SINTEF
PROCEEDINGS

Proceedings of the 12" International Conference on
Computational Fluid Dynamics in the Gil & Gas,
Metallurgical and Process Industries

Progress in Applied CFD -
CFD20T/

SINTEF




SINTEF Proceedings

Editars:
Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD - CFD2017

Proceedings of the 12" International Conference on Computational Fluid Dynamics

in the Gil & Gas, Metallurgical and Process Industries

SINTEF Academic Press



SINTEF Proceedings no 2

Editars: Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD - CFD2017

Selected papers from 10" International Conference on Computational Fluid
Dynamics in the Oil & Gas, Metallurgical and Process Industries

Key words:
CFD, Flow, Madelling

Cover, illustration: Arun Kamath

ISSN  2387-4295 (online)
ISBN  978-82-536-1544-8 (pdf)

© Copyright SINTEF Academic Press 2017

The material in this publication is covered by the provisions of the Norwegian Copyright
Act. Without any special agreement with SINTEF Academic Press, any copying and
making available of the material is only allowed to the extent that this is permitted by
law or allowed through an agreement with Kopinor, the ReproductionRights Organisation
for Norway. Any use contrary to legislation or an agreement may lead to a liability for
damages and confiscation, and may be punished by fines or imprisonment

SINTEF Academic Press

Address: Forskningsveien 3 B
PO Box 124 Blindern
N-0314 0SLO

Tel: +477358 3000

Fax: +47 22965508

www.sintef.no/byggforsk
www.sintefbok.no

SINTEF Proceedings

SINTEF Proceedings is a serial publication for peer-reviewed conference proceedings
on a variety of scientific topics.

The processes of peer-reviewing of papers published in SINTEF Proceedings are
administered by the conference organizers and proceedings editors. Detailed
procedures will vary according to custom and practice in each scientific community.



PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

Cardiovascular diseases, like Carotid Artery Disease and Coronary
Artery Disease (CAD) are associated with the narrowing of artery
due to build-up of fatty substances and cholesterol deposits (called
plaque). Carotid Artery Disease increases the chances of brain
stroke. Hence, the main objective of this work is to apply computa-
tional tools to help differentiate between the healthy and unhealthy
artery (with 25% stenosis) using a combination of Computational
Fluid Dynamics (CFD) and data mining tools. In this work, first,
the CFD has been qualitatively shown to provide similar results
as the experimental Phase-Contrast Magnetic Resonance Imaging
(PCMRI) technique. The CFD simulation shows that wall shear
stress is an ideal parameter to identify the location of plaque forma-
tion and the existence of plaque conditions in the body (due to over-
all higher spatially averaged wall shear stress in the clogged case at
all times in the cycle). Then data mining tools like Fast Fourier
Transform (FFT) and Proper Orthogonal Decomposition (POD)
have been used to unearth a pattern that can be useful for diagno-
sis. FFT shows that the flow constriction induced by plaque leads
to lesser variation in magnitudes of energy of dominant frequencies
at different locations like, wake region, mid-Internal Carotid Artery
(mid-ICA) and mid-Common Carotid Artery (mid-CCA) regions,
while for cleaner artery, there is more variation in the magnitude of
energy of these dominant frequencies when measured at wake, mid
ICA and mid CCA region. POD helps by confirming the location
of regions with high energy in decomposed velocity modes for both
the cases. More studies are required to develop a data mining based
modern 21st century cardio-vascular patient care.

Keywords:
data mining. .

Carotid Artery Bifurcation, CFD , Cardiovascular,

NOMENCLATURE

Greek Symbols

p  Mass density, [ks/m?]
0 Orthogonal modes, ]
A Eigen values, []

Latin Symbols

a POD Coefficients, [].
p  Pressure, [Pa).

u  Velocity, [m/s].

A Eigen vectors, [/s].
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Sub/superscripts
i Index i.
Jj Index j.

