Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

Progress in Applied CFD – CFD2017

SINTEF **PROCEEDINGS** SINTEF Proceedings

Editors: Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD - CFD2017

Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF Academic Press

SINTEF Proceedings no 2

Editors: Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD - CFD2017

Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

Key words: CFD, Flow, Modelling

Cover, illustration: Arun Kamath

ISSN 2387-4295 (online) ISBN 978-82-536-1544-8 (pdf)

© Copyright SINTEF Academic Press 2017

The material in this publication is covered by the provisions of the Norwegian Copyright Act. Without any special agreement with SINTEF Academic Press, any copying and making available of the material is only allowed to the extent that this is permitted by law or allowed through an agreement with Kopinor, the Reproduction Rights Organisation for Norway. Any use contrary to legislation or an agreement may lead to a liability for damages and confiscation, and may be punished by fines or imprisonment

SINTEF Academic Press		
Address:	Forskningsveien 3 B	
	PO Box 124 Blindern	
	N-0314 OSLO	
Tel:	+47 73 59 30 00	
Fax:	+47 22 96 55 08	

www.sintef.no/byggforsk www.sintefbok.no

SINTEF Proceedings

SINTEF Proceedings is a serial publication for peer-reviewed conference proceedings on a variety of scientific topics.

The processes of peer-reviewing of papers published in SINTEF Proceedings are administered by the conference organizers and proceedings editors. Detailed procedures will vary according to custom and practice in each scientific community.

PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997. So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim. The conferences focuses on the application of CFD in the oil and gas industries, metal production, mineral processing, power generation, chemicals and other process industries. In addition pragmatic modelling concepts and bio-mechanical applications have become an important part of the conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the reviewers are included in the proceedings. 108 contributions were presented at the conference together with six keynote presentations. A majority of these contributions are presented by their manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts, all those who helped to promote the conference and all authors who have submitted scientific contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal Production and NanoSim.

Stein Tore Johansen & Jan Erik Olsen

Organizing committee:

Conference chairman: Prof. Stein Tore Johansen Conference coordinator: Dr. Jan Erik Olsen Dr. Bernhard Müller Dr.Sigrid Karstad Dahl Dr.Shahriar Amini Dr.Ernst Meese Dr.Josip Zoric Dr.Jannike Solsvik Dr.Peter Witt

Scientific committee:

Stein Tore Johansen, SINTEF/NTNU Bernhard Müller, NTNU Phil Schwarz, CSIRO Akio Tomiyama, Kobe University Hans Kuipers, Eindhoven University of Technology Jinghai Li, Chinese Academy of Science Markus Braun, Ansys Simon Lo, CD-adapco Patrick Segers, Universiteit Gent Jiyuan Tu, RMIT Jos Derksen, University of Aberdeen Dmitry Eskin, Schlumberger-Doll Research Pär Jönsson, KTH Stefan Pirker, Johannes Kepler University Josip Zoric, SINTEF

CONTENTS

PRAGMATIC MODELLING	9
On pragmatism in industrial modeling. Part III: Application to operational drilling	11
CFD modeling of dynamic emulsion stability	23
Modelling of interaction between turbines and terrain wakes using pragmatic approach	29
FLUIDIZED BED	
Simulation of chemical looping combustion process in a double looping fluidized bed	
reactor with cu-based oxygen carriers	39
Extremely fast simulations of heat transfer in fluidized beds	47
Mass transfer phenomena in fluidized beds with horizontally immersed membranes	53
A Two-Fluid model study of hydrogen production via water gas shift in fluidized bed	
membrane reactors	63
Effect of lift force on dense gas-fluidized beds of non-spherical particles	71
Experimental and numerical investigation of a bubbling dense gas-solid fluidized bed	81
Direct numerical simulation of the effective drag in gas-liquid-solid systems	89
A Lagrangian-Eulerian hybrid model for the simulation of direct reduction of iron ore	
in fluidized beds	
High temperature fluidization - influence of inter-particle forces on fluidization behavior	107
Verification of filtered two fluid models for reactive gas-solid flows	115
BIOMECHANICS	123
A computational framework involving CFD and data mining tools for analyzing disease in	
cartoid artery	125
Investigating the numerical parameter space for a stenosed patient-specific internal	
carotid artery model	133
Velocity profiles in a 2D model of the left ventricular outflow tract, pathological	
case study using PIV and CFD modeling	139
Oscillatory flow and mass transport in a coronary artery	147
Patient specific numerical simulation of flow in the human upper airways for assessing	
the effect of nasal surgery	153
CFD simulations of turbulent flow in the human upper airways	163
OIL & GAS APPLICATIONS	169
Estimation of flow rates and parameters in two-phase stratified and slug flow by an	
ensemble Kalman filter	171
Direct numerical simulation of proppant transport in a narrow channel for hydraulic	
fracturing application	179
Multiphase direct numerical simulations (DNS) of oil-water flows through	
homogeneous porous rocks	185
CFD erosion modelling of blind tees	191
Shape factors inclusion in a one-dimensional, transient two-fluid model for stratified	
and slug flow simulations in pipes	201
Gas-liquid two-phase flow behavior in terrain-inclined pipelines for wet natural	
gas transportation	207

