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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
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The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.
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ABSTRACT

A hybrid collision integration scheme is introduced, benefiting from
the efficient handling of binary collisions in the hard sphere scheme
and the robust time scaling of the soft sphere scheme. In typical dy-
namic dense granular flow, simulated with the soft sphere scheme,
the amount of collisions involving more than two particles are lim-
ited, and necessarily so because of loss of energy decay otherwise.
Because most collisions are binary, these collisions can be handled
within one time step without the necessary numerical integration as
needed in a soft sphere method. The remainder of the collisions
can still be handled with the classical soft sphere scheme. In this
work the hybrid collisions integration scheme is shortly described
and tested with a bounding box problem. The hybrid scheme is ca-
pable of solving the same problem as a classic soft sphere scheme
but is roughly one order of magnitude faster.

Keywords:  Discrete Element Method, Collision integration
scheme, optimization .

NOMENCLATURE

Greek Symbols

&  overlap, [m]

®  frequency, [1/s]

g damping ratio, [—]

n damping coefficient, [Ns/m]

u  friction coefficient, [—]

B tangential restitution coefficient, [kg/m?]
p  density, [kg/m’]

0 solids volume fraction, [—]

Latin Symbols

force, [kgm/s?).

impuls, [kgm/s].
collision constant, [kg~].
norm of distance, [m].
number of particles, [—].
velocity, [m/s].

time, [s].

mass, [kg].

spring stiffness, [N /m].
normal unit vector, [—].
restitution coefficient, [—].
frequency, [1/s].

position vector, [m].
distance vector, [m].

RSO I OIS~
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p  position, [m].

d  diameter, [m].

c integration constant, [—].
Sub/superscripts

0 old time step

n normal

d dampened

t tangential

coll collision

a,b paritcles a,b

duration of lasting collision
i index i

maximum

s solids

effective

INTRODUCTION

Since the introduction of the Distinct Element Model (DEM)
by Cundall and Strack (1979) for perfect spheres the field
of granular flow modelling has expanded dramatically. The
model by Cundall and Strack (1979) has since then been ex-
tended for various external forces (Xu and Yu, 1997; Pournin
et al., 2005; Lu et al., 2015; Marshall, 2009; Mikami et al.,
1998; Korevaar et al., 2014; Zastawny et al., 2012). For
an overview of the relevant inter-particle and particle-fluid
forces see Zhu et al. (2007). DEM has been used to model
various granular flows as found in industrial applications,
ranging from; fluidized beds (Van Buijtenen ef al., 2011),
rotating drums (Gonzalez Briones et al., 2015; Yang et al.,
2008) and tumbling mills, chute flow (Shirsath et al., 2014)
to sedimentation and hoppers (Cleary and Sawley, 2002). A
more comprehensive overview of these applications can be
found in the work of Zhu et al. (2008).

The foundation of these models is however the contact
model, of which the hard sphere model as discussed by
Hoomans et al. (1996) and a soft sphere model by Tsuji et al.
(1993) are the most well known. The hard-sphere approach
works on the assumption that all collisions are binary and in-
stantaneous. As such the model only handles particle-pair
interactions that follow each other in chronological order.
Therefore the hard-sphere model is an event-driven scheme
and the simulation time scales with the collision frequency,
which scales with the solids fraction and the granular temper-
ature of the system. The hard-sphere scheme is most suited
for rather dilute systems, as with increasing solids fraction
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and granular temperature the number of collisions increases
drastically.

For more dense and highly dynamic systems a soft-sphere
method is more often used. The soft-sphere method allows
for particle-particle overlap and represents the forces associ-
ated with the indentation of the solids with a spring-dashpot
system. The spring handles the repulsion and the dashpot
handles energy dissipation. The duration of the collision is
no longer instantaneous and scales with the ratio of the spring
stiffness and the mass of the particle. Because of the finite
duration of the collision multiple particles can be in contact
at the same time, in this work denoted as Multi-Body Colli-
sions (MBC). Numerical integration of the forces over time
allows for proper treatment of the collisions. The soft-sphere
method is thus a time-driven scheme.

Both methodologies have their strengths and limitations. The
hard-sphere model benefits from the immediate handling of
a collision, while the soft-sphere method benefits from the
relaxation of the spring-stiffness and thus larger time step.
The most time-consuming step in the simulations however
is the collision detection, which for the hard-sphere has to
be updated with a frequency related to the number of events
and for the soft-sphere has to be performed every particle
time step; roughly ten times per duration of the collision.
Reducing the number of collision detection evaluations thus
massively increases the simulation efficiency.