INTRODUCTION AND OBJECTIVE

Cardiovascular diseases, like Carotid Artery Disease and
Coronary Artery Disease (CAD), both have some similari-
ties. The similarities in disease progression pertains to the
narrowing or hardening of the artery due to build-up of fatty
substances and cholesterol deposits (called plaque). Carotid
Artery Disease refers to this disease in the artery located in
the neck region, and it increases the chances of ischemic
strokes and transient ischemic attacks (brain stroke for ex-
ample). For treatment of such diseases, an in-vivo assess-
ment of physiologic hemodynamics can prove to be bene-
ficial as it might help in understanding the physics behind
the development of the vascular diseases. Such investiga-
tions may play an important role in designing novel and effi-
cient treatment plans, like Magnetic Drug Targeting (MDT),
wherein the magnetized drug particles are added to the blood
in the artery and they are made to concentrate around the
diseased region by applying a magnetic field at that loca-
tion. This minimizes the side effects in the rest of the body.
However, for such drug delivery methods, it is necessary to
accurately determine the flow profiles in the Carotid Artery
and to understand the progression of disease. Current meth-
ods of evaluating progression of vascular diseases (steno-
sis, atherosclerosis and aneurysms) involve:a) Experimental
techniques (like Phase-Contrast Magnetic Resonance Imag-
ing (PCMRI) (Barker et al., 2010; Markl et al., 2003; Ce-
bral et al., 2009), doppler ultrasound (US), etc) that provide
information on the temporal evolution of the velocity pro-
files, and b) Computational Fluid Dynamic (CFD) techniques
(Cebral et al., 2009; Rispoli et al., 2012) where patient-
specific angiogram acquired by either Magnetic Resonance
Angiography (MRA), or Computed Tomography Angiogra-
phy (CTA) or 3D Rotational Angiography (3DRA) provide
required geometry and flow or pressure waveforms obtained
from phase-contrast MRI (PCMRI) as boundary conditions
to numerically solve blood flow motion equations in the re-
gion of interest and predict hemodynamic parameters over
the whole 3D computational domain. Both CFD and exper-
imental techniques have proven to be immensely useful de-
spite the known limitations with both of them (like in exper-
imental techniques, there is low spatial and temporal resolu-
tion of PCMRI which limits detection of high velocity gra-
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dients, secondary flows and complex flows in recirculation
zones, while in CFD - there is the issue of realistic veloc-
ity profiles and rigid wall boundary). This success, despite
the limitations, can be further enhanced by introducing the
ability to unearth more information (and patterns) in order
to enable diagnosis from the CFD and experimental dataset.
This can be done through application of data mining tools.
Researchers involved in evidence-based cardiological prac-
tice have suggested that data mining can be the 21st century
approach towards patient care (Hu ef al., 2009). Data min-
ing (DM) techniques can make cumbersome CFD / Experi-
mental analyses more productive for future everyday clinical
practice. Hence, this work focusses on developing a com-
putational framework involving a combination of CFD and
data mining techniques like Proper Orthogonal Decomposi-
tion (POD) and Fast Fourier Transform (FFT) with the aim of
making data mining the workhorse in carotid artery examina-
tion and stenosis classification. POD has been widely used
to extract dominant modes and structures from massive dy-
namic computational data to improve the understanding and
discovery of the phenomena. The objective of the current
work is then to:

Objectives

Develop and demonstrate a computational framework involv-
ing CFD and data mining tools (involving feature extrac-
tion through POD and FFT) for efficient diagnosis of carotid
artery disease progression.

APPROACH AND METHODS

The approach involves investigating two cases: one with
carotid artery bifurcation for a healthy person and another for
a patient with about 25 % stenosis (meaning that about 25%
of the area has been blocked by the plaque formation). First,
results from simulations are validated using existing exper-
imental PCMRI data for a similar geometry for a healthy
person. In the following step deviations in the flow patterns
and wall shear stress for healthy and patient case is demon-
strated. Then, the simulated result data is subjected to FFT
and POD analysis to obtain more information, and extract the
differences. The next section describes the numerical meth-
ods (CFD and POD) that are used in the analysis.