NUMERICS, METHODS & CODE DEVELOPMENT	213
Innovative computing for industrially-relevant multiphase flows	215
Development of GPU parallel multiphase flow solver for turbulent slurry flows in cyclone	223
Immersed boundary method for the compressible Navier–Stokes equations using	
high order summation-by-parts difference operators	233
Direct numerical simulation of coupled heat and mass transfer in fluid-solid systems	243
A simulation concept for generic simulation of multi-material flow,	
using staggered Cartesian grids	253
A cartesian cut-cell method, based on formal volume averaging of mass,	
momentum equations	265
SOFT: a framework for semantic interoperability of scientific software	273
POPULATION BALANCE	279
Combined multifluid-population balance method for polydisperse multiphase flows	281
A multifluid-PBE model for a slurry bubble column with bubble size dependent	
velocity, weight fractions and temperature	285
CFD simulation of the droplet size distribution of liquid-liquid emulsions	
in stirred tank reactors	295
Towards a CFD model for boiling flows: validation of QMOM predictions with	
TOPFLOW experiments	301
Numerical simulations of turbulent liquid-liquid dispersions with quadrature-based	
moment methods	309
Simulation of dispersion of immiscible fluids in a turbulent couette flow	317
Simulation of gas-liquid flows in separators - a Lagrangian approach	325
CFD modelling to predict mass transfer in pulsed sieve plate extraction columns	335
BREAKUP & COALESCENCE	343
Experimental and numerical study on single droplet breakage in turbulent flow	345
Improved collision modelling for liquid metal droplets in a copper slag cleaning process	355
Modelling of bubble dynamics in slag during its hot stage engineering	365
Controlled coalescence with local front reconstruction method	373
BUBBLY FLOWS	381
Modelling of fluid dynamics, mass transfer and chemical reaction in bubbly flows	383
Stochastic DSMC model for large scale dense bubbly flows	391
On the surfacing mechanism of bubble plumes from subsea gas release	399
Bubble generated turbulence in two fluid simulation of bubbly flow	405
HEAT TRANSFER	413
CFD-simulation of boiling in a heated pipe including flow pattern transitions	
using a multi-field concept	415
The pear-shaped fate of an ice melting front	423
Flow dynamics studies for flexible operation of continuous casters (flow flex cc)	431
An Euler-Euler model for gas-liquid flows in a coil wound heat exchanger	441
NON-NEWTONIAN FLOWS	449
Viscoelastic flow simulations in disordered porous media	451
Tire rubber extrudate swell simulation and verification with experiments	459
Front-tracking simulations of bubbles rising in non-Newtonian fluids	469
A 2D sediment bed morphodynamics model for turbulent, non-Newtonian,	
nartiala landad flaws	479

METALLURGICAL APPLICATIONS	491
Experimental modelling of metallurgical processes	493
State of the art: macroscopic modelling approaches for the description of multiphysics	
phenomena within the electroslag remelting process	499
LES-VOF simulation of turbulent interfacial flow in the continuous casting mold	507
CFD-DEM modelling of blast furnace tapping	515
Multiphase flow modelling of furnace tapholes	521
Numerical predictions of the shape and size of the raceway zone in a blast furnace	531
Modelling and measurements in the aluminium industry - Where are the obstacles?	541
Modelling of chemical reactions in metallurgical processes	549
Using CFD analysis to optimise top submerged lance furnace geometries	555
Numerical analysis of the temperature distribution in a martensic stainless steel	
strip during hardening	565
Validation of a rapid slag viscosity measurement by CFD	575
Solidification modeling with user defined function in ANSYS Fluent	583
Cleaning of polycyclic aromatic hydrocarbons (PAH) obtained from ferroalloys plant	587
Granular flow described by fictitious fluids: a suitable methodology for process simulations	593
A multiscale numerical approach of the dripping slag in the coke bed zone of a	
pilot scale Si-Mn furnace	599
INDUSTRIAL APPLICATIONS	605
Use of CFD as a design tool for a phospheric acid plant cooling pond	607
Numerical evaluation of co-firing solid recovered fuel with petroleum coke in a	
cement rotary kiln: Influence of fuel moisture	613
Experimental and CFD investigation of fractal distributor on a novel plate and	
frame ion-exchanger	621
COMBUSTION	631
CED modeling of a commercial-size circle-draft biomass gasifier	633
Numerical study of coal particle gasification up to Reynolds numbers of 1000	641
Modelling combustion of pulverized coal and alternative carbon materials in the	
hlast furnace raceway	647
Combustion chamber scaling for energy recovery from furnace process gas:	047
waste to value	657
PACKED BED	665
Comparison of particle-resolved direct numerical simulation and 1D modelling	
of catalytic reactions in a packed bed	667
Numerical investigation of particle types influence on packed bed adsorber behaviour	675
CFD based study of dense medium drum separation processes	683
A multi-domain 1D particle-reactor model for packed bed reactor applications	689
SDECIES TRANSDORT & INTEREACES	600
SPECIES INANSPORT & INTERFACES	099
reaction in welding processes	701
- reaction in weights processes	101
Implementation, demonstration and validation of a user-defined wall function	709
for direct precipitation fouling in Ansys Eluent	717
	/ エ/

