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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

The influence of turbulent structures on the gasification of coal
particles, in particular on the char consumption and surface tem-
perature, is studied . Existing submodels for char gasification are
mainly based on results for laminar flow only, therefore the ca-
pability of these models to predict gasification at higher particle
Reynolds numbers is evaluated using the simulation results. Two
representative scenarios were studied: the gasification of a 2 mm
particle at atmospheric pressure in a O,/CO,/H,O atmosphere at
2006 K and the gasification of a 263 um particle at 30 bar in a differ-
ent O,/CO,/H,0 atmosphere at 1480 K. The simulation conditions
were based on data obtained from the simulations of two different
entrained-flow gasifiers. ANSYS Fluent” was used to solve the
Navier-Stokes equations for the flow field coupled with energy and
species conservation equations. The model for the reaction system
incorporates six gaseous chemical species H,, O,, CO, CO,, H,O,
N, and solid carbon. A semi-global reaction mechanism was ap-
plied for the homogeneous gas-phase reactions and the water gas
reaction, the Boudouard reaction and the oxidation of carbon to
carbon monoxide were considered as heterogeneous gas-solid re-
actions. In the present work it is shown how the reaction zone is
modified due to the change in wake structure, the impact of the tur-
bulent effects on the overall carbon conversion rate are discussed,
and hints how to adjust existing submodels to correctly predict char
conversion at high particle Reynolds numbers are given.

Keywords: CFD, gasification, turbulence, heterogeneous reac-
tions.

NOMENCLATURE

Greek Symbols

Aij  stochiometric coefficient of species i in reaction j, [—]
0 empirical factor, [—]

v kinematic viscosity, [7*/s]

Latin Symbols

¢;  molar concentration of species i, [kmol/m?].

dp  particle diameter, [m)].

k reaction rate constant, in SI units.

keo  pre-exponential factor, in SI units.

n exponent of power law kinetic rate equations, [—].
pi  partial pressure of species i, [Pa].

Pop Operating pressure, [Pa).

r molar reaction rate, [kmol/m3s].

641

u maginitude of velocity, [/s].

D¢ effective diffusion coefficient in a porous medium,
[/s]-

activation energy, [//kmol|.

inhibition constant, [1/pd].

universal gas constant, [//kmol-K].

e  particle Reynolds number: Re = uindp/v, [—].

Q

X XM

Sy Specific surface area per volume, [m*/m3].
X  char conversion, [—].

Y  mass fraction, [—].

Sub/superscripts

in  at the inlet boundary

INTRODUCTION

Due to the multiscale character of coal combustion and gasi-
fication processes, the use of sub-models describing particle-
gas interaction is unavoidable, and the correct prediction of
the burning rate and the particle temperature based on this
sub-models is an essential part of successfully modeling of
such reactors (Edge ef al., 2011; Schulze et al., 2013; Richter
et al., 2016). An analysis of existing computational burnout
sub-models reveals that e. g. the influence of particle velocity
on carbon consumption and particle temperature is not well
understood. Thus, particle-resolved numerical simulations of
single burning particles can highlight different physical phe-
nomena and correlations and therefore they can help to better
understand the complex combustion physics. Examples for
this approach are given in Refs. (Lee et al., 1996; Higuera,
2008; Kestel er al., 2012; Richter et al., 2013, 2015; Wittig
etal., 2016).

To the authors best knowledge almost all single-particle stud-
ies published in literature considered laminar flow regimes
only and most consider only one heterogeneous reaction i.e.
Boudouard, watergas or carbon oxidation. In different tech-
nological applications much larger particle Reynolds num-
bers are possible and all three above mentioned reactions
proceed in parallel. For that reason the char-particle burnout
corresponding to turbulent flow up to particle Reynolds num-
ber equals 1000 in two different O,/CO,/H,O atmospheres
is investigated. At these Reynolds numbers time periodicity
and the planar symmetry of the vortex shedding are lost and
the wake becomes turbulent (Jones and Clarke, 2008; Cam-
pregher et al., 2009) . The operating conditions, that means
pressure, temperature and gas phase composition, are based
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on data obtained from simulations of two different entrained-
flow gasifiers.