CFD

A transient 3D Navier Stokes equation have been solved to
simulate the laminar flow in the artery. The model computes
the flow fields (velocity, pressure). The Navier—Stokes equa-
tions are represented by the mass continuity equation (equa-
tion 1) and the momentum transport equation (Equation 2).

V- (pu)=0 (1)
Du_ o(p\, 1y,
o V(p)+pVR 2)

where, where p is the density, u refers to flow velocity, oper-
ator g refers to total derivative, V refers to gradient-vector
operator, V- refers to a partial derivative operator that com-
putes dot product, p is pressure, ¢ is time. R is referred to
stresses arising due to viscosity. Components of R can be

oy (9w
computed as R;; =V (E + %
Jj refers to components of vector, k is turbulent kinetic energy

and v is molecular diffusivity.

) - %k& j» where subscripts 7,
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Proper Orthogonal Decomposition (POD)

For the computation of the POD modes two dimen-
sional snapshots of any variable (velocity components
here) is required. The N snapshots are represented by
U = [u!,u?---uN] which is used to compute the covariance
matrix given by C = UTU. After this an eigenvalue prob-
lem CA’ = M,A! is solved to obtain the eigenvalues A/ and
eigen vectors A’ which are sorted in a decreasing order as
AL > Ay > -+ > Ay. POD modes are then computed as

N
. - Al n

o = SR i N 3)
|| Xr Apu|

With POD modes arranged as ¥ = [¢'¢?---¢"]. POD coef-
ficients @; can be found from the snapshot n as a” = ¥ u".
From this a snapshot can be reconstructed as u” = Wa". Rel-

ative energy given by any i/ mode is given by A;/ le\,/:l A
MODEL DESCRIPTION

Figure 1 shows the geometry of the clean healthy artery and
an unhealthy clogged artery. In both the cases, the struc-
ture involves the main artery (CCA) which bifurcates into
the Internal Carotid Artery (ICA) and the External Carotid
Artery (ECA).In case of clogged artery, 25% of the flow area
in Carotid sinus region has been blocked by plaque deposits.
Figure 2 shows the hexahedral mesh that is used to spatially
discretize the geometry and the boundary conditions are also
labeled. The mesh size is about 3 million element mesh. The
mesh resolution is such that across the inlet diameter there
are 20 mesh points, resulting in a grid size of 2.5 x 10~*m
with the grid becoming much finer near the artery surface
(about 3x10~3m) to capture the high velocity gradients here.
The inlet profile used for the study is shown in Figure 3. This
inlet velocity profile is based on a heart rate of 72 beats per
minute (resulting in 0.8 s time period for one cycle or one
beat) which involves the diastolic period for first 0.36 s of
cycle (where sinusoidal pulsatile inflow varies with 1.25 Hz
frequency (f)) and a systolic period for rest of cycle where
inlet velocity is held constant at 0.15 m/s. As a result of
this, the normal Peak systolic Velocity (PSV) in the CCA
reaches about 0.8 m/s, however in general, the PSV is pa-
tient or person specific and depends upon cardiac output or
stroke volume, heart rate, systolic blood pressure, and age.
The PSV in the normal CCA ranges from 0.70 to 1 m/s while
the diastolic velocity is around 0.1-0.2 m/s. Thus, the current
inlet profile used is justifiable. The equation used for inlet
profile is as proposed by Sinott (Sinnott ez al., 2006). The
simulations have been conducted over a time period of 12
cycles and the averaging of results has been done over last
2 cycles. An adaptive time-step has been used to maintain a
courant number of 1 for accurate and stable simulation, as a
result the simulation time step varied between 2.5 x 10735 to
1 x 10~*s during the course of simulation. The CFD takes
about 1.5 hrs of computational time to simulate one cardiac
cycle (time period of one cardiac cycle is 0.8 s) on 8 proces-
sors run (with each processor having 1.2GHz CPU speed).
For 12 cardiac cycles, about 18 hrs of computational time is
required. In the model (Figure 2), the blood flows through
the bifurcating artery from the inlet and exits from the two
outlets. The density of blood is 1060 kg/m>. The diameter
of the artery at the inlet is around 6 mm. The diameter of
ICA outlet is around 4.5mm and the diameter of ECA outlet
is around 3.0mm. The Reynolds number based on input di-
ameter varies from around 50 to 300 during the cycle and the
flow is considered laminar. The systolic pressure of a healthy
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Figure 2: Mesh and boundary details for clogged and clean case.
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Figure 1: 3D Geometry of Carotid Artery for clogged and clean
case.
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human is around 120 mmHg and the diastolic pressure of a
healthy human is around 80 mmHg. Thus taking the aver-
age pressure of the two phases, we use 100 mmHg (around
13332 Pascal) as the static gauge pressure at the outlets. In
the next section, the results obtained from the CFD and data
mining tools are discussed.
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Inlet Profile