FREE SURFACE FLOW & WAVES	727
Unresolved CFD-DEM in environmental engineering: submarine slope stability and	
other applications	729
Influence of the upstream cylinder and wave breaking point on the breaking wave	
forces on the downstream cylinder	735
Recent developments for the computation of the necessary submergence of pump	
intakes with free surfaces	743
Parallel multiphase flow software for solving the Navier-Stokes equations	752
PARTICLE METHODS	759
A numerical approach to model aggregate restructuring in shear flow using DEM in	
Lattice-Boltzmann simulations	
Adaptive coarse-graining for large-scale DEM simulations	773
Novel efficient hybrid-DEM collision integration scheme	779
Implementing the kinetic theory of granular flows into the Lagrangian	
dense discrete phase model	785
Importance of the different fluid forces on particle dispersion in fluid phase	
resonance mixers	
Large scale modelling of bubble formation and growth in a supersaturated liquid	798
FUNDAMENTAL FLUID DYNAMICS	807
Flow past a yawed cylinder of finite length using a fictitious domain method	809
A numerical evaluation of the effect of the electro-magnetic force on bubble flow	
in aluminium smelting process	819
A DNS study of droplet spreading and penetration on a porous medium	825
From linear to nonlinear: Transient growth in confined magnetohydrodynamic flows	831

TIRE RUBBER EXTRUDATE SWELL SIMULATION AND VERIFICATION WITH **EXPERIMENTS**

J Buist, DJ Van Dijk, TJ Mateboer*

Windesheim University Professorship for Polymer Engineering, 8000 GB Zwolle, the Netherlands

* E-mail: t.j.mateboer@windesheim.nl

ABSTRACT

Extrudate swell simulations and experiments have been performed with a viscoelastic tire rubber compound at high flow rates through a circular die. A 3-mode PTT model was fitted onto rheological data of the rubber. The PTT model covers the range of shear rates present in the simulation. Convergence of the simulation was achieved with some wall slippage. The simulated and experimental extrudate swell is in good agreement at 20 mm from the die exit for a wide range of flow rates.

Keywords: CFD, extrudate swell, die swell, PTT, viscoelasticity, tire rubber compound

NOMENCLATURE

Greek Symbols

- Shear rate, $[s^{-1}]$. ÿ
- Strain (elasticity) parameter of the PTT model, Е [-].
- ξ Slip parameter of PTT model, [-] [1].
- η^* Dynamic viscosity, [Pa·s].
- Viscosity, [Pa·s]. η
- relaxation time, [s]. λ
- Mass density, [kg·m⁻³]. ρ
- Stress normal to plane direction, [Pa]. σ_n
- The shear stress at the wall, [Pa]. τ_{wall}
- Oscillation frequency, $[rad \cdot s^{-1}]$. Ø

Latin Symbols

- Diameter of the extrudate, [m]. Η
- H_0 Diameter of the die, [m].
- D Rate of deformation tensor, [s⁻¹].
- **g** G' Gravity field, [m·s⁻²].
- Storage modulus, [Pa].
- G"Loss modulus, [Pa].
- Slip coefficient, $[kg \cdot m^{-2} \cdot s^{-1}]$. k
- Power law coefficient, [Pa·s^{n_{η^*}}·Rad^{1- n_{η^*}}]. m_{η^*}
- Power law coefficient, $[Pa \cdot s^{n_G 1} \cdot Rad^{1 n_G'}]$. $m_{G'}$
- power law index, [-]. n_{η^*}
- power law index, [-]. $n_{G'}$
- Pressure, [Pa]. р
- Flow rate, $[m^3 \cdot s^{-1}]$. Q

- Viscosity ratio, [-].
- rpm Rotations per minute of the gear pump.
- S Swell ratio, [-].
- Time, [s]. t
- T_g glass-liquid transition temperature, [°C]
- Т Stress tensor, [Pa].
- Δ Upper-convected derivative of tensor T, [Pa].
- \overline{T}_1

v

r

- Lower-convected derivative of tensor T, [Pa].
- \boldsymbol{T}_1 Velocity field. [m/s].
- Velocity at the wall, the slip velocity, $[m \cdot s^{-1}]$ Vs

INTRODUCTION

Unvulcanized rubber extrusion is a key process in the tire industry. When rubber is extruded the extrudate will swell, a phenomenon called 'extrudate swell' or 'die swell'. The degree of extrudate swell is dependent on many process parameters, among those parameters are the die shape, production rate, rubber composition and the elastic behavior of the rubber. Extrusion die design is a costly and time consuming process due to extrudate swell. Die design may be aided by numerical simulations of the extrusion process [2]. Flow patterns and pressure build up (flow resistance) within the die may be simulated with standard (fluid mechanics) numerical methods. However, extrudate swell poses specific problems because of the viscoelastic nature of the material, and because of the complex boundary conditions. There seems to be a growing interest in the tire making industry in simulating the extrusion of tire rubber [3-8]. This study proposes a procedure for aiding die design for industrial rubber extrusion by performing rheological measurements and numerical simulations. The simulated extrudate swell is verified with experimental extrudate swell.