In the soft-sphere method, for dynamical systems, most of
the collisions will still be binary. And they have to be mostly
binary, because else the energy dissipation rate is no longer
maintained, as we will show later. In one of our simulations
from earlier work (Buist et al. (2015)) we indeed found that
most collisions involved only two particles, as can be seen in
figure 1.

1 —m
0.1
__i;- [ |
z
S 0.01
o ™
o
1E-3 .
1E-4 — | | | |
2 3 4 5 6
Order

Figure 1: Collision order probability from a simulation of a pseudo
2D fluidized bed, with € =0—0.6, u;r =3.5m/s, e =1,
B=0.33, u=0.1.

All of these binary collisions can of course be handled in-
stantaneously, following the analytical solution of the damp-
ened harmonic oscillator. The binary collision maintains a
finite duration and the task that remains is to be able to dis-
tinguish between binary collisions and Multi-Body contacts.
These MBC’s have to be solved with a classical soft-sphere
method. The collisions have to be determined only once,
and only for the particles colliding in two subsequent time
steps additional checks have to be made. The time-step of
the simulation is now exactly the duration of a collision, and
collision-detection has to be performed only once for most
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of the particles. This work is a short version of a publica-
tion in Chemical Engineering Science, containing the main
idea of the hybrid collision integration scheme and the main
results. For more details the interested reader is referred to
Buist et al. (2016).

MODEL DESCRIPTION

The hybrid model is in spirit somewhere in between a hard
sphere and a soft sphere methodology. In this work however
we will not go into the details of these two methods, for an
extensive explanation of both schemes the interested reader
is referred to Deen et al. (2007).

Hybrid DEM

The new integration scheme can either be viewed as a time-
driven hard sphere model with a finite collision duration
or as a semi one-step soft sphere model. A time-driven
hard sphere approach was first developed by Helland et al.
(2002). In their work however, each collision is still quasi-
instantaneous. The first to couple a hard sphere and a soft
sphere approach was Gui et al. (2016). In their work how-
ever the time step used is still considerably smaller than the
duration of a collision. The use of a hard sphere methodol-
ogy however allows for an accurate description of collisions,
while maintaining a ~10 times larger time step with respect
to a classical visco-elastic methodology for non-spherical
particles.

In the hybrid collision integration scheme that is presented
here, the chosen time step is exactly the same as the du-
ration of a collision, following the linear spring dashpot
model. Because most collisions are assumed to be binary
these collisions can be handled at once, following a modi-
fied hard sphere approach. And because the time step is the
same as the collision duration, only one collision per parti-
cle per time step can happen. The only exceptions are the
multi-body collisions, that are handled with the classical soft
sphere methodology. For the particles involved in a multi-
body collision, the time step is divided in ten sub steps. A
short schematic overview is given in table 1.

The gain in speed-up is in the use of the collision detection
algorithm, which generally has to take place only once ev-
ery time step, instead of ten times in the classical soft-sphere
scheme. Of course the actual choice of the type of colli-
sion detection algorithm will have a major impact on the fi-
nal performance of the codes. In this work the same colli-
sion detection algorithm is used for both the classical soft-
sphere method and the hybrid method; a kd-tree algorithm
from Matlab.

In the next few sections we will discuss in a bit more de-
tail binary collisions and multi-body collisions. Finally an
overview of the model is given that shows the main extra
steps that need to be taken into account.

Binary collisions

We assume particles are of equal size and mass possessing
no tangential component (1 = 0 and v; o = 0). For a binary
collision it follows that:

l+e_
> Vabn (D

with 7, defined as the relative velocity at the point of con-
tact:

Vin = Vn0—

Vap = Vg —Vp+ (O_)aRa + a)bRb) X Tlgp 2)
which consists of a normal and a tangential component:
Vab,n = (Vab . ﬁab) Nab (3)
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Table 1: Short overview of the hybrid collisions schemes.