0.000025

0.00002
»
o~

€ 0.000015
g
&

> 0.00001
o
o

0.000005

0

8 8.2 8.4 8.6 8.8
Time, s

(b) Idealized CFD Inlet

Figure 3: Inlet profiles of experimental and CFD study used in val-
idation.

RESULTS
Validation

Figure 4 involves a quantitative and qualitative comparison
study with experimental data obtained from (Gharahi et al.,
2016). An attempt is made to check whether CFD is able to
predict similar flow patterns in the post bifurcation regions:
Internal Carotid Artery (ICA) and External Carotid Artery
(ECA) as the experimental data if they begin with similar ve-
locity magnitude in the main artery region. The maximum
value of velocity in the contour plot in Figure 4 measured by
PCMRI for CCA section is 0.7 m/s, and for the ECA/ICA
section is 0.5 m/s. The comparison is done at a time instant
corresponding to peak systolic inlet velocity. The velocity
from CFD simulations is normalized to match those of the
inlet conditions of the experimental data, though some vari-
ations in the inflow profile exist as inflow profile in the CFD
simulation is an idealized form of the experimental condi-
tions (see figure 3). Qualitatively, CFD is able to predict sim-
ilar flow patterns as captured by MRI, but quantitatively CFD
is over-predicting the magnitude. The deviation (Uexperimentat
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— Usimulation)!Uexperimental in predicting the maximum veloc-
ity is around 15% . The difference can be attributed to either
low resolution of the MRI data (as seen in figure 4) or vari-
ations in the inflow conditions at CCA (again see figure 3).
The inflow conditions are shown over one cardiac cycle and
it is periodic over this time period. However, the qualitative
similarities between the experimental and CFD approach es-
tablishes credibility of the CFD study to a certain degree.
The major drawback of experimental technique like PCMRI
is that owing to its low resolution, it is difficult to compute
the wall shear stress, which is known to play a big role in fa-
cilitating plaque deposition. Hence, CFD is used to compare
the flow field and wall shear stress profiles.
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Figure 4: Comparison CFD with PC-MRI Flow pattern. Experi-
mental results in figure on left from (Gharahi et al., 2016)

Compatrison of flow patterns

Figure 5 compares the flow patterns for a healthy clean artery
and an unhealthy clogged artery for similar inflow condi-
tions. The flow patterns are compared at two instances in
each case: at the maximum inlet velocity condition (Figure
5(a) and 5(c)) and at the minimum inlet velocity condition
(figure 5(b) and 5(d)). In the clogged case (figure 5(c)-5(d)),
the streamlines show higher flow separations and flow recir-
culations than the clear artery case (figure 5(a)-5(b)) near the
carotid bulb both at the minimum velocity and maximum ve-
locity inlet conditions. The resulting helical and secondary
flows (due to flow separations around complex artery geom-
etry) are higher at maximum inlet velocity conditions than
the minimum velocity conditions. The impact of these flow
patterns is felt on the wall shear stress as well as the associ-
ated frequencies (the FFT’s are conducted at the probe loca-
tions denoted by black dots between the text P1, P2 and P3
in figure 5 and discussed in the section on FFT comparison.

