
ThingML: A Generative Approach to Engineer
Heterogeneous and Distributed Systems

Franck Fleurey, Brice morin
SINTEF Digital

Email: first.last@sintef.no

I. TOPIC

A. Summary

Cyber Physical Systems (CPS) typically rely on a highly
heterogeneous interconnection of platforms and devices of-
fering a diversity of complementary capabilities: from cloud
server with their virtually unlimited resources to tiny micro-
controllers supporting the connection to the physical world.
This tutorial presents ThingML, a tool-supported Model-
Driven Software Engineering (MDSE) approach targeting the
heterogeneity and distribution challenges associated with the
development of CPS. ThingML is based on a domain specific
modelling languages integrating state-of-the-art concepts for
modeling distributed systems, and comes with a set of com-
pilers targeting a large set of platforms and communication
protocols. ThingML has been iteratively elaborated over the
past years based on a set of experiences and projects aiming
at applying the state of the art in MDSE in practical contexts
and with different industry partners.

B. Goals and Take-away messages

The goals of the tutorial are to:
1) reflect on these previous experiences to motivate the

current ThingML approach and its implementation,
2) describe the ThingML approach and its usage by the

actors involved in the development of CPS, and
3) provide hands-on experience with the associated tools.
The take-away messages the audience should leave with:
1) ThingML: UML components and state machines made

practical
2) ThingML: Generative techniques that just work (com-

piles to C, JS, Java)

C. Intended audience

The tutorial is targeted both at researchers and practition-
ers. Average programming (e.g. Java, JavaScript or C) and
modelling skills (state machines, components) are required.
Participation to the hands-on exercises requires a laptop with
Oracle Java JDK 8 installed and capable of running Eclipse
(Windows, Linux and Mac are supported). All the tools,
samples and exercises used during the tutorial are open-source
and will be distributed through USB sticks and installed during
the tutorial. The installation is rather lightweight: simply
execute Eclipse from the USB stick or copy Eclipse to the
PC and execute Eclipse from the PC.

Ideally, participants can visit https://github.com/SINTEF-
9012/ThingML and read the README file so as to get
started before the tutorial.

II. IMPLEMENTATION

A. Length
The tutorial is the standard 1/2 day.

B. Level
Beginner / Introduction, with possibilities to approach more

advanced topics depending on requests from the audience.

C. Content and Outline
This tutorial targets the development of software systems

for which the software has to be distributed within an infras-
tructure composed of a set of heterogeneous interconnected
computational nodes. Most Cyber Physical Systems (CPS) and
Internet of Things (IoT) applications fall under this category.
In the following we only refer to CPS as the target systems
but (i) the approach applies more generally to any software
system with similar requirement in terms of heterogeneity and
distribution (ii) the sub-set of CPS which can be implemented
with a centralized approach and/or a single platform is not
within scope.

The next sections follow the outline of the tutorial and pro-
vide indicative timing for each part of the tutorial. Questions
and remarks from the audience will be handled as they come
during the sessions.

1) SE Challenges in CPS development [15 min]: The
typical infrastructure of a CPS is composed by a highly
heterogeneous interconnection of platforms and devices of-
fering a wide diversity of capabilities. On the one end of
the continuum, cloud platforms provide virtually unlimited
and "on-demand" resources in terms of computation power,
storage and bandwidth. On the other end, the already vast and
rapidly increasing number of smart objects, sensors, embedded
systems and mobile devices connected to the Internet offers
the connection to the users and to the physical world. While
offering great potential for innovative CPS, the heterogeneity,
diversity and vast distribution of the computing continuum
represent daunting challenges.

Current software engineering approaches tend to provide
support for managing and exploiting only parts of the con-
tinuum. For example, current cloud computing and service-
oriented software engineering practices provide efficient ab-
stractions for virtualizing the infrastructure in order for the

Final version available at IEEEXplore : http://dx.doi.org/10.1109/ICSAW.2017.63 



Fig. 1. Popularity of 10 programming languages for the different areas related
to CPS development

software engineer to concentrate on the business logic of
the applications. However these techniques merely support
integration of mobile devices, sensors and actuators "as-a-
service" and lack specific support for advanced exploitation
of these small devices.

Furthermore, although sensor network nodes, gateways,
smart-phones, and most smart-objects are provided with APIs
and development environment which allow advanced exploita-
tion of their capabilities. There are no common practices to
expose the level of flexibility, languages, APIs and customiza-
tion supported by different devices and platforms at the level
of what is provided in cloud and service oriented approaches.