MODEL DESCRIPTION

The gasification is studied for a single spherical particle in
embedded in a large domain as schematically shown in Fig-

ure 1. As the heterogeneous reaction time scales are much
symmetry/freeslip
A

3

da +

= H 2

particle wall

_____ B WA AN > C R

< >« >

LO Ll

Figure 1: Schematic drawing of the 2D domain used in the simula-
tions.

larger than the flow time scales (Sundaresan and Amund-
son, 1980; Richter et al., 2013), the pseudo-steady state ap-
proach was assumed valid, hence no particle-shrinking was
taken into account and the steady-state form of the governing
equations are solved. Indeed this assumption is confirmed
from the simulations results. The lowest value of the ra-
tio of carbon consumption time scale and fluid time scale
is found to be of the order O(10), but in most of the cases it
is higher. Fluid flow is modelled coupled with species and
energy transport as well as coupled with heat conduction in-
side the solid particle. Buoyancy effects are neglected, hence
gravity is set to zero but the density still varies due to e.g.
changes in temperature. Turbulence is taken into account
using the k-®-SST model in the steady RANS simulations
for particle Reynolds numbers larger than Re = 200. The
Maxwell-Stefan equations are used to describe diffusional
mass flux in the multi-component gas mixture and gas-gas
radiation is included via the P1 radiation model. The hetero-
geneous reactions are assumed to take place on the outer par-
ticle surface only, however the internal structure of the char
particle is considered through an effectiveness factor, which
is defined in the next section. The gas phase is modelled as
an incompressible ideal gas and all physical properties of the
components are modelled using polynomial expressions or
kinetic theory. The chemical system incorporates pure car-
bon as solid and Hy, O, H,O, CO, and CO; as gaseous
species. Details of the finite-rate chemical mechanism are
discussed in the next section. The process and inlet condition
for the two different cases studied in this work are shown in
Table 1. Uniform profiles are prescribed for velocity, tem-
perature and species concentrations at the inlet.

Chemical reactions

The semi-global mechanism to describe the homogeneous
gas phase reactions are modelled using a mechanism pro-
posed by Jones and Lindstedt (1988):

H2 + 0.5 02 == Hzo
CO + H20 == CO2 + H2,

(RT)
(R2)

642

case
1 2
dp/m 2.1073 0.263-1073
P,,/bar 1.013 30
T /K 2006 1480
Rei, 1-500 11000
Uin/™  0.1932-95.58  0.03192 -31.92
Yco,.in 0.223 0.223
Yi,0,in 0.123 0.221
Y0,.in 0.366 0.187

Table 1: Process and inlet conditions for both cases considered.

however with modified reaction rate kinetics for the hydro-
gen oxidation R1 as used by Kim er al. (2008). A simple
power law is used to compute the reaction rates for R1

E
rRl:/’<o<,~e><p{—R_aT}-C(())'25~CH2 1
and for R2:
E,
rRZZkoo'eXp{_R.aT}'CCO'CH207 ()

koo Ea/(J/kmol)
R1 5.69-10'  1.465-108
R2 2.75-10° 8.368-107

Table 2: Kinetic constants for the gas phase reactions.

The Boudouard and water-gas reaction as well as the oxida-
tion of the carbon are considered as heterogeneous reactions
of the particles with the gas phase:

C +CO, — 2CO (R3)
C +H,0 — H, + CO (R4)
2C+0, — 2CO (RS)

Different sets of kinetic rate equations are used for atmo-
spheric conditions (case 1) and pressurized case (case 2). For
the atmospheric conditions of case 1 the model for the ef-
fective reaction rates proposed by Vascellari et al. (2014) is
used:

r 0(X) - koo - €X { Ea } Peo, 3)
31 = Koo - - : )
3 PURT 1+Kco - pco
EaR4} Ph,0
rra1 = 0(X) ko -€Xpq —— . 2 , @
ka1 = 0(X) p{ RT | ThKn pr,
E, n
rrs,1 = 0(X) - koo - €Xp “%.T (PO 5)

The rate constants are taken from Richter et al. (2016) and
are given in Table 3.

0(X) is an empirical factor to account for the inner structure
of the particle, which is calculated as described in Vascellari
et al. (2014).
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koo/(km(’l/(m3sPa”)) Ea/(-]/kmol) n K/(l/Pa)
R3 9.04-103 1.3063-108 0.76 5,47-107°
R4 7.30 1.0676-108 097 3.19-1077
R5 1.77-10% 1.771-108 1

Table 3: Kinetic constants for the effective reaction rates of
the boudouard, water gas and oxidation reactions from
Richter et al. (2016).