Comparison of wall shear stress

Figure 6 and 7 compare the wall shear stresses for the two
conditions. Figure 6 presents the wall stress at two instances
for both healthy and unhealthy case one at the maximum inlet
velocity condition and another at the minimum inlet velocity
condition. In the clogged case (Figure 7(c)-7(d)), a higher
wall shear stress compared to the clear artery case (figure
7(a)-7(b)) is seen. This can be attributed to the higher ve-
locity gradients owing to the blockage of the flow area and
higher flow recirculations behind the plaque deposits. The
location of the plaque is at the ICA region, where sudden
divergence cause recirculation with low velocity gradient re-
gion causing regions of lower shear stress. In both the cases,
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Figure 5: Flow pattern and streamlines comparison for clogged and
clean artery.
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the wall shear stress has the highest magnitude near the in-
ner wall of the carotid bifurcation and conversely, the ICA
displays lower wall shear stress.

Figure 7 compares the spatially averaged wall shear stress
over the whole artery over two period of cycles. Here too,
it can be seen that wall shear stress values are consistently
higher for the clogged case over the whole cycle. Thus, the
simulation shows that wall shear stress is an ideal parameter
to confirm both the location of plaque formation (low wall
shear stress region) and the existence of plaque conditions in
the body (overall higher spatially averaged wall shear stress
in clogged case at all times in the cycle). Next we look at
feature extraction from the accumulated dataset to help in
the diagnosis of Carotid Artery Disease. FFT and POD have
been used in this work.
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Figure 6: Comparison of wall shear stress at different times in a
cycle for clogged and clean artery case.

FFT Comparison

Figure compares the energy spectrum obtained from the ap-
plication of FFT on the velocity signal at the probe locations
for both the clean and clogged artery cases. FFT provides
the energies associated with various frequencies and helps to
identify the dominant frequencies. The location of probes is
shown as black dot in Figure 5. FFT is compared at probes
located in the CCA, ECA and wake regions. The data is sam-
pled at a frequency of 10000 Hz over a period of 2 cycles. All
the probe locations in both the cases are able to detect the
dominant frequency of 1.25 Hz present in the inlet pulsatile
flow at varying magnitudes. The bifurcation region which
creates a diverging section at the ICA leads to the presence
of eddies in flow separation, with these eddy having its own
length and time-scale. For the clean artery case , figure 8(a)
shows that the energy of dominant frequency (1.25 Hz) in the
wake region is less than that at the CCA and ICA case but
a high amount of fluctuations in frequency range 10-20 Hz
range is seen. These fluctuations could be representative of
eddies arising out of flow separation and some of them pos-
sess similar energy content as the dominant frequency in the
wake region (energy range above 1x10~3m?> / 5%). While in
the wake region of clogged artery case, figure 8(b) shows the
energy in dominant frequency (1.25Hz) and energy in fluc-
tuations in 10-20 Hz in to be more nearer to the energy in
corresponding frequencies in the ICA and CCA region (as
compared to the clean artery case). The blockage induced by
plaque leads to higher velocity magnitudes and higher flow
recirculation leading to higher energy frequencies (at both
1.25Hz and 10-20 Hz range) and leading them to be closer to
energies associated with these frequencies in ICA and CCA
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Figure 7: Wall Shear Stress contour comparison for clogged and
clean artery case.

(as compared to clear artery case). Such patterns as this,
which has been identified by FFT can be an useful detec-
tion and diagnosis tool. Though more studies are required to
ascertain presence of such patterns. The location of regions
of higher energies can be obtained from the POD analysis as
shown below.
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Figure 8: FFT results for clogged and clean artery case.

POD comparison

For Artery, the 2D planar data for each simulation is sampled
at SHz and then interpolated on a uniform rectilinear grid
measuring 510 x 159 elements (corresponding to a grid-size
of 0.0509mm x 0.0158mm). The original snapshots (defined
on the original mesh) have been interpolated on a uniform
mesh (defined on a rectangle), so the modes are also defined
on the whole rectangle, even though they are zero outside of
the artery region. The results regarding the energy spectra
can be observed in Figure 9, which reveals that there is not
much difference in energy captured by different modes. In
both the cases, almost more than 99% of energy is captured
within the first two modes itself, the first mode being the
large scale flow and second mode being mostly the separated
flow in the wake region (as seen in figure 10- 11 which shows
the decomposed velocity modes for the two cases). Despite
similar energy content of the modes in the two cases, the lo-
cation of concentration of energy is different. Figures (10-
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Figure 9: ENERGY SPECTRA OF CLEAR AND BLOCKED
ARTERY.