Software for the different classes of devices are typically
built using different approaches and languages. In order to
understand the skills and capabilities required to develop a
CPS on top of such an infrastructure, we queried a popular
open-source repository (GitHub) to evaluate the heterogeneity
of programming languages across the continuum. The follow-
ing sets of keywords were used: 1) Cloud: server with virtually
unlimited resources, 2) Microcontroller: resource constrained
node (few KB RAM, few MHz), 3) Mobile: an intermediate
node, typically a smartphone, 4) Internet of Things: Internet-
enabled devices, 5) Distributed systems, as services exploiting
CPS have to be distributed across the continuum, and 6)
Embedded systems, as a large and important part of the CPS
implementations will run as close as possible to physical
world, embedded into sensors, devices and gateways.

Figure 1 presents the results of those queries. The queried
keywords are presented on the x axis together with the number
of matches for that keyword. For each keyword, the y axis
represents the popularity (in percent of the total number
of matches) of each of the 10 most popular programming
languages that we encountered.

This simple study indicates that no programming language
is popular across the whole continuum. A general trend indi-
cates that Java and JavaScript (and to some extent, Python and
Ruby) are popular in the higher-end of the continuum (cloud
and mobile), whereas C (and to some extent, C++) is a clear
choice for developers targeting embedded and microcontroller-

based systems. Other languages do not score more 10% for
any of the keywords. For all keywords except “Cloud”, the
combined popularity of Java, JavaScript and C/C++ (i.e, the
sum of the percentages) is above 70%. For “Cloud” we observe
a certain homogeneity with Python, Ruby also being very
popular, so the combined popularity of Java, JS and C/C++
is only 50%. It is also worth noticing that the most popular
language for a given keyword scores very poorly (less than
5%) for at least another keyword.

2) State of the Art / Practice [15 min]: The following sub-
sections review a set of typical software engineering practices
used to manage (or avoid) the heterogeneity problem when
developing CPS.

a) Centralized system which uses devices "as-is": This
is a common approach for simple systems for which all the
logic can be implemented in a central program. Most simple
Internet of Things applications rely on dumb things, devices
and sensors which constantly communicate to a central unit
running the application. The central unit can be a server in
the cloud, a home automation gateway or in some cases a
mobile phone. This centralized design makes development,
deployment and maintenance easy but it is also restrictive
in term of applications functionalities, quality of service and
scalability. This approach is not suited for most CPS.

b) Avoid problems by carefully selecting platforms:
When designing an application and its infrastructure from
scratch, the designer can select a set of platforms which are
"compatible" and for which an integrated software framework
or middleware already exists. For example, when building
sensor networks, a set of motes, gateways and back-end servers
can be selected based on software capabilities which are
compatible with each other’s. Another possibility is selecting
popular generic platforms (for example Arduino) for which
large set of libraries and software components are already
available and build the application around those components.
This approach is only suited when building a CPS from the
ground up and restricts the choice of platform which can be
used.

c) Hide behind an homogeneous software layer: Deploy
a common runtime platform or middleware to all different
devices in order the then easily deploy software components to
any node of the system. This solution, for example advocated
by Java’s "write once, run everywhere" motto, consists in
hiding the heterogeneity behind a virtual machine. When
applicable, this is a good approach to eliminate the accidental
heterogeneity between platforms. In the case of CPS the range
of platforms is too wide to be fully covered by a single
language or middleware. In addition only the common sub-
set of platforms features can be exposed and some runtime
overhead is inevitable. The greater the range of covered
platforms is stretched, the less features are can be exposed
and the higher the overhead. This approach also restricts the
choice of platforms which can be used.

d) Custom develop manually all pieces of software: In
some domain (automotive, aeronautics, etc) where systems of
mixed criticalities have to be implemented, the heterogene-



ity cannot be avoided or hidden. Some critical part of the
software has to run in real-time on some specific hardware
(typically resource-constrained hardware, approved to run in
harsh conditions), while some less critical software (e.g.
related to entertainment) can run on more permissive and less
constrained hardware. In this case, the only solution is to have
a large team of developers, each specialized in a given platform
and using platform specific techniques. This results in high
development costs [?] (the cost of software in a car ranges
from 15 to 45% of its total cost) which can only be acceptable
in specific situations (e.g. critical systems, mass production).
This is the only solution which currently allows exploiting
every piece of the infrastructure of a CPS to its full potential.

None of the solutions presented above allow exploiting the
CPS continuum platforms to its full potential.