At 30bar operating pressure (case 2), the intrinsic reaction
rate data of Hla ez al. (2007) is taken and modified with an ef-
fectiveness factor np to account for the transport resistances
inside the particle. Hence the effective reaction rates are:

E,
TR3,2 = MPCO, - SV * koo - €XP {_RaT } “PCO,» (6)
E, n
TR42 = MNPH,0 - SV Koo - €XP § — R.T [ PRo 7
_ Eq n
rR52 = MNP0, SV koo - €Xp . “P0o,> (8)

The rate constants are given in Table 4.

koo/(km"l/(mzsPa")) Ea/(-//kmol) n
R3 3.331-1072 2.11-108 04
R4 2.485 231-108 04
R5 1.236-1073 1.36-108 0.8

Table 4: Kinetic constants for the intrinsic reaction rates of the
boudouard, water gas and oxidation reactions fro Hla et al.
(2007) for coal CRC272.

The effectivity for the species i and reaction j is estimated as

1 1 1
(D) = — _ , 9
nj( U) CDl'j (tanh(3<l>,-j) 3CI>,‘]') ©)
using a generalized Thiele modules ®;; which is (almost) in-
dependent of the particle shape. For a power-law kinetic re-
action rate defined it is defined as:

Eg i _
Vp n—|—1;"ij'k°°,j'eXP{—ﬁ}-Sv~p;’ 1

V= 5o\ 2

(10)
Deyy i

Simulation settings

ANSYS Fluent™ V 17.2 was used to solve the Navier-Stokes
equations coupled with species and energy transport. The
pressure based solver was used and the differential equa-
tions where discretized using second order schemes in space
and time. Only the convective fluxes where discretized with
a third-order MUSCL scheme in the steady RANS simula-
tions. For the 2D-axisymmetric simulations the domain ex-
tends Ly = 30dp in upstream, L; = 100dp in downstream and
H = 40dp in radial direction. Based on the 2D results, the
3D-domain has been chosen slightly smaller. The cuboid ex-
tends Ly = 8dp in upstream, L; = 24dp in downstream and
H = 8d,, in the lateral directions. The number of grid cells
used is 27,750 for the 2D simulations and 4,085,112 for the
3D simulations. Grid-independence has been confirmed in
previous investigations by Richter et al. (2015, 2016). A
comprehensive validation of the model setup against differ-
ent experimental data is given in Richter er al. (2013).
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RESULTS

In order to reduce the computational effort, as the final
aim of this research is to study gasification in high detail
with three-dimensional transient LES simulations, a semi-
global mechanism is used in this work. Hence for compar-
ison simulations have been done with the detailed drm22-
mechanism proposed by Kazakov and Frenklach (1994). Re-
sults for the atmospheric case at Re = 500 are shown in Fig-
ure 2 and for the pressurized case at Re = 1000 in Figure
3. The general features of the flame structure are repro-
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Figure 2: Contours of the mass fraction Yco, and Temperature T
at Re = 500 for case 1. The upper half shows results ob-
tained with the semi-global mechanism proposed by Kim
et al. (2008), which is used in this work, and the lower
half results obtained with the detailed chemical mecha-

nism drm22 by Kazakov and Frenklach (1994).
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Figure 3: As in Figure 2, however for case 2 at Re = 1000.

duced with the semi-global mechanism, however some dif-
ferences can be observed in particular in the contours shown
for the atmospheric case 1. The maximum temperature is
higher and the high temperature zone is more pronounced
for the semi-global mechanism. The maximum CO, mass
fraction is larger when using the detailed mechanism, how-
ever the shape of the CO,-rich zone is similar. The higher
CO, mass fraction can be explained by the simplified semi-
global mechanism, which only considers the hydrogen oxi-
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dation R1 and the water-gas shift reaction R2, whereas the
detailed DRM22 mechanism also includes the oxidation of
CO to CO,. Under the pressurized conditions of case 2
the differences in the results using the different mechanisms
are less pronounced. Please note that the same gas phase
mechanisms have been used in both cases, only the hetero-
geneous gas-surface reactions and the operating conditions
are changed. The flame zone is slightly larger for the semi-
global mechanism and the maximum temperature is slightly
higher. Secondly the influence of turbulence on the gasifica-
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20
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T/K 1500 1750 2000 2250 2500

10
z/d,

2000 2250

1500 1750

2500

0 10
z/d,

20

Figure 4: Contours of the temperature 7 for different parti-
cle Reynolds numbers. From top to bottom: Re =
10,100, 1000 for case 2.

tion is studied.A qualitative comparison is presented in Fig-
ure 4, which shows the contours of the temperature for case
2 at different particle Reynolds-numbers. A similar picture is
obtained for the atmospheric pressure case 1. The maximum
temperature remains almost constant, however the shape and
size of the flame zone significantly change with increasing
particle Reynolds number. Fully engulfing the particle at low
particle Reynolds numbers, the flame zone is gradually thin-
ning with particle Reynolds number accompanied by an in-
creasing fore-aft asymmetry such that a separated reaction
zone persists at higher particle Reynolds numbers.