11) show the decomposed velocity modes, where the Red
color regions represent regions with highest decomposed ve-
locity values and blue color regions represents regions with
lowest decomposed velocity values. The values of these de-
composed modes are not relevant. These figures (figure 10-
11) reveal that mode 1 has similar energy of around 99.7%
for both case, but in case of clogged artery, most of this en-
ergy is concentrated in the region above the plaque where the
flow constriction leads to higher by the plaque. Similarly, de-

(b) Mode2 Energy 0.23%

(d) Mode4 Energy 0.007%

Y

(a) Model Energy 99.67%

(c) Mode3 Energy 0.076%

(e) ModeS5 Energy 0.002%

(f) Mode6 Energy 0.001%

Figure 10: First six modes of a healthy artery showing decom-
posed velocity. Red color regions represent regions with
highest decomposed velocity values and blue color re-
gions represents regions with lowest decomposed veloc-
ity values.

spite mode 2 capturing the energy content of around 0.22%,
the clogged one has energy concentrated around wake region
while the clean artery case has this energy distributed in both
wake at outer wall of ICA and energy at the inner wall of the
ICA. This energy distribution also shows the reasoning be-
hind the pattern observed through FFT analysis.

Thus, the POD and FFT together as data mining tools helped
to unearth the differences between healthy and unhealthy pa-
tients artery. These tools can be applied on experimental
dataset as well if there is a possibility to obtain suitable vari-

able dataset at the required locations at high sampling rate.
CFD provides a cost effective way of obtaining data at high
sampling rates and at all locations in the geometry (which is
sometimes difficult to do using experiments).

r

(a) Model Energy 99.71%

(c) Mode3 Energy 0.04%
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(b) Mode2 Energy 0.22%

(d) Mode4 Energy 0.01%

(e) ModeS5 Energy 0.002%

(f) Mode6 Energy 0.0007%

Figure 11: First six modes of an unhealthy clogged artery show-
ing decomposed velocity. Red color regions represent
regions with highest decomposed velocity values and
blue color regions represents regions with lowest de-
composed velocity values.

CONCLUSION

The work demonstrates an application of combination of
CFD along with data mining techniques in unearthing dif-
ferences between a healthy and an unhealthy patient with
carotid artery disease. The conclusions are enumerated be-
low :

1. First, the CFD has been qualitatively shown to provide
similar results as the experimental PCMRI technique.
Owing to lower resolution of the experimental tech-
nique, CFD has been used to analyze further differences
in the flow pattern.

2. CFD simulation shows that wall shear stress is an ideal
parameter to show existence of plaque conditions in
case of unhealthy artery (overall higher spatially aver-
aged wall shear stress in clogged case at all times in the
cycle).Further CFD shows the observation of lower wall
shear stress in regions of carotid sinus where build up of
plaque occurs.

3. Use of data mining tools (FFT and POD) along with
CFD has helped to unearth patterns to distinguish be-
tween healthy and unhealthy case. FFT shows that the
flow constriction induced by plaque leads to lesser vari-
ation in magnitudes of energy of dominant frequencies
at different locations (like, wake region, mid-ICA and
mid-CCA region), while for cleaner artery, there is more
variation in magnitude of energy of these dominant fre-
quencies when measured at wake, mid ICA and mid
CCA region. POD helps by confirming the location of
regions with high energy in decomposed velocity modes
for both cases. Such patterns as this, which has been
identified by FFT can be an useful detection and diag-
nosis tool.

This work is one of the steps towards using data mining
for modern 21st century cardiovascular patient care. Future



M. Tabib, A. Rasheed, E. Fonn

work involves using this methodology for more studies in-
volving different patients and healthy persons to confirm the
observed patterns and develop a diagnosis toolkit.
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