3) MDE: Promises, Strengths and Weaknesses [15 min]:
The model based software engineering community has pro-
posed the Model-Driven Architecture (MDA) (and a number
of related techniques) for abstracting from heterogeneous plat-
forms. The idea of those approaches is to describe the logic of
the system in platform independent models which can then be
transformed into different platform specific executable code.
The benefit of those approaches is to allow producing sets of
implementation fitting different target platform. Another ad-
vantage is that it does not impose a runtime overhead and can
allow for the generation of optimized native code. While some
of these approaches have been adopted in specific domains
(e.g. telecommunications or critical embedded systems) their
practical adoption remains limited. Some of the main reasons
are that systematically describing behaviour in a platform
independent way introduce an important accidental overhead,
the difficulty of creating and maintaining high quality code
generators, the difficulty of integrating with legacy and other
components developed using other approaches. Another barrier
to the wide adoption of model-driven development is the high
complexity of the UML (both syntactic and semantic) which
typically limits its practical use beyond the design phase.

4) ThingML Approach [30 min]: The objective of the
ThingML approach is not to compete or replace any of
existing languages, practices or frameworks which are used
on individual target platforms. The idea is to provide a way to
practically combine software components using these different
heterogeneous techniques and platforms to build a complete
CPS. The ambition of the approach is to support the complete
life-cycle of the software components, from design time to
implementation and evolutions.

The first phase in the realization of a CPS is the design
phase where the main components of the system are defined
and the infrastructure on which these components will run
needs to be selected. In practice, as for any realistic systems,
some of the system components and some of the infras-
tructure will be based on of-the-shelf and legacy systems.
This is especially true for CPS which typically result from
a combination of pre-existing hardware and software. For
the design and modelling of CPS, the software engineering
literature and practices include some well adopted abstractions.

The ThingML approach integrates popular abstractions, which
have been adopted across the range of CPS platforms, into
the ThingML language. The purpose of this domain-specific
modelling language is to capture the architecture of the CPS
and the communication required between the different com-
ponents. In terms of modelling components, the ThingML
language provides a flexible solution either to model the
complete behaviour of components, or integrate off-the-shelf
or legacy components as black boxes.

The ThingML language includes:
• Component types with ports and asynchronous mes-

saging: this is the base for the approach; all parts of
the system have to be described as components with
asynchronous messaging interface. This is a well adopted
model for all kinds of distributed system.

• Event-based reactive programming: the behaviour of
components can be expressed using event processing
rules. Our current implementation is limited to event-
condition-action rules but planned extensions will include
complex event processing constructs allowing combining
event or constructing complex event from the events
occurring within a certain timeframe.

• Composite State Machines: the behaviour of compo-
nents can be structured in a state machine. The state
machines in the ThingML languages are aligned with
UML2 state charts and include composite states, regions
and history states.

• Action language: An imperative action language and
expressions allow fully modelling all conditions and
actions within event processing rules and within state
machine in a platform independent way. This action and
expression language also includes a template language
for easily embedding or linking platform specific code.

The rationale for creating a new domain-specific modelling
language for the ThingML language is (i) no existing mod-
elling language provide the exact set of concepts needed (for
example UML 2.x contains numerous additional concepts but
still lacks a few, in particular a practical platform independent
action language) and (ii) in order to allow supporting all
subsequent phases of the CPS life-cycle with practical tools
based on the same concepts and the same well defined seman-
tics. In order to ease the adoption of the ThingML language,
all concepts and their semantics are aligned to a subset of
the UML 2.x standard. One key tooling difference with the
UML is that the ThingML language primary concrete syntax
is lexical and not graphical.

5) Break: It will be a break during the tutorial, aligned with
the official schedule of ICSA. The presenters might slightly
adapt the schedule to fit the official ICSA schedule.

6) Tooling and Methodology [25 min]: The ambition of
the ThingML language is to support the implementation
and integration of the different parts of the CPS, including
the integration of legacy and of-the-shelf components. The
ThingML approach has a cost that comes as a consequence of
this flexibility. At a certain abstraction level, all components
interfaces need to be described in terms of the ThingML



language in order to allow for their integration in the system.
However, it is important for any existing platform, library,
framework or middleware to be usable without re-inventing,
re-modelling or re-implementing it. In the design of the
ThingML approach and code generation framework, a special
attention is put to avoid introducing any accidental overhead
beyond what is strictly necessary for the integration of the
implementation artefacts.

For the components developed from scratch or for which
the target runtime environment might change, the ThingML
language provides with all the required expressiveness to
fully specify the behaviour of a component in a platform
independent way. Different code generators can then be used to
produce code for different platforms (currently Java, Javascript
and C/C++). This is similar to typical MDE platform inde-
pendent models with a set of code generators (or compilers)
for different platforms. For the integration of an existing
component, the ThingML approach allows modelling only the
required part of interface of the component and mapping to
its public platform specific API. This is similar to typical
wrapping of external components and libraries such as for
example Java Native Interface for Java to interact with a native
library.

