the application of signal processing and 
filtering techniques, combined with a robust identification of heart regions. We 
illustrate the method by extracting heart rates for three different species and two life 
stages. Comparisons with data previously obtained using traditional counting methods 
are made to assess the accuracy of the automated method. We also demonstrate the 
method by applying it to video data obtained from a toxicological exposure study of cod 
larvae, where a significant change in heart rate between control and exposure group is 
found. 

 

 

2. Method 

Before discussing the details of the automatic heart rate extraction method in section 
2.2, we first briefly summarize the experimental setup used to collect the data which we 
have used to test our method. 

2.1. Selection of fish species and maintenance 

Three different species of fish were used for testing the method for automated heart 
rate measurements: Atlantic cod (Gadus morhua), haddock (Melanogrammus 
aeglefinus) and Atlantic Bluefin Tuna Fish (ABTF) (Thunnus thynnus). Examples of 
embryo and larval stages of these are shown in figure 1. 

Newly fertilized eggs were transported by airfreight to SINTEF Sealab (Trondheim, 
Norway) within 12 hours from Spain (ABFT) or Bergen (cod and haddock) in 
temperature controlled transporter cases. Embryos and hatched larvae were kept at 
constant water flow (approx. 17 ml clean sea water/min) in 5L tanks at 5◦C (cod and 
haddock) or 25◦C (ABFT). The seawater used was natural seawater from 
Trondheimsfjord extracted at depth of 70 m, passed through a sand filter for removing 
larger particles before a final filtering step removing particles larger than approx 4µm 
by a cartridge filter (Cuno, US). 

Microscope videos of embryos were obtained for ABFT approximately 32 hours post 
fertilization (hpf). Cod and haddock videos were obtained approximately 14days post 
fertilization (dpf). Cod and haddock develop much slower than ABFT, so heart rates are 
visible only after organogenesis (>12 dpf at 5◦C). As a positive control for bradycardia, 
cod embryos (11-15 days post fertilization, 7°) were treated with produced water 
containing approximately 30µg/L T-PAH, for 4 days of static exposure. Briefly, a 
dichloromethane (DCM) extract of a North Sea produced water was reconstituted into 
sea water by first removal of DCM by evaporation using nitrogen followed by addition 
of filtered sea water and ultrasonication for solubilizing produced water components in 
sea water. The PAH concentrations were measured in extracts of water samples using 
standard gas chromatography – mass spectrometry (GC-MS) as described elsewhere 
(US EPA, 1986; Faksness et al., 2012). Previous studies have shown that PAH exposures 
of fish embryos to this concentration causes bradycardia (Incardona et al., 2014). 



4 

Videos of hatched larvae were collected approximately 1 day post hatch (dph) for 
ABFT and 2 dph for cod and haddock. They were immobilized in methylcellulose 
(Incardona et al., 2014) and the cardiac area was imaged for 1 minute using a 
microscope. 

Embryos and fish larvae were filmed using a dissecting microscope (Nikon eclipse 80i 
microscope with a 2xPlanApo objective) connected to a JVC-camera for ABFT and Leica 
MC170HD-camera for cod and haddock. 

2.2. Automated heart rate extraction 

The basis for the approach is founded on the hypothesis that the heart beat signal 
corresponds to variations in image intensity within a region of interest (ROI) that covers 
the heart of either fish embryos or larvae. For visual counting of heart beats to be 
possible, this must necessarily be the case. Thus, by extracting the time series of 
intensity for each ROI, heart rates, beat to beat variations, and other quantities of 
interest may be calculated. The main steps to achieve this are outlined below and 
described in detail in the subsequent sections: 

(1) Identify region of interest covering heart tissue, 

(2) Loop through video frames, extracting intensity signal from ROI, 

(3) Analyse signal from previous step to calculate quantity of interest. 