Theory

Extrudate swell is a complex phenomenon. There are several contributing factors identified [9]. Swelling due to rearrangement of the velocity field, which happens in Newtonian fluids and Non-Newtonian fluids alike. This is only a small contribution for viscoelastic fluids like rubber. The main cause of extrudate swell in viscoelastic fluids is elastic recovery.

It is unlikely that an analytical solution can be found to calculate extrudate swell according to R. I. Tanner [9]. This is due to the stress singularity which occurs at the change of boundary conditions from zero velocity at the die wall into the free-surface.

Figure 1: Schematic representation of extrudate swell. Velocities are zero at the die wall. At the free-surface the stresses normal to the free surface are zero [9].

Locating the free-surface is difficult. For this reason many attempts to calculate extrudate swell involve numerical methods. These methods need constitutive equations to describe the behavior of viscoelastic materials. Examples of viscoelastic models often applied in extrudate swell simulation studies are:

- Kaye-Bernstein-Kearsley-Zapas model [10-14]
- Pom-Pom model [14-17]
- Algebraic Extra-Stress Model [16, 18-20]
- Phan Thien & Tanner (PTT) model [8, 14-16, 20-30]

J.H. Kim and M.Y. Lyu have performed extrudate swell simulations with several viscoelastic models [16]. The PTT model shows good agreement with capillary rheometer experiments. Therefore the PTT model is applied in this study. Extrudate swell simulation studies are often conducted at relatively low flow rates and low shear rates [8, 14, 15, 31]. But in industrial rubber extrusion processes high flow rates and shear rates occur. This study is focused on extrudate swell at industrial flow rates.

EXPERIMENTAL SETUP

Extrusion experiments

Apollo tyres provided a rubber compound suitable for tire production. VMI Group performed several extrudate swell experiments. The rubber was extruded with a Shark 70 extruder, the shape and dimensions of the extrudate swell was captured on camera from above the extrudate.

Figure 2: Schematic diagram of extrudate swell measurement setup.

The extrusion die is circular symmetrical and consist of a conical part and a capillary part.

A conveyor belt transported the rubber away from the extruder. The conveyor-belt speed was visually matched to the extrudate velocity to avoid pulling on the rubber extrudate. Pulling on the rubber decreases the extrudate swell. Camera imaging was used to measure the extrudate swell at several distances from the die exit. The rubber curves downward upon exiting the die since the conveyor-belt is positioned lower than the die exit, see Figure 4. This results in lower accuracy measurements of the extrudate swell at greater distances from the die exit.

Figure 4: Photograph of the die, extruded rubber and conveyor belt, the camera is not included in this photograph.

The Shark 70 extruder consists of a conveying screw extruder and a gear-pump. The conveying screw extruder was set to produce a pressure of 30 Bar. Experiments have been performed at 4 different gear-pump speeds.

 Table 1: Set gear-pump speeds and corresponding flow rates.

Gear pump speed	Flow rate	
5 rpm	14.7 ml·s ⁻¹	
10 rpm	29.3 ml·s ⁻¹	
15 rpm	44.7 ml·s ⁻¹	
20 rpm	58.7 ml·s ⁻¹	

The flow rate was verified measuring the mass of extrudate collected during 36 s of extrusion. With each experiment, the temperature was measured at the inside of the extrudate. Extrudate swell (*S*) is expressed as the ratio of the diameter of the die and the extrudate diameter:

$$S = \frac{H - H_0}{H_0}$$
 1

Rheological measurement setup

The G', G" and η^* of the rubber compound were measured with an RPA2000 provided by the University of Twente. The RPA2000 is a cone-cone oscillatory rheometer. The cone geometry ensures that the shear rate is independent of the distance to the center of the cone.

Figure 5: Schematic representation of the RPA2000, the conical dies are filled with a rubber specimen [32].

A rubber sample was subjected to a series of 9 measurements with a logarithmically increasing oscillation frequency of 0.07 rad s⁻¹ up to 209 rad s⁻¹. Measurements with the RPA2000 were performed at 90 °C, 100 °C and 110 °C. The shear viscosity is calculated from the dynamic viscosity with the Cox-Merz rule [33].

$$\eta(\dot{\gamma}) = |\eta^*(\omega)|; \text{ with } \dot{\gamma} = \omega$$
 2

SIMULATION SETUP

Constitutive model

The numerical simulations have been performed with Polyflow of the Ansys 17.2 simulation suite. Polyflow is FEM software which is often used for viscoelastic extrusion simulations [8, 10, 13, 14, 16, 17, 20, 31, 34-36]. Polyflow calculates the extra stress tensor of the momentum conservation equation (3) with equation 4 [37].

