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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

This paper aims to investigate the effect of electro-
magnetic forces on bubble flow under an anode using a
computational fluid dynamics (CFD) model with the
volume-of-fluid (VOF) method to capture the gas-liquid
interface. Current flow was solved simultaneously to
determine the Lorentz forces. As an initial phase of
investigation, the investigation was conducted using part
of a single anode geometry as a test bed. The CFD model
was run with a fixed bubble volume and two anode
inclination angles. The effect of Lorentz forces was
assessed in terms of bubble sliding velocities, bubble
shapes and trajectories.

Keywords: CFD, Aluminium Electrolytic Cell, Bubble
Flow, Electro-Magnetic Force.

NOMENCLATURE

Greek Symbols

a Volume fraction.

o Mass density, [kg m3].

¢  Electric potential [V].

o Electrical conductivity, [S m™].
4 Dynamic viscosity, [kg m™! s7].
Latin Symbols

B Magnetic flux density, [T].

E Electric field, [V m™].

Fr Volumetric Lorentz force, [N m~].
Fs Surface tension force, [N m=].
g Gravity vector [m s2].

J  Electric current density, [A m™].
p Pressure, [Pa].

t  Time [s].

u Velocity, [m s7'].
Sub/superscripts

g QGas.

[ Liquid.
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INTRODUCTION

Bubble flow is an inherent phenomena in Hall- Héroult
reduction cells for aluminium smelting, and plays an
import role in determining cell performance. A better
understanding of the bubble dynamics and the resulting
liquid flow is key to improving cell performance. Due to
the corrosive and high temperature environment, bubble
dynamics are traditionally studied using substitute
physical models, including water models, low
temperature electrolytic models, small-scale high-
temperature electrolytic cells. A detailed summary of
these models was made in a recent publication (Zhao et
al., 2016a). Due to the limitation of measurement
technology, the detailed bubble dynamics cannot be
studied quantitatively in physical models at or near
industrial scale. In the last decade, numerical modelling
has been used increasingly to study bubble dynamics in
the aluminium smelting system. These studies have
focused on different areas, such as bubble detachment on
the effect of aluminium-cryolite interfaces (Einarsrud,
2010), bubble detachment and sliding mechanism (Das et
al., 2011), anode edge shape on bubble release (Wang
and Zhang, 2010) and the effect of MHD forces on global
bubble behaviour and voltage fluctuation (Einarsrud et
al., 2012).

The CSIRO CFD team, in collaboration with a number of
aluminium smelting companies, has developed a multi-
scale CFD modelling approach to study bubble induced
bath flow in aluminium smelting cells. This bath flow
model (Feng et al., 2010, 2015) was developed using a
local averaged approach accompanied with PIV
measurement for model validation (Cooksey and Yang,
2006). To understand detailed bubble dynamics a micro-
approach based on the Volume of Fluid (VOF) model
was developed in parallel. Using the latter approach, for
the first time, the difference in bubble dynamics between
air-water and CO,-cryolite systems were quantified for
motion of a single bubble in the ACD (anode-cathode
distance) and for continuous bubbles motion in side
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channels (Zhang et al., 2013; Zhao et al., 2015). In the
detailed bubble model the electro-magnetic force, or
Lorentz force, was not included.

Bojarevics and Roy (2012) performed an analytical
evaluation of the electro-magnetic force on a
hemispherical stationary bubble under an anode, and
suggested that the presence of the electro-magnetic force
could significantly affect the bubble transport,
concentration and detachment. In a recent physical model
study using aqueous CuSOj electrolysis (Das et al.,
2015), the superposition of a magnetic field significantly
affected the bubble density, coalescence, velocity and the
overall sliding characteristics. Using a multiscale
modelling approach, Einarsrud et al (2012) found that the
inclusion of Lorentz force did not appear to influence
global bubble behaviour and voltage fluctuations
significantly. However, the Lorentz force appeared to
enhance bubble departure by 7 and 12% in the two cases
they investigated. To quantitatively evaluate the effect of
electric-magnetic force on bubble behaviour, it is
necessary to simulate the motion of individual bubbles in
three dimensions.