Hybrid model

Binary
= = 1+e >
Vna = Vna0 — 5 Vabn

= = Va1V, = -
Xa =Xq0+ aTbAt + (Va - Vn,a,O) Hiast

- - - 2 = 2|5
(rab'vab+\/(rctb"’zlb) 7(|rab‘7(Ra+Rb)> ‘Vab‘)
I‘jabl

Hast =

Multibody
Fn = _knsnﬁab - T'In‘jazb,n
Ft = _ktstt_ab _nt‘jab,l

or in case of sliding(F; > u|Fy|):

E = _/J|F'n|fab

Time scale collision

Time scale collision

Teoll = wld feotl < (,)Ld
Time step Time step dilation in case of multibody
At = teol Ar ="sl
Vab,t = Vab — Vabn “) Multi-body collisions
- - The analytical solution to multi-body contacts follows a very
— Xp — Xa .. . . .. .
fgp = —— &) similar equation as those for binary collisions:
% — %ol
n
_ T xi(t) =Y e 50 (dy jcos (wg,it) +dosin(wgit))  (9)
Tab = 7= (6) i=1
|Vab,t|
Finally the position is defined as: vyhere n is the 'numbe.r of contacts. Even though it i; pos-
sible to determine trajectory and the change of velocity of
o Vo + _ the MBC, it is not possible to determine the duration of the
X = X0 — Vollast + AL+ Vs D collision analytically, as the sum of sinusoids with differing

That is, the new position is the sum of respectively the old
position, the displacement until collision based on the old ve-
locity, a shared mean displacement of the two particles dur-
ing collision and a displacement after the collision till the end
of the time step.

Here, Xy and ¥ are the position and velocity at the time step
before collision, and ¥ and ¥ the position and velocity at the
time step after the collision. 7, is the time between the mo-
ment of first contact until the end of the time step. These are
given by:

Tap = Xa,0 — Xp,0

Vab = Va,0 — Vb0

(fab "7ab+ \/(fab "71117)2 - (|thb| - (Ra +Rb))2 |‘7ab>

‘Vab|

Last =

®)
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frequencies and amplitudes cannot be easily simplified. As
such it is not possible to determine the outcome of a MBC in
this particular way. On top of this because of the added am-
plitudes and frequencies the collision can take both longer
and shorter than the original binary collision duration.
Keeping the above in mind it is simpler to use the classical
soft sphere treatment, and divide the contact time into a num-
ber of steps only for the particles in an MBC, see also table
1.

Overview of DEM code

Here we will give a brief description of the code. The code is
build using MATLAB for simple training purposes. To allow
each binary collision to be uniquely described the time step
is taken as exactly the duration of a collision following the
soft-sphere approach, given by:

T
At =t = (Did = (10)
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Figure 2: Normalized energy levels per time step for a bounding box problem with e=1. In black the classical soft-sphere method is given, in
green the new hybrid model (left). Speed up as a function of the number of particles N (right).

where m, is the dampened frequency defined as:

(9

where C is the damping ratio defined as:
—In(e)
T2 +1In(e)?

kn
Meff

0y =

A collision detection algorithm; a kd-tree searcher, from
MATLAB is used to detect all particles that have overlap.
For these particles the duration of the contact is determined
using equation 8 and subsequently the collision is processed
with the method described earlier. For multi-body collisions
the duration of a collision can be slightly longer or shorter
as described before. In case the collision takes longer the
information has to be appropriately transferred across time
steps.

Additionally, checks have to be made for particles that are
colliding in two subsequent time steps, because the two col-
lisions might be overlapping, in essence being a multi-body
collision. this has extensively been discussed in Buist et al.
(2016).

RESULTS

Table 2: Parameter values used for the simulations.

parameter  value

O 0.4-0.5

N, 10% —10°

dp 0.003 m

p 2500 kg /m?
kn 20000 N/m
e 0.7-1.0

B 1

u 0

<vp > 0 m/s
vy 0 m/s
Vinax 4+0.15 m/s

In this section the first results of the new integration scheme
will be shown. First tests are done for a bounding box prob-
lem. This problem consists of a cubic box randomly filled
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with particles, with sizes ranging from 8 to 100 times the
particle diameter. The particles have zero mean velocity and
are given a velocity drawn from a Gaussian distribution. The
maximum velocity, solids fraction and the box size can be
varied to scale the problem. The simulation data is given
in table 2 and are inspired by simulations of a fluidized bed
(see figure 1), to match the solids holdup and granular tem-
perature. For the particle-wall contacts we assume the same
restitution coefficient as for particle-particle contacts.

Speed up & Scalability

The first test involves a bounding box containing 4000 parti-
cles with a solids volume fraction of 40%. The particles are
allowed to freely bounce in the box for 0.1 s of real time.
Simulations were conducted using both the new collision in-
tegration scheme as well as the classical soft sphere scheme.
This resulted in on average 50 collisions per particle and 0.4
multibody collisions per particle. In this test the particles
have ideal collision properties. This implies that the total en-
ergy in the system should remain constant. The normalized
total kinetic energy of the particles is shown in figure 2. The
total energy is normalized to the energy given at t=0.