$$\rho\left(\frac{\partial \boldsymbol{\nu}}{\partial t} + \nabla \cdot (\boldsymbol{\nu}\boldsymbol{\nu})\right) = -\nabla p + \nabla \boldsymbol{T} + \rho \boldsymbol{g} \qquad 3$$

 $T = T_1 + T_2$

 T_2 is a purely viscous component which improves the convergence of the numerical method [37].

$$\boldsymbol{T}_2 = 2\eta \frac{r}{1-r} \boldsymbol{D}$$
 5

 T_1 is calculated with the PTT viscoelastic model, equation 6 [37].

$$e^{\left[\frac{\varepsilon\lambda}{\eta}\operatorname{tr}(T_{l})\right]}T_{1}+\lambda\left[\left(1-\frac{\zeta}{2}\right)V_{1}+\frac{\zeta}{2}T_{1}\right]=2\eta D \qquad 6$$

When a multi-mode viscoelastic model is used, the total extra stress tensor is the sum of the individual viscoelastic components. In order to limit the computational costs only 3 modes have been used.

All the simulations are isothermal. The finite element method is used for solving the system of equations, which involves a combination of the discrete elastic viscous stress splitting (DEVSS) and the streamline upwind (SU) method [37].

Curve fitting the PTT model parameters onto rheological data

The PTT model has several material specific parameters. The values of these parameters are found by fitting the PTT model onto the rheological data with Polymat. Polymat is an application for curve fitting and is available in Ansys 17.2. *r*, η , ε and ξ are fitted onto the measured *G*' and *G*''. ε and ξ are chosen to be identical for each PTT mode. The relaxation mechanism occurs near $1/\dot{\gamma}$

[37]. The relaxation times are not curve fitted but set as the reciprocal of the typical shear rates of the simulation. These typical shear rates were determined with a trial simulation. The trial simulation is similar to the extrudate swell simulation. To limit computational costs, the extrudate and the free surface were not included in the trial simulation. A trial multimode PTT model with very high and a very short relaxation times was used, all the other parameters were curve fitted onto the measured data. The trial simulation shows that typical shear rates are between 1 s⁻¹ and 2000 s⁻¹. In the final multimode PTT model the relaxation times were chosen as 0.667 ms, 0.02 s and 0.6 s, which correspond with the typical shear rates of the trial simulation. The simulations with the final multimode PTT model do not exceed shear rates of 2130 s⁻¹.

Extrapolation of the measured data

Measurements with the RPA2000 are limited to 208 Rad·s⁻¹ at a maximum. The typical shear rates of the simulation were much higher, therefore the measured η^* , G' and G'' were extrapolated in order to curve fit up to 1500 Rad·s⁻¹. With many rubber compounds a shear thinning effect is measured up to very high shear rates [38-40]. It is assumed that a power law is applicable with shear rates up to 1500 s⁻¹. Complex viscosity measurements are extrapolated using a power law which is fitted onto the rheological data. For G' an exponential relation was found. Finally G'' is calculated with the extrapolated η^* and G'.

$$\eta^* = m_{n^*} \cdot \omega^{n_{\eta^*} - 1}$$

$$G' = m_{G'} \cdot \omega^{n_{G'}}$$

$$G'' = \sqrt{\omega^2 \cdot \eta^{*2} - G'^2} \qquad 9$$

Boundary conditions

It was assumed that there is no wall slippage in the extrusion experiments, but the simulation would not converge without a certain amount of slippage at the die wall. This is most likely due to the high Weissenberg number problem. The high shear rates mostly occur near the die exit. Wall slippage was introduced in the extrudate swell simulations in order to temper the shear rates at the die exit. The wall slippage is enforced with equation 10 [37, 40].

$$v_s = -\frac{\tau_{wall}}{k}$$
 10

There is a full-slip condition when k=0 kg·m⁻²·s⁻¹, there is no slip if $k=\infty$ kg·m⁻²·s⁻¹. Wall slippage decreases the pressure drop in the die. The pressure drop can be expressed as a function of slip coefficient k. It was decided that a simulation performs sufficiently if the pressure drop is not significantly influenced by the wall slippage.

A simplified simulation was performed in order to find the pressure drop within the die. The simplified simulation is without extrudate and free surface, the simulation does converge without wall slippage. The simplified simulation was subsequently subjected to an incrementally increasing wall slippage. At $k=10^8$ kg·m⁻ 2 ·s⁻¹ the pressure drop became more than 95 % of that of the simulation without wall slippage. The extrudate swell simulations were performed with a wall slippage with a slip coefficient $k=10^8$ kg·m⁻²·s⁻¹.

Finally, the surface of the extrudate is a free surface and the remeshing technique Optimesh-3D was applied [37]. At the outflow plane, a zero tangential and normal force condition was applied. This condition is applicable if the elastic tensions are completely dissipated.

Mesh

Several 3D meshes of the die and 40 mm of extrudate were designed. Some design consideration are:

- High node density near the die exit is desirable since the greatest increase in extrudate diameter is expected to happen near the die exit.
- Practice shows that a structured mesh of hexagonal cells results in a more stable simulation than an unstructured mesh.
- The computational costs increases rapidly with an increase in the number of nodes.
- Sufficient node density near the die wall since the shear rates are greatest near the die wall.

