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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal
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ABSTRACT

The physics of droplet collisions involves a wide range of length
scales. This poses a difficulty to accurately simulate such flows
with traditional fixed grid methods due to their inability to resolve
all scales with affordable number of computational grid cells. A
solution is to couple a fixed grid method with simplified sub grid
models that account for microscale effects. In this paper, we incor-
porate such framework in the Local Front Reconstruction Method
(Shin et al., 2011). To validate the new method, simulations of
(near) head on collision of two equal tetradecane droplets are car-
ried out at different Weber numbers corresponding to different col-
lision regimes. The results show a better agreement with experi-
mental data compared to other fixed grid methods like Front Track-
ing (Pan et al., 2008) and Coupled Level Set and Volume of Fluid
(CLSVOF) (Kwakkel et al., 2013), especially at high impact veloc-
ities.

Keywords: Numerical Simulation, Multiphase flows, Front
Tracking, LFRM, coalescence, break-up, droplet collision.

NOMENCLATURE

Greek Symbols

p  Mass density, [kg/m?].

u Dynamic viscosity, [kg/ms]|.

6 Surface tension coefficient, [N/m].

Latin Symbols
p  Pressure, [Pal.
u  Fluid Velocity, [m/s].

g Gravitational acceleration, [m/s2].
Fs  Surface tension force, [N/m?].

t time, [s].

n Surface normal.

t.  Contact time between droplets, [s].
t;  Film drainage time, [s].

Ry Initial droplet radius, [m].

Vo Initial droplet speed, [m/s].

b Offset distance between droplets, [m].
Sub/superscripts

r Interface.

l Liquid.
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INTRODUCTION

Droplet-laden flows play an important role in many in-
dustrial applications and natural processes (Crowe et al.,
1998). Some examples are spraying of fuel in combustion
engines, spray drying of food products, liquid-liquid extrac-
tion, growth of rain droplets in clouds and pollution track-
ing. The interaction between droplets has a major influence
on the dynamics of such flows, because of the coalescence
and break-up that may occur upon collision. However, it is
very difficult to accurately capture coalescence and break-up
numerically because of the wide range of length scales in-
volved. For example, the collision dynamics of droplets is
influenced by the drainage of the thin gas film separating two
colliding droplets (Mason et al., 2012), causing bouncing of
the droplets when the film is not drained during the colli-
sion event. Coalescence occurs when the gas film ruptures.
The rupture is attributed to the van der Waals surface forces
which become dominant at nanometer scale. It is not possible
to capture all scales ranging from millimeter (droplet diame-
ter) to nanometer (critical film thickness) using an affordable
number of computational grid cells.

In our fixed grid method, the under resolved final stage of the
film drainage process is accounted for by a sub-grid model.
Few studies have been done previously using different fixed
grid methods and sub-grid models (Kwakkel et al., 2013,
Mason et al., 2012). The fixed grid methods for modeling
multiphase flows can be divided into two types: front captur-
ing and front tracking techniques (Tryggvason et al., 2011).
In front capturing methods, the interface is implicitly repre-
sented by a colour function. Common front capturing meth-
ods are Volume of Fluid (VOF) (van Sint Annaland et al.,
2005), Level Set (LS) (Sethian and Smereka, 2003) and Cou-
pled Level Set and Volume of Fluid (CLSVOF) (van der Pijl
et al., 2005) methods. Generally, the droplets in these meth-
ods coalesce automatically when they share a common grid
cell. However, this numerical coalescence can be avoided
for the simulation of symmetric binary droplet collision us-
ing Volume of Fluid method. The coalescence can be con-
trolled by prescribing a volume-fraction boundary condition
on the collision plane using ghost cells (Mason ef al., 2012).
When the boundary condition is set to zero volume fraction,
the droplets will bounce; whereas a symmetry boundary con-
dition will result in coalescence. A more general approach to
avoid numerical coalescence is to use unique colour function
for each droplet (Nikolopoulos et al., 2009).

A big disadvantage of front capturing methods is the very
fine grid resolution which is required for accurate surface
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tension calculation especially when the droplets undergo
complex topological changes (Kwakkel ef al., 2013). Front
tracking methods (Dijkhuizen et al., 2010, Shin et al., 2011)
are inherently better at surface tension calculation at coarse
grid resolution. This is because a front tracking method
directly tracks the interfaces using triangular marker ele-
ments, enabling accurate curvature calculation. However,
in the traditional front tracking method, droplet coalescence
is not possible. To incorporate coalescence, additional rou-
tines to merge the individual unstructured meshes belong-
ing to different droplets are required (Nobari et al., 1996).
In the traditional front tracking method, the merging of the
droplet meshes is complicated because the logical informa-
tion about the marker connectivity should be updated. In ad-
dition, the merging of droplets with complex topology is very
challenging. Therefore, we choose a front tracking method
without connectivity, the Local Front Reconstruction Method
(LFRM) by Shin et al., 2011.