Unfortunately, this procedure is complicated by several issues: video noise, motion of 
embryos/larvae, varying orientation of embryos in the same video, and ‘frame drift’, the 
latter being caused by motion of the whole imaging region relative to the camera. These 
can all be handled to some extent, but the most severe cases can cause the method to 
produce inaccurate results. 

The presented analysis pipeline is written in Python, and makes use of the scikit-
image package (van der Walt et al., 2014), as well as the standard Python scientific stack 
(numpy, scipy, matplotlib) (Hunter, 2007; Oliphant, 2007). To parse the video files, 
imageio is used (Klein, Klein). 

The analysis runtime for a single video is typically a few minutes on a modern desktop 
computer, but does depend on video resolution, duration and framerate. For instance, 
in the case of haddock embryos (50s duration, 30 FPS, 1080x1920 pixel resolution), 
extracting heart rates for four identified embryos took approximately 40 seconds on a 
Intel Xeon 3.3 GHz machine. On a modern multi-core computer several videos can be 
analysed simultaneously (typically 4-8), while making use of a small computing cluster 
can bring this up to 100 videos or more. 

2.2.1. Identifying heart tissue 

A video frame (or image) at time t is a single-channel n×m integer array of intensity 
values in the range [0,255]. We denote this as I(t). For a discrete, given time tk, we use 
Ik. Binary (black-and-white) images are denoted B. The intensity of a single pixel (i,j) in 
a frame at time tk is denoted Iijk. 

To identify the heart region of interest (ROI) within a video, differences in intensity 
are calculated. Specifically, given a sequence of N video frame images I1,I2,...,IN, the 
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absolute difference sum image D is calculated between images separated by a user-
defined frame interval df as: 

  (1) 

The frame interval df is required in order to handle discrepancies between intensity 
difference and frame rate for differing species (i.e. a high frame rate and slowly changing 
intensity requires a larger df). Note that the difference must be computed with floating 
point representation (not integers) to achieve sufficient precision for ROI detection. 

Calculation of D is performed on one image channel, typically either the V (HSV) or L 
(Luv) channels. An example of the resulting D image is shown in figure 2 (top). D is then 
further processed to identify candidate ROIs. First, filtering is applied to remove noise, 
using either a bilateral denoising filter (denoise bilateral function in skimage) or a 

Gaussian filter (embryos), producing D˜. Then thresholding is performed with the 

greatest value from the Otsu (Otsu, 1979) and Yen (Jui-Cheng Yen et al., 1995) methods, 
to produce a binary image B, from which small objects are removed, and any holes in 
the resulting image are filled. The cleaned binary image is then labeled, producing 
numbered objects, as shown in figure 2 for the case of embryos. For larvae, the 
thresholding is used to identified the single heart region, which is then enclosed by a 
convex hull, as shown in figure 4 (top). 

2.2.2. Extracting the heart rate signal 

With the approximate heart region established by the calculated ROI, an intensity signal 
for heart rate determination can be extracted. This is done by looping through the video 
frames, transforming each frame to the Luv color space and extracting the ROI in the L 
channel. Then, either the mean or standard deviation is calculated on the n masked pixel 
values, 

  (2) 

  (3) 

In a previous study on extracting heart rates from videos of zebrafish larvae, the 
standard deviation approach was used (Pylatiuk et al., 2014). In either case, an 
approximately periodic time series h(t) is obtained, which should contain the heart beat 
signal. 