This paper aims to further investigate the effect of
electro-magnetic forces on bubble flow under an anode
using a computational fluid dynamics (CFD) model with
the volume-of-fluid (VOF) method used to capture the
gas-liquid interface. Current flow was solved
simultaneously to determine the Lorentz force. The
investigation was conducted using part of a single anode
geometry as a test bed. The CFD model was run for a
single bubble with fixed bubble volume and two anode
inclination angles with different directions of the electro-
magnetic field. The effect of Lorentz force was assessed
in terms of bubble sliding velocities, bubble shape and
trajectories.

MODEL DESCRIPTION

Gas-Liquid Flow Model

Transient fluid dynamics of the gas and liquid bath are
simulated by solving transport equations for the
conservation of mass and momentum. The governing
equations for the two-phase mixture are:

Global continuity equation

V-u=0 (1)
Momentum equation
d(pu)
+ .
ar TV (uw) 2)

=-VUp+V-[u(Vu+Vu")]+pg+F +F,

Mixture density and viscosity are weighted based on
volume fraction in the following manner:

€)
(4)

The interface location between the two phases is
calculated using the volume of fluid (VOF) approach in
which a transport equation for the gas volume fraction is
solved.

P = agPy +ap;

H=agly + oy
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Gas phase continuity equation

%+V-(pgagu)=0 )
Electro-Magnetic Model
The Lorentz force in equation (2) is given by:
F,=]xB (6)
where the current density, J, is;
J=0o(E+uxB) @)

noting that the electrical conductivity, o, is phase
weighted as the other fluid properties (e.g. density). Since
the velocities are small the induced current term on the
right hand side is small and ignored in this work. The
electric field can be defined in terms of a scalar potential
(E=—-V@) then from -equation (7) and current
conservation the potential equation to be solved is:

V-(aV@) =0 ¥

Geometry and Boundary Conditions

The model geometry is a 0.15[m] wide three dimensional
slice of a section of the anode and bath from a reduction
cell. The model domain and boundary condition locations
for the model are shown in Figure 1, consisting of a solid
domain for the anode and fluid domain for the cryolite-
CO; mixture. The brown slice is through the centre of the
anode, which has a height of 0.4 [m] and a length of 0.65
[m]in Z and Y directions respectively. A uniform current
density of 9 [kA m™?] is applied to the top pink coloured
surface.

A plane through the centre of the bath coloured, by
volume fraction, shows the initial conditions for the blue
CO2 and red cryolite fluids. The fluid domain consists of
the volume under the anode in the ACD, which has a
depth of 40 [mm], and the volume in the centre channel
beside the anode. Centre channel half width is 0.12 [m]
with the top light blue face set as an outlet boundary at
zero gauge pressure. Initial liquid height in the centre
channel is 0.15 [m] above the base of the bath. The grey
base of the bath is a non-slip wall set at a fixed voltage of
0 [V] and represents the top surface of the metal pad in
an operating cell. Two surfaces couple the anode and bath
domains via conducting walls that allow current to pass
between the domains. For the fluid side the flow
boundary condition is a non-slip wall. The high and low
x-direction surfaces are set as symmetry planes or
effectively free-slip insulating walls. Other surfaces and
insulated non-slip walls.

A small surface, 5 [mm] by 5 [mm] square and 0.07 [m]
from the low y end of the anode, is located on the base of
the anode. As detailed nucleation of the gas is not
considered here, it is assumed that CO, gas enters the
domain at this surface to form a bubble. Inclination of the
anode is accounted for by altering the direction of the
gravity vector.
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Figure 1: Schematic diagram of geometry.

Initially the domain is meshed using 620,000 hexahedral
cells with 485,000 in the anode domain and 135,000 in
the fluid domain. This cell size is consistent with our
previous work in Zhao et al., (2015). To resolve details
of the bubble interface three levels of adaptive meshing
was used based on the gradient of volume fraction.
Figure 2 shows the cut-cell mesh refinement around the
bubble at 0.22 [s] with the green line indicating the gas-
liquid interface. The grey surface in Figure 2 is in the X-
Y (horizontal) plane and the colored surface is a Y-Z
(vertical) plane. With mesh refinement the cell count
increases to approximately 1.2 million cells with most of
the increase being in the fluid domain.