As logical connectivity between marker elements is not re-
quired, LFRM can handle complex topological changes like
droplet coalescence and pinch off. It uses information from
the original marker elements directly to reconstruct the in-
terface in a mass conservative manner and thus, also ensures
good local mass conservation. Because the interface is re-
constructed independently in each individual reconstruction
cell, the method can be highly parallelized. However, this
cell-oriented reconstruction leads to numerical coalescence
(similar to front capturing methods) in LFRM (Shin et al.,
2011). This is prevented in our implementation by storing
the information about marker elements and marker points for
each droplet separately. The coalescence is accomplished by
merging data-structures of two droplets. Similarly, the break-
up of a droplet is done by splitting the data-structure of the
droplet. The details of these procedures are given in next sec-
tion. We have improved the original LFRM method in cer-
tain areas which are also summarized in next section. Lastly,
the results of simulations of (near) head on collision of two
equal tetradecane droplets in different collision regimes are
discussed. The discussion includes validation of simulations
with experimental data and comparison with other fixed grid
methods (Kwakkel et al., 2013, Pan et al., 2008).

METHODOLOGY
Local Front Reconstruction Method

Both fluids in the two phase flow are assumed to be incom-
pressible, immiscible and Newtonian fluids. A one-fluid for-
mulation is used and the governing equations are given by the
continuity equations and the Navier-Stokes equations, where
the physical properties depend on local phase fractions.

Vou=0 )

p%l +pV-(uu)=—-Vp+pg+V-u [Vu+(Vu)T} +Fs
2

where Fg is a singular source-term to represent the surface

tension at the interface.

The following conditions are applied at the interface I" to

close the governing equations:

[ =0 3

[-pn+u(Vut (Vo)) on] =Som @
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where [.]- represents jump in a quantity across the interface
from one phase to another and S, is the surface force acting
on interface due to surface tension.

The equations are discretized using a finite volume approach
and are solved on a staggered computational grid by a frac-
tional step method (Das et al., 2017). The surface tension
force Fs is calculated using hybrid surface tension model
(Shin et al., 2005) which has combined advantage of accurate
curvature calculation (similar to the pull force model which
is commonly used in front tracking methods) and proper bal-
ance of pressure and surface tension force at discrete level
(similar to the continuum surface model which is commonly
used in front capturing methods).

The fluid velocity is interpolated from Eulerian grid to La-
grangian grid using cubic spline interpolation and marker
points are moved with the interpolated velocity using a 4"
order Runge-Kutta scheme (Dijkhuizen et al., 2010).

As mentioned before, the local phase fraction is required
to calculate the averaged physical properties. This can be
calculated by the geometric analysis using the positions of
the marker points (Dijkhuizen et al., 2010). This method of
phase fraction calculation is exact and computationally more
efficient than the traditional method of solving Poisson equa-
tion used in original LFRM method. From the calculated
phase fractions, the average density and viscosity is calcu-
lated by algebraic and harmonic averaging, respectively.
Due to the advection of the marker points, the marker ele-
ments can become too large or too small. This poor grid qual-
ity decreases the accuracy of the surface tension force calcu-
lation. To maintain the mesh quality, a mesh reconstruction
procedure of (Shin et al., 2011) is implemented. The recon-
struction procedure also allows to reconstruct the mesh when
the multiple droplets coalesce or a droplet breaks-up. The
implementation is improved by the use of linked-list data-
structures for storing location of the three vertices of each
marker. This ensures that each marker point has a unique
identity, thus reducing the memory requirements and pre-
venting precision problems.
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Figure 1: Schematic of the reconstruction procedure for LFRM
(Shin et al., 2011).

The overall reconstruction procedure consists of four simple
steps as shown in Figure 1:
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(a) Localization - Interface of the discrete phase is cut by
a reconstruction grid (similar to the Eulerian grid) such
that each part of the interface lies completely inside one
cell.

(b) Edge line reconstruction - The edge line corresponding
to the cut interface is traced out on relevant faces of the
cell, and new edge line (containing only two edge points
and a fitting point) is reconstructed in an area conserva-

tive manner.

(c) Centroid calculation - Using edge points and fitting
points of all the faces, a centroid is calculated. An inter-
mediate interface is formed by connecting the centroid

with intermediate edge lines.

(d) Volume fitting - Finally, the centroid is moved in the
normal direction of intermediate interface such that
original volume of the dispersed phase is conserved in

the given cell.