The signal h(t) is detrended and normalized before proceeding to the next step, 
yielding h0(t). Detrending is performed by subtracting the rolling mean with a window 
length which should cover several heart beat periods. This signal is then normalized by 
subtracting the signal mean µh, and dividing by the signal standard deviation σh, 
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 . (4) 

The result is shown in figure 3 (left) for embryos, and in figure 4 (bottom) for larvae. 
The frequency content of the intensity signal is analysed using the Welch periodogram 
(figure 3, right). If a good quality and clean signal was obtained in the previous step, the 
periodogram will be dominated by a peak at the heart beat frequency, which is taken as 
the heart rate value. Higher harmonic peaks of the fundamental (heart beat) frequency 
may occur, which are caused by weaker periodic maxima in the intensity signal, phase 
shifted from the main heart rate signal. This is mostly an issue for the larval heart rate 
signals, because these resolve the complex heart contractions and motions to a much 
greater degree. The search for a heart rate value is restricted to a subset of the possible 
frequencies permitted by the signal, typically from near zero to a few multiples of the 
expected heart rate (red region in figure 3, right panel). This improves extraction of 
heart rates from videos with excessively high-frequency noise in the ROI signal. 

In the set of videos considered here, motion of the larvae or embryos is a common 
occurrence. This will affect the extracted heart rate signal by introducing additional 
signal components, and in some cases the motion is such that the initially determined 
heart ROI is no longer valid. For these reasons, it is necessary to infer when motion 
occurs, and to discard the corresponding time intervals in the signal h(t). One possible 
solution is to calculate the pixel-normalized frame-by-frame difference, 

  (5) 

where m is the number of pixels in the image. This time series (d(t)) is then smoothed 
with a Savitzky-Golay filter (from scipy), see figure 5. Time intervals with excessive 
motion are identified by points (red markers) in d(t) (thin blue full line) with greater 
than three times the median value of d (upper blue dashed line). The largest contiguous 
time interval without identified motion is then used to sub-sample the full heart rate 
signal. The candidate intervals are given by the black full lines. This approach was often 
successful in extracting a heart rate from noisy videos/signals where animal twitched, 
but does break down in the most severe cases, as discussed in the result section. It may 
be possible to further improve on the method by using Dense Optical Flow techniques 
(see e.g. (Uchida, 2013)) to quantify motion in the whole frame, and then use this to 
reposition the ROI, but we have not pursued this further in the present study. 

3. Results and discussion 

A number of videos for the three different fish species have been analyzed. An overview 
of the data and key performance metrics for the automated method is shown in table 1. 
The ROI accuracy indicates the percentage number of heart regions that were correctly 
identified, while the heart rate (HR) accuracy is the relative median difference between 
the values of the automatic (A) and manually counted (M) heart rate values, 
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For haddock and tuna embryos, no manual data were available for comparison. We have 
two different datasets for cod embryos (A and B), with manual data only available for 
data set A. Thus, we made comparison with four different manual data sets (cod embryo 
A, cod larvae, haddock larvae and tuna larvae). 

In figure 6 all extracted heart rates are shown for the three species and two stages 
(only dataset B for cod embryos). If outlier values are disregarded (indicated by black 
diamonds), differences in the median heart rate values both between species, and 
between embryo and larval stages for the same species can be seen. Notably, bluefin 
tuna has a significantly higher heart rate than cod and haddock. In all cases, larvae have 
higher (median) heart rates compared to the embryos. The outlier values correspond 
generally to cases where either the heart ROI was incorrectly identified, or where severe 
motion (twitching) drowned out the heart rate signal. 

Comparing the automatically extracted heart rates with a dataset of manually 
counted values, we find overall good agreement, as shown in figure 7. For the cod 
embryos the agreement is particularly good, with a median difference of only 2%. The 
cod larvae results are also in close agreement, except for some outliers (9, red points, 
excluded), which we exclude from the median difference. Data points were flagged as 
outliers using two criteria: either the signal processing routine has flagged the heart rate 
signal or identified ROI as suspicious, or the video/heart beat was flagged as 
problematic during the manual counting procedure (either strongly arrhythmic or 
severe twitching. In the case of haddock and bluefin tuna there is more scatter, but the 
agreement is still fair. We also note that all tuna larval heart ROIs where correctly 
identified (table 1). The points far off the centreline in the haddock (4, red points, 
excluded) and tuna (3, red points, excluded) plots are caused by severe twitching in the 
videos, causing either ROI misidentification or heart rate signal drowning. The Pearson 
correlation coefficient has been calculated in all cases, with the red points excluded, and 
is given in the subplot headings (last number). Generally, outliers from the main cluster 
of heart rates can be automatically flagged for a quick manual inspection, using for 
instance the box plot method, cf. figure 6. 