Figure 6 shows the cross-section through the length of the die and extrudate, the node density is higher near the die exit.

Simulations with several meshes were performed in order to find a mesh with a sufficient node density near the die wall. The node density near the die wall was determined by one variable, all other design parameters are kept constant, see Figure 7.

Figure 7: Width cross-sections of the meshes. A: Schematic representation of the mesh designs, the mesh consists of a square mid-section (green) and a circular part (blue). The total number of nodes is determined by a constant number of nodes in the angular direction

(black) and a variable number of nodes in the radial direction (red). B: Cross-section of a mesh with 4 nodes in the radial direction. C: Cross-section of a mesh with 5 nodes in the radial direction. D: Cross-section of a mesh with 6 nodes in the radial direction.

A mesh is sufficient if the extrudate does not increase much when the number of nodes increases. The diameter of the extrudate at 20 mm from the die exit as a function of the number of nodes is shown in Figure 8.

Figure 8: The extrudate diameter at 20 mm from the die exit as a function of the number of nodes in the radial direction with an flow rate of 13.9 ml·s⁻¹. The red cross at 5 nodes in the radial direction, this is the mesh used for the extrudate swell simulations.

The mesh used in this study is with 5 nodes in the radial direction. The mesh is structured with hexagonal cells and contains 15906 cells.

RESULTS AND DISCUSSION

Rheological measurements and curve-fit

The G', G" and η were measured with the RPA2000, the rubber compound did not show a significant temperature dependence within the measured temperature range. This temperature independent behavior is expected since the rubber compound has a low T_g of less than 0 °C. The measurements at 100 °C have been used for extrapolation and curve-fitting. The measured G', G" and η and the extrapolated data is shown in Figure 9.

Figure 9: Measured and extrapolated G', G'' and η . Note: the dimensions differ between G', G'' and η . Note: all dimensions are presented on a logarithmic scale.

Equations 7, 8 and 9 are applied for the extrapolation of G', η and G''. The following values for the parameters of these equations were found:

- $m_{\eta^*} = 85422 \text{ Pa} \cdot \text{s}^{n_{\eta^*}} \cdot \text{Rad}^{1-n_{\eta^*}}$
- $n_{\eta^*} = 0.241$
- $m_{G'} = 72078 \text{ Pa} \cdot \text{s}^{n_{G'}} \cdot \text{Rad}^{-n_{G'}}$

$$-n_{G'}=0.259$$

A curve fit was made onto the extrapolated data and is shown in Figure 10.

Figure 10: Extrapolated and curve fitted G', G" and η . Note: the dimensions differ between G', G" and η . Note: all dimensions are presented on a logarithmic scale.

The typical shear rates range between 1 s⁻¹ and 2000 s⁻¹ as was determined with the trial simulation. Note that the fit matches well in the range of typical shear rates, but poorly at the shear rates of less than 1 s⁻¹.

Table 2: Curve-fitted values of the 3 mode PTT model. Note that there is only a single *r* for the multimode model, and that ε and ξ are identical for each mode.

	First mode	Second mode	Third mode
λ	0.667·10 ⁻³ s	2·10 ⁻³ s	0.6 s
η	230.803 Pa·s	3539.3 Pa·s	79880.5 Pa·s
З	0.7508015	0.7508015	0.7508015
ξ	0.1360633	0.1360633	0.1360633
r	0.41343.10-6	-	-

Extrusion experiments

During the extrusion experiments the extrudate temperature and mass flow rate have been measured. Apollo tyres determined that the density of the rubber compound is $1210 \text{ kg}\cdot\text{m}^{-3}$.

 Table 3: Measured flow rate and extrudate temperature for each experiment.

Gear pump	Flow rate	Extrudate
speed		temperature
5 rpm	13.9 ml·s ⁻¹	88 °C
10 rpm	27.4 ml·s ⁻¹	95 °C
15 rpm	41.1 ml·s ⁻¹	100 °C
20 rpm	54.2 ml·s ⁻¹	105 °C

The measured flow rates of Table 3 are used for the simulations.

Shear rates in the simulations

The simulations show high shear rates within the capillary part of the die. At higher flow rates the shear rates increase, but do not surpass 2130 s^{-1} . Which is in agreement with the typical shear rates found with the trial simulations and the chosen relaxation times.

Figure 11: Shear rate in the extrudate swell simulations, upper diagram is 5 rpm, the lower diagram is 20 rpm.

Extrudate swell

The measured extrudate swell and the simulated extrudate swell are shown as a function of distance from the die exit:

In these experiments the extrudate swell increases as a function of distance from the die exit up until 20 mm from the die exit. A small decrease in extrudate swell at

30 mm from the die exit can be observed. This is most likely a measurement error due to the downward curvature of the extrudate.