The contribution of the ThingML approach is to give the
flexibility to develop components which are neither fully
platform independent nor direct wrapping around existing
components, but rather an arbitrary combination of exiting
libraries, platform features and application logic. In practice,
most of the components of a CPS fall under this category and
being able to efficiently integrate these different elements is a
key goal. The way the ThingML approach implements such
capabilities is two-fold. First, a set of special constructs and
actions are included in the ThingML action languages in order
to seamlessly interleave platforms specific code and platform
independent code. Second, the ThingML approach relies on
a highly customizable framework code generation framework
which can be tailored to specific target languages, middleware,
operating systems, libraries and even build systems. A total of
8 formal extension points have been identified in the ThingML
code generation framework in order to allow the developer to
easily and efficiently customize parts of the code generation
process.

7) Exercise 1: ThingML for CPS Developers [30 min]:
The CPS developer is using ThingML to create the models of
the CPS and can create and/or use some re-usable ThingML
libraries. Most of the contributions of the CPS developer have
to remain at the platform independent level. This first hands-
on exercise demonstrates the usage of the ThingML language
and the possibility to generate executable code for different
platforms.

CPS developers are the primary users of the ThingML
approach. The CPS developer has to interact with a number
of platform experts in order to select (or learn about) the
platforms which will be used in the infrastructure. In the event
that some of the some platforms are not supported by the
ThingML code generation framework, the platform experts

needs to create new plugins for the in order to support and
expose the capabilities of the required platforms.

8) Exercise 2: ThingML for Platform Expert [30 min]:
The platform experts are responsible for creating new libraries
and code generation plugins for ThingML. These libraries
allow capturing the expert knowledge in order to support
new platform and their specific capabilities and to make them
available to CPS developers. The platform expert can use a
number of different extension points in order to support both
the design time and the runtime support of a given platform.
This second hands-on session will illustrate these different
extension points on concrete examples.

III. PRESENTERS’ BACKGROUD

Dr. Franck FLEUREY is a senior research scientist
at SINTEF Digital in Oslo, Norway. He received a PhD
degree in Computer Science from the University of Rennes
1 (France) in 2006. One contribution of his thesis was
the Kermeta meta-modelling language and framework. His
research interests include model-driven software engineering,
embedded systems, product lines, adaptive systems and
software validation. He has been active in the software
modeling community for more than 10 years with a focus on
developing and using MDE approaches in both academic and
industry-driven projects. In particular, he is the initiator and
one of the main contributor of ThingML. He is the author of
more than 90 peer-reviewed publications totalizing over 4000
citations. He has given tutorials about Kermeta and ThingML
in several reputed venues including ICSE and MODELS
conferences.

Dr. Brice MORIN is a research scientist at SINTEF
Digital in Oslo, Norway. He holds a PhD degree iin
Computer Science from the University of Rennes, France.
His research focuses on investigating sound and practical
modelling foundations for software systems (ranging from
the cloud to the Internet of Things), available throughout
their lifecycles. Together with his colleagues, he pioneered
the models@runtime paradigm in the context of EU project
DiVA. He is one of the main contributor of ThingML. Since
2007, Brice published more than 60 peer-reviewed papers
totalizing more than 1600 citations. Together with Franck
Fleurey, he has given a ThingML tutorial at MODELS 2015.

The presenters are the two core developers of the ThingML
approach and its associated open-source toolset developed in
the context of the HEADS EU FP7 research project.

IV. TUTORIAL’S BACKGROUND

Some of the material of the tutorial has been presented as
journal papers, conference papers and university lectures.

A previous version of this tutorial has been presented at
ACM/IEEE MODELS 2015 conference to 30 attendants.

V. ACKNOWLEDGEMENTS

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7) under grant
agreement no 611337, the HEADS project (www.heads-project.eu).


	Topic
	Summary
	Goals and Take-away messages
	Intended audience

	Implementation
	Length
	Level
	Content and Outline
	SE Challenges in CPS development [15 min]
	State of the Art / Practice [15 min]
	MDE: Promises, Strengths and Weaknesses [15 min]
	ThingML Approach [30 min]
	Break
	Tooling and Methodology [25 min]
	Exercise 1: ThingML for CPS Developers [30 min]
	Exercise 2: ThingML for Platform Expert [30 min]


	Presenters' Backgroud
	Tutorial's Background
	Acknowledgements