The method has also been tested on videos from a toxicology study, where cod 
embryos (11-15 days post fertilization) were exposed to a reconstituted produced 
water extract. Here we compare the control group with the group exposed to produced 
water, cf. figure 8, which were exposed to 30µg/L T-PAH for 4 days (static exposure). 
This T-PAH concentration has previously been shown to cause cardiotoxic responses 
(like bradycardia) in marine cold-water embryos (Sørhus et al., 2015; Sørhus et al., 
2016). Discarding some outlier points, the exposed group had a lower median heart rate 
of approximately 10 bpm (26.2 vs 35.0 bpm). These differences are comparable to 
results from a study by Sørhus et al (2016) where HR reduction (bradycardia) was 
observed in haddock embryos exposed to 7 µg T-PAH/L (HR: 20 ± 6 bpm) compared to 
controls (26 ± 3 bpm).  
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4. Conclusions 

The potential for computer-assisted automation to greatly speed up analysis tasks in 
toxicology studies has been demonstrated and realized. We have developed an 
automated image processing method for extracting heart rates from video data of early 
life stages of fish, and applied it to the embryo and larval stages of three different 
species. The ability to analyse existing video data, recorded with standard techniques 
rather than a set-up optimized for image processing is useful. Given the premise of non-
optimized videos, the method provides decent performance both in terms of heart rate 
accuracy and heart identification. Applicability to toxicology studies was shown by 
identifying a 25% decrease in median heart rate between a cod embryo control group 
and a group exposed to produced water. 
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Table 1: A summary of key data set parameters: number of individuals per stage and 
species, number of correctly identified heart regions (ROIs), and the relative median 
deviation of automatic to manually extracted heart rates. 

Data set Num. individuals ROIs detected ROI accuracy HR deviation 

Cod embryos A 25 19 76% 2% 

Cod embryos B - 59 - - 

Haddock embryos - 60 - - 

Tuna embryos - 53 - - 

Cod larvae 41 40 98% 2% 

Haddock larvae 24 22 92% 7% 

Tuna larvae 36 36 100% 3% 
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Figure Legends 
 

 
Figure 1: Example images of the three fish species used. Top from left to right: Cod 
embryo, haddock embryo and tuna embryo. Bottom from left to right: Cod larvae, 
haddock larvae and tuna larvae.  
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Figure 2: Top: Successive sum of frame differences (intensity), where red indicates 
areas of high intensity differences and blue for low intensity differences. Bottom: 
Automatically segmented and labelled heart ROIs. 
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Figure 3: Extracted signal for one identified embryo heart ROI, and the corresponding 
spectrum (Welch periodogram). 
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Figure 4: Heart rate region of interest identified from a video of a haddock larvae (upper 
figure), and the corresponding normalized intensity signal (lower figure). The inset in 
the upper figure shows the successive frame difference, highlighting the moving heart 
tissue. 
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Figure 5: Sum of frame-by-frame intensity difference, normalized to number of pixels 
(in the frame) and smoothed (thin blue line). This is used to remove time interval with 
too much general motion in the videos. See text for details. 
 
 
 

 
Figure 6: Distribution of heart rates for three species, two stages. 
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Figure 7: Correlation between automatic and manually determined heart rates. Median 
difference, relative median difference and Pearson correlation (subplot headings) are 
given for the blue points only. The dashed diagonal lines indicate perfect correlation, 
and have been added as a visual guide. See text for details. 
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Figure 8: Heart rates of cod embryos exposed to produced water vs. control. 
 