The simulations show a rapid increase in extrudate swell at a short distance from the die exit. The simulated extrudate swell seems to overshoot in comparison to the experiments. With more wall slippage, the overshoot disappeared.

The simulations show an increase of extrudate swell near the end of the 40 mm of simulated extrudate. This swell increases when the simulation is repeated with a shorter (20 mm) extrudate. A shorter extrudate has less time to relax. The extra swell near the end is most likely due to the boundary conditions at the outflow plane and the elastic tensions which have not completely been dissipated.

Figure 13 shows the simulated and experimental extrudate swell as a function of the flow rate at 20 mm from the die exit.

Figure 13: Experimental and simulated extrudate swell as a function of flow rate at 20 mm from the die exit.

There is strong agreement between the simulated and experimental extrudate swell. Both the simulated and experimental extrudate swell increase with higher flow rates, but the increase becomes less at higher flow rates.

CONCLUSION

A procedure was proposed to simulate extrudate swell. A rubber compound was analyzed for its rheological behavior and a 3 mode PTT model was fitted onto the rheological data. Extrudate simulations at high flow rates and shear rates have been performed with the PTT model. Extrusion experiments at high flow rates and shear rates have been performed. The extrudate swell was measured, the accuracy of the extrudate swell measurement is decreases beyond 30 mm from the die exit. The simulated swell is overpredicted near the die exit, the simulated swell and the experimental swell is in good agreement at 20 mm from the die exit.

Recommendations / Future work

The extrusion simulation was performed with a single circular die and a single tire rubber compound. Future work will focus on different die shapes and sizes, different tire compounds and different viscoelastic models.

In this study, rheological data was extrapolated. Further study is needed to determine whether the behavior of rubber matches the extrapolation.

Further research is needed to determine whether wall slippage is present in the die and how this might be included in the simulations. Wall slippage is not present at low shear rates, but might be present at high shear rates. The presence of wall slippage might be determined by experiments and simulations at low and high flow rates and shear rates. This could also be a validation of the simulation procedure at low flow rates.

ACKNOWLEDGEMENTS

This study was financially supported by Green Polymer Application Centre (Green PAC), Apollo tyres and VMI Group. The Windesheim University Professorship for Polymer Engineering conducted this study with project partners Apollo tyres, VMI Group and University of Twente. The project partners provided expert advice, essential equipment, materials and experimental data.

REFERENCES

- 1. Coelho, P.M., F.T. Pinho, and P.J. Oliveira, *Fully developed forced convection of the Phan-Thien–Tanner fluid in ducts with a constant wall temperature.* International Journal of Heat and Mass Transfer, 2002. **45**(7): p. 1413-1423.
- 2. Pittman, J.F.T., Computer-aided design and optimization of profile extrusion dies for thermoplastics and rubber: a review. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2011. **225**(4): p. 280-321.
- 3. Thais, L., L. Helin, and G. Mompean, Numerical simulation of viscoelastic flows with Oldroyd-B constitutive equations and novel algebraic stress models. Journal of Non-Newtonian Fluid Mechanics, 2006. **140**(1-3): p. 145-158.
- 4. Debbaut, B. Eureka project ID 2799: Development and industrial applications of explicity algebraic fluid models. Available from:

http://www.eurekanetwork.org/project/id/2799.

- 5. Choi, S.H. and M.Y. Lyu, *Application of the PTT Model for Capillary Extrusion of Rubber Compounds*. International Polymer Processing, 2009. **24**(4): p. 326-333.
- 6. 29th Annual Meeting and Conference on Tire Science and Technology. 2010.
- 7. Ashutosh A. Kudale, K.N., G. Karthick Raja, P. Sankarganesh 2, R. Rajesh Babu, *Extrusion Die Swell Simulation of Tire tread Compound using Phan Thien & amp; Tanner (PTT) Model.*
- Yang, C. and Z. Li, *Effects of wall slip on the rheological measurement and extrusion die design of a filled rubber compound*. Plastics, Rubber and Composites, 2016. 45(7): p. 326-331.