Quantitative data are given in Figures 5 and 6, which show
the average temperature on the particle surface and the aver-
age carbon mass flux for case 1 and for case 2, respectively.
Results are presented for 2D-axisymmetric RANS simula-
tions and for 3D RANS simulations at the highest particle
Reynolds number. The differences between the 2D and the
3D results are small, which shows that the 2D axisymmetric
assumption is justified. Initially the eddy dissipation con-
cept (EDC) model for turbulence-chemistry interaction has
been used for all simulations with Re > 200. However in
the graphs of the average surface temperature and also the
species mass fractions a sudden jump has been found in the
results rather than a smooth transition, which is considered
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Figure 5: Carbon mass flux and temperature as a function of the
particle Reynolds number for case 1.TCI denotes simu-
lations using the eddy dissipation concept (EDC) to ac-
count for turbulence-chemistry interaction.

non-physical. The red squares in the graphs for the sur-
face temperature of Figures 5 and 6 show these findings.
As the EDC model has originally been developed for highly
turbulent flows, this model is considered the main suspect
for the observed non-physical behaviour. Hence simulations
with exactly the same simulations have been done, only with
the turbulence-chemistry model turned off. The results are
shown by the blue symbols in Figures 5 and 6. The jump
has disappeared and a continuous change of surface temper-
ature with particle Reynolds number can be seen. The con-
tours of CO, mass fraction and temperature shown in Figure
7 for case 2 at Re = 1000 shed some lights on this question.
Note that similar results are found for case 1 and for differ-
ent particle Reynolds numbers. Qualitatively similar results
are obtained for the simulations with and without turbulence-
chemistry interaction turned on, only a higher temperatures
and a higher CO, mass fraction are observed in the very thin
flame zone close to the particle surface. However in this
region the flow conditions are laminar and the grid is fine
enough such that all scales are resolved. Hence the EDC
model, which is based on the assumption of fully turbulent
conditions, too strongly dampens the reactions which leads
to the non-physical jump in the results. The carbon flux on
the other hand is almost unaffected by the use of the EDC
model and no clear jump is visible.

Finally, the dashed-lines in Figures 5 and 6 are a regression
based on the laminar results, i.e. for Re <= 200. One sees
that the extrapolation of the laminar results to higher parti-
cle Reynolds number still give a reasonable prediction of the
carbon consumption, the maximum difference is about 10%.
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Figure 6: Carbon mass flux and temperature as a function of the
particle Reynolds number for case 2.TCI denotes simu-
lations using the eddy dissipation concept (EDC) to ac-
count for turbulence-chemistry interaction.
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Figure 7: Influence of turbulence-chemistry interaction for case 2
at Re = 1000.The upper half shows results obtained us-
ing the EDC model for turbulent-chemistry interaction,
which is turned of in the lower half

CONCLUSIONS AND OUTLOOK

In this work the interplay between a turbulent chemically-
reacting flow and heterogeneous gasification and combustion
on a particle surface has been studied. It has been shown that
the main features of the flame-zone are well captured us-
ing a simple semi-global gas phase mechanism and that the
use of axisymmetric 2D simulations is justified. The use
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of the EDC turbulence-chemistry interaction leads to a too
strong damping of the gas phase reactions near the particles,
which strongly affects the surface temperature and species
distribution, however the total carbon consumption rate is
only mildly influenced. The reaction zone is strongly modi-
fied due to the change in wake structure. From engulfing the
whole particle at low particle Reynolds numbers, a increas-
ing fore-aft asymmetry has been found which lead to a sepa-
rated flame zone at high particle Reynolds numbers. Despite
the strong changes in the shape of the reaction zone, extrap-
olation of the laminar results into the turbulent regime gives
a reasonable prediction of the carbon consumption rate and
the surface temperature. This shows that models, based on
laminar flow conditions, which are capable of capturing the
fore-aft symmetry, can at least as a first estimate be used to
also model gasification at larger particle Reynolds numbers.
Finally as a completion of this work, currently 3D LES sim-
ulations are under way to study the effect of turbulent fluctu-
ations on the overall carbon consumptions rate.
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