Gas is added to cells adjacent to the 5 [mm] x 5 [mm]
square “nucleation site” at a rate of 2.5x10° [kg s'] for a
period of 0.16 seconds. Thus, a single bubble with an
equivalent bubble size of 25.2 [mm] is formed, with an
approximate thickness of 2 [mm]. For cases with a
magnetic field, it was applied at a uniform strength of
0.02 [T] in either the x or y direction as defined in
Figure 1.

Figure 2: Mesh refinement around bubble at 0.22 [s],
grey surface - anode base, blue - CO?, .red - cryolite,
pink — gas “nucleation site”.

Material Properties

Properties were based on typical values for operating
industrial cells as are summarised in Table 1.

Table 1: Physical Properties.

Cryolite Density 2100 [kg m3]
CO; Density 0.4 [kg m?]
Cryolite Dynamic Viscosity 0.003 [Pa s]
CO, Dynamic Viscosity 1.37x107 [Pas]
Cryolite-CO; Surface Tension 0.132 [Nm™]
Contact angle Cryolite-CO, 120°
Cryolite Electrical 4
Conductivity 222 [Sm7]
CO; Electrical Conductivity 1[Sm!]
Carbon Anode Electrical 1
Conductivity 21,430 [Sm]

Solution Scheme

Model results were obtained using ANSYS-Fluent 17.1
to solve equations (1,2,5 and 8) in the fluid domain and
equation (8) in the solid domain by a finite volume
scheme. PISO is used for pressure velocity coupling and
a second order upwind scheme used for momentum. A
first order implicit transient scheme with adaptive time
stepping is used for time advancement. The time step is
determined by targeting a Courant number of 0.5,
typically this results in a time step of 0.0002 seconds and
approximately 8-12 iterations are required to converge
each time step.

The location of the gas-liquid interface is predicted using
the explicit VOF formulation and geometric
reconstruction of the interface shape. Surface tension
effects in equation (2) are calculated using the continuum
surface force model with wall adhesion.

Equation (8) is solved as a user defined scaler equation
with no transient or convective terms, using a second
order central difference scheme. User defined functions
are used to calculate the current density and Lorentz
force. UDFs are also used to add mass source terms for
gas nucleation at the base of the anode.

RESULTS

No Lorentz Force

To obtain a baseline for the bubble behaviour the model
was run with no magnetic field and thus no Lorentz force.
The gravity vector was orientated such that the base of
the anode was sloping upward toward the centre channel
at 1.5° to the horizontal. This being representative of an
anode that has worn to the shape of a metal pad with
significant heave.

Iso-surfaces showing the gas-liquid interface are plotted
at a number of time instants in Figure 3. Results are
plotted looking upward from the metal pad to the anode
and from the side of the cell. The first image is at 0.16
seconds at the time that CO, gas stops entering the model.
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Figure 3: Bubble interface locations at various time instants with no Lorentz force a 1.5° anode slope, View from
underneath (top) View from side (bottom). Insets shows details of the bubble shape and size at 3.0 seconds.
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Figure 4: View from underneath of bubble outline at various time instants with a 1.5° anode slope and with
—no Lorentz force, — B,=-0.02 [T], — B,=0.02 [T]. Inset shows direction of the fields and force for B,=0.02 [T].
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Figure 5: Bubble interface locations at various time instants with a 1.5° anode slope and a magnetic field of
B,=0.02 [T], View from underneath (top) View from side (bottom). Inset shows details of the bubble shape and size at
3.0 seconds.
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Table 2: Predicted average bubble dimensions.

Anode base angle 1.5° Anode base angle 0.5°
Magnetic Field 0 B.=0.02[T] | B=-0.02[T] | B,=0.02[T] | B,=0.02[T] | B,=-0.02[T]
Wld?h [n.l] 0.0149 0.0147 0.0146 0.0212 0.0196 0.0260
(Y direction)
Length [m] 0.0529 0.0528 0.0517 0.0372 0.0391 0.0297
(X direction)
Aspect Ratio 3.6 3.6 3.5 1.8 2.0 1.1
Velocity [m s™] 0.145 0.146 0.144 0.156 0.121 0.056
Thickness [mm] 1.99 2.00 2.00 2.24 1.88 1.75

At this time the bubble has moved under buoyancy to the
right with the left edge of the bubble just exposing the
edge of the nucleation site. As shown in previous work
(Zhao et al., 2015) the bubble is initially circular and
deforms to a sausage bubble as it moves towards the
centre channel under buoyancy.