- 9. Tanner, R.I., *Engineering rheology*. 1 ed. 1986: Oxford University Press.
- Ahmed, R., R.F. Liang, and M.R. Mackley, *The* experimental observation and numerical prediction of planar entry flow and die swell for molten polyethylenes. Journal of Non-Newtonian Fluid Mechanics, 1995. **59**(2–3): p. 129-153.
- 11. Goublomme, A., B. Draily, and M.J. Crochet, *Numerical prediction of extrudate swell of a high-density polyethylene.* Journal of Non-Newtonian Fluid Mechanics, 1992. **44**: p. 171-195.
- 12. Goublomme, A. and M.J. Crochet, *Numerical* prediction of extrudate swell of a high-density polyethylene: further results. Journal of Non-Newtonian Fluid Mechanics, 1993. **47**: p. 281-287.
- Konaganti, V.K., et al., *Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies*. International Polymer Processing, 2016. **31**(2): p. 262-272.
- 14. Konaganti, V.K., et al., *Extrudate swell of a high-density polyethylene melt: II. Modeling using integral and differential constitutive equations.* Journal of Non-Newtonian Fluid Mechanics, 2015. **225**: p. 94-105.
- 15. Ganvir, V., et al., *Extrudate swell of linear and branched polyethylenes: ALE simulations and comparison with experiments.* Journal of Non-Newtonian Fluid Mechanics, 2011. **166**(1-2): p. 12-24.
- Kim, J.H. and M.Y. Lyu, Predictions of flow behaviors and entrance pressure drop characteristics of a rubber compound in a capillary die using various rheological models. Polymer Engineering & Science, 2014. 54(10): p. 2441-2448.
- 17. Debbaut, B. and T. Marchal, *Numerical* simulation of extrusion process and die design for industrial profile, using multimode pompom model. Plastics, Rubber and Composites, 2008. **37**(2-4): p. 142-150.
- Mompean, G., et al., Numerical prediction of three-dimensional time-dependent viscoelastic extrudate swell using differential and algebraic models. Computers & amp; Fluids, 2011. 44(1): p. 68-78.
- Limtrakarn, W., et al., Circular Die Swell Evaluation of LDPE Using Simplified Viscoelastic Model. King Mongkut's University of Technology North Bangkok International Journal of Applied Science and Technology, 2013. 6(3): p. 59-68.
- 20. Kim, J., et al., Computer Simulation of Die Extrusion for Rubber Compound Using Simplified Viscoelastic Model. Elastomers and Composites, 2011. **46**(1): p. 54-59.
- Béraudo, C., et al., A finite element method for computing the flow of multi-mode viscoelastic fluids: comparison with experiments. Journal of Non-Newtonian Fluid Mechanics, 1998. 75(1): p. 1-23.

- 22. Ganvir, V., et al. Numerical and Experimental Studies on Extrudate Swell of Linear and Branched Polyethylenes. in TheXV International Congress onRheology, The Society ofRheology 80 Annual Meeting. 2008. American Institute of Physics.
- 23. Ganvir, V., et al., Prediction of extrudate swell in polymer melt extrusion using an Arbitrary Lagrangian Eulerian (ALE) based finite element method. Journal of Non-Newtonian Fluid Mechanics, 2009. **156**(1-2): p. 21-28.
- 24. Mu, Y., et al., *Measurement and simulation of low-density polyethylene extrudate swell through a circular die.* Polymer International, 2009. **58**(5): p. 475-483.
- Mu, Y., et al., Finite-Element Simulation of Polymer Flow and Extrudate Swell Through Hollow Profile Extrusion Die with the Multimode Differential Viscoelastic Model. Advances in Polymer Technology, 2013.
 32(S1): p. E1-E19.
- Ganvir, V., et al., Numerical and experimental studies on extrudate swell of branched polyethylene through axisymmetric and planar dies. Journal of Polymer Engineering, 2011.
 31(2-3): p. 217-221.
- 27. Debbaut, B. and M.J. Crochet, *Further results* on the flow of a viscoelastic fluid through an abrupt contraction. Journal of Non-Newtonian Fluid Mechanics, 1986. **20**: p. 173-185.
- Yang, C. and Z. Li, *An integrated numerical study of coextrusion flow inside and outside the die.* Journal of Applied Polymer Science, 2016. 133(23).
- 29. Ren, Z., X.Y. Huang, and H.S. Liu, *3D* Numerical study on the hollow profile polymer extrusion forming based on the gas-assisted technique. IOP Conference Series: Materials Science and Engineering, 2016. **137**: p. 012007.
- 30. Pettas, D., et al., On the origin of extrusion instabilities: Linear stability analysis of the viscoelastic die swell. Journal of Non-Newtonian Fluid Mechanics, 2015. **224**: p. 61-77.
- 31. Konaganti, V.K., et al. Study on extrudate swell of high-density polyethylenes in slit (flat) dies. in Annual Technical Conference - ANTEC, Conference Proceedings. 2016.
- 32. Alpha-Technologies, *RPA2000*.
- 33. Macosko, C.W., *Rheology: Principles, Measurements, and Applications.* 1994: WILEY-VCH.
- 34. Owens, R.G. and T.N. Phillips, *Computational rheology*. 2002: World Scientific.
- 35. Konaganti, V.K., et al., *The effect of damping function on extrudate swell*. Journal of Non-Newtonian Fluid Mechanics, 2016. **236**: p. 73-82.
- 36. Konaganti, V.K., et al., *Non-isothermal* extrudate swell. Physics of Fluids, 2016. **28**(12).
- 37. ANSYS, *Polyflow manual*.
- 38. Leblanc, J.L., *Rubber-filler interactions and rheological properties in filled compounds.*

Progress in Polymer Science, 2002. 27(4): p. 627-687.

39. Bhagawan, S.S., et al., *Effect of fillers on the rheological behavior of thermoplastic 1,2*

polybutadiene rubber. Polymer Engineering and Science, 1988. **28**(10): p. 648-654.

40. Yang, C. and Z. Li, *A study of wall slip in the capillary flow of a filled rubber compound.* Polymer Testing, 2014. **37**: p. 45-50.