The classical soft sphere method shows regular dips in the
energy-level, associated with energy being stored in the
springs as a consequence of the collisions. The hybrid model
has a largely static energy profile as most collisions are bi-
nary. Both models are capable of maintaining proper energy
conservation, as expected. The difference is however that the
hybrid model is about eight times faster.

To test for the scalability of the hybrid model and the robust-
ness of the gained speed up, the size of the bounding box
is gradually increased to include 10° particles. The relative
speed up for these systems is shown in figure 2. It can be seen
that an average speed up of a factor 7 to 8 is possible with the
new hybrid collision integration scheme. This speed up can
be attributed to the lower number of collision detection eval-
uations that are necessary. The maximum possible speed-up
factor 10 is not reached because of the overhead associated
with the check for overlapping collisions, as discussed in the
previous section.

Number of contact partners

For the new hybrid model to be competitive with the classical
soft sphere model, it has to be capable of dealing with sys-
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tems with similar solids fractions and granular temperatures.
It is the combination of these two parameters that determines
the amount of multibody collisions. For this reason a simu-
lation was run with a solids fraction of 50% and a maximum
velocity of 0.15 m/s. The results are shown in figure 3. The
left figure shows the normalized energy of the system for the
two schemes, the figure on the right shows the probability
of the number of contact partners, with 2 being binary and
every higher number signifying extra particles participating
in the collision. It can be seen that the two models show the
same trend, now with more energy stored in the springs for
the classic model. The amount of multibody collisions add
up to about 5% of all collisions which matches the result of
figure 3. The hybrid model is thus able to match the density
and energy of systems in which typically a soft sphere model
is used.

Relaxing the classical scheme

In the classical scheme it is also possible to scale the duration
of a collision by scaling the spring stiffness. By reducing the
spring stiffness by a factor 100, the duration of a collision
is multiplied by a factor ten, i.e. the same as for our hybrid
model. This will reduce computation time but will also in-
crease the overlap between colliding particles.

To see if this affects the energy balance of the system, the
results of such scaling of the spring stiffness is quantified
for the same simulation as before, figure 3 in comparison to
the classical and the hybrid schemes. The number of contact
partners is also shown for the scaled model. The first thing
that can be seen is that the scaled scheme has a very sudden
and large drop in energy, associated with a lot of particles
entering collision mode at the same time, often with multiple
collision partners. Binary collisions only make up for 65 %
of all collisions. The rate of energy loss is also much smaller
than for the classical and the hybrid schemes.

This underestimation of the dissipation rate is entirely at-
tributable to the number of multibody contacts and was also
found for pure multibody contacts in Pournin et al. (2001).
The relative speed up of the scaled model is only in the order
of 2.5. The poor performance of this scaled classic model,
in terms of both the energy conservation and the speed up of
the model, shows the power and need of a hybrid model all
the more. Second, the lower rate of energy dissipation means
that the choice of a proper spring stiffness is critical in ob-
taining meaningful results, especially for dense dynamical
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systems.

CONCLUSIONS

Most collisions in a soft-sphere granular flow problem are
necessarily binary that can be accurately described within
one time step. Because of the possible distinction between
binary and multi-body contacts a hybrid collision integration
scheme was proposed. The binary collisions are solved with
a modified hard-sphere approach with a collision duration
equal to the classic linear spring dashpot and all multi-body
contacts are handled with the classic soft-sphere approach.
The larger time-step of this hybrid integration scheme and the
lower amount of collision detection evaluations allows for
a factor 7 to 8 computational speed-up. Meanwhile retain-
ing energy and momentum conservation. Because a lower
amount of energy is stored in the springs of the spring-
dashpot model the energy state of the hybrid scheme more
accurately describes the granular behaviour of the system.
The results of this scheme were shown to be scalable with
the number of particles up to at least O(10°) and is capa-
ble of handling systems with a solids hold-up and granular
temperature resembling the collision dynamics in an actual
granular flow system.

Further relaxation of the spring-stiffness in the classical
scheme to allow for a similar increase in time-step has proven
to be inadequate to quantitatively capture the energy decay of
a dense dynamic granular system and was proven to be less
computationally efficient as the presented hybrid scheme.
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