Bubble dimensions obtained by averaging the bubble
position at half second intervals between 1.5 and
3.5seconds are given in Table 2. The predicted
behaviour, thickness, aspect ratio and velocity are in
agreement with those reported and validated by Zhao
etal. (2015) for a similar system using a similar
modelling methodology.

Effect of Transverse Magnetic Field

To identify if the Lorentz force has an effect on bubble
motion, a magnetic field of 0.02 [T], typical of that found
in industrial potlines, was applied in the x-direction and
in the negative x-direction. From equation (6) for a
downward current, J., and transverse magnetic field, By,
the Lorentz force acts in the negative y-direction, away
from the centre channel, as shown schematically in the
top left of Figure 4. When the magnetic field is applied
in the negative x-direction the force acts in the positive
y-direction, towards the centre channel. Figure 4 shows
the bubble position at four time instants for the case with
no magnetic field and two cases with the magnetic field
in the x-direction.

As evident by the results in Figure 4 and Table 2 the
Lorentz force arising from B, causes a small change in
the bubble velocity and thus motion of the bubble with
time.

Effect of Longitudinal Magnetic Field

Results from a simulation with the magnetic field acting
in the y-direction are presented in Figure 5. Reorienting
the magnetic field also changes the force direction with it
now acting in positive x-direction. The bubble trajectory
is plotted in Figure 5 and shows that the bubble is moved
across the base of the anode and at approximately 2.0
seconds contacts the model boundary. In the model the
boundary is effectively a free slip wall thus the bubble
travels along the wall before rising along the anodes in
the centre channel. From Table 2 the bubble length
reduces and its thickness increases changing its profile
and thus drag, resulting in an increased velocity. In a
reduction cell this change would not occur and the bubble
would continue traversing across the anode base until it
reached a slot or edge of the anode.
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Effect of Anode Base Angle

The two cases with the magnetic field in the positive and
negative x-direction were run with the anode inclination
angle reduced from 1.5° to 0.5°. Figure 6 shows plots of
the bubble locations for the reduced inclination cases.

With the buoyancy force reduced, the Lorentz force has
a stronger effect on the bubble. As shown in Table 2 and
Figure 6, when the Lorentz force acts in the same
direction as the buoyancy force on the bubble, the bubble
velocity is reduced to half of that when compared to the
case with the Lorentz force opposing to the buoyancy
force.

F,

<'_
o6t ¢ 0 0 06 0O

E,

—>
e§¢eaGe e E

L.y

Figure 6: View from underneath of bubble interface
locations at various time instants for a 0.5° anode slope
and with Lorentz force of B,=-0.02 [T] (bottom)
and B,=0.02 [T] (top). Time [s] from left to right are:
0.16 0.64 1.0 1.52.02.53.0 3.5 4.0.

CONCLUSION

Numerical simulations of CO, bubbles moving in
cryolite bath under an anode in the presence of a
magnetic and electric field were performed using a three
dimensional VOF model. Results show that the Lorentz
force produced by the electro-magnetic fields alters the
behaviour of the CO; bubbles.

Bubbles are predicted to move in the direction opposing
the MHD force acting on the liquid. For a case with the
anode at an angle of 1.5° and a transverse magnetic field
the effect on bubble motion was small. For the same
geometry but when the magnetic field is aligned in the
longitudinal direction of the anode the MHD force cause
the bubbles to move transverse to their trajectory when
only buoyancy is acting.

With a reduced anode inclination angle of 0.5° the MHD
force had a strong influence on the bubble velocity with
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the velocity varying between 0.056 and 0.121 [m s!]
depending on the direction of the magnetic field.

This work demonstrates that the electro-magnetic force
in aluminium reduction cells has the potential to alter the
behaviour of gas bubbles.
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