Flows involving coalescence and break-up of the dispersed
phase are easily handled by LFRM. This is enabled by the
marker reduction and the tetra-marching procedures, which
allow merging and breaking of unstructured meshes of the
dispersed phase. Details of these procedures can be found in
(Shin et al., 2011). In our implementation, the data-structure
of each droplet is stored with a unique identity. However,
this prevents coalescence completely. To enable coalescence
between two droplets at a desired time, their data-structures
have to be merged and the merged droplet has to be given a
unique identifier, which is handled by the coalescence mod-
ule. Similarly, each daughter droplet is given a unique iden-
tifier when formed after break-up of a droplet, which is han-
dled by the break-up module.

Coalescence Module

The coalescence module checks if there are multiple inter-
faces within the same reconstruction cell and combines the
data-structures of two droplets depending on the calculated
film drainage and contact time. The different steps in the
coalescence module are given below:

(a) Bounding box for droplets in terms of grid cell units is
calculated (Figure 2(a)).

(b)

At each time step, it is checked if the bounding boxes of
any two droplets are overlapping.

(c) If the overlap exists, the cells containing interfaces from
both droplets are flagged to check if any cell contains

interface from both droplets (Figure 2(b)).
(d)

If one or more cells contain interface from both droplets,
then these droplets are identified to be in ’contact’ and
added to a collision list (Figure 2(c)). The contact timer

is initiated to keep track of contact time ?,.

(e) At each time step, it is checked if the droplets pair is
still in contact. If a pair is in contact, the contact time is
compared to the film drainage time #;. In this study, the
film drainage time #,; is obtained from experiments. If
the contact exists and t. > 14, the data-stuctures of two
droplets are merged and reconstruction is performed to
execute droplet coalescence (Figure 2(e)). If the contact
ceases, the droplets are removed from the collision list

and this leads to bouncing of droplets.
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Break-up Module

The numerical break-up of the droplet will take place based
on the size of the reconstruction grid. As stated before, it
is important to separate the data-structure of the droplets af-
ter break-up to avoid numerical coalescence. This separation
is achieved by using a recursive flagging algorithm. The al-
gorithm is used to find the disjoint droplets that are subse-
quently assigned a new ’droplet-number’, see Figure 3.

RESULTS

In case of (near) head-on collisions between equal sized hy-
drocarbon droplets, four regimes of collision outcome are
observed with increasing Weber number (measure of droplet
inertia compared to surface tension). As seen in Figure 4,
these regimes are (I) Coalescence with minor deformation,
(II) Bouncing, (IIT) Coalescence with major deformation and
(IV) Coalescence with separation resulting in production of
daughter droplets. To validate the modified LFRM method, a

-
_

(dl

(e}

(e}

Figure 2: Schematic of the coalescence module. Blue and red
boxes represent bounding boxes of blue and red droplets
respectively. Yellow box represents cells containing in-
terface from both droplets.
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Figure 3: Steps of flagging algorithm in the break-up module.
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case of binary droplet collision from each of these regimes is
simulated and compared with experiments (Pan ef al., 2008
and Qian and Law, 1997) and other simulation methods (Pan
et al., 2008 and Kwakkel et al., 2013).

Figure 4: Schematic of collision regimes of two equal sized hydro-
carbon droplets in atmospheric pressure. The parameter
B represents the obliqueness of the collision and We rep-
resents the Weber number (Qian and Law, 1997).

The grid cell size is selected such that 12 grid cells are
taken across the droplet radius (Rg) (similar to grid size
used in (Kwakkel et al., 2013) for CLSVOF and (Pan et al.,
2008) for FT). The computational domain has dimensions
8Rp x 10R( x 8R( with the largest dimension in the direction
of the collision. Free slip boundary condition is used on all
domain boundaries. The initial distance between the droplet
centers is taken as 2.8Rp. Each droplet is initialised with a
uniform velocity field, Vp, but in the opposite direction. For
each case, Weber number and impact parameter (Figure 5)
are provided as an input. The film drainage time is provided
by experimental observations (Pan et al., 2008).

s ZRupi(va))
We —
Vo
b
e T
_ _b
B = 2Ry

Figure 5: Nomenclature of general binary droplet collision
(Kwakkel et al., 2013).

Regime |

This regime always results in coalescence, while the colli-
sions are gentle (low Weber numbers). A collision of tetrade-
cane droplets in 1 atm. air, Ry = 107.2 um , Vy = 0.305 m/s,
We = 2.3, and B = 0 is shown in Figure 6. The obtained re-
sult from LFRM matches well with results from the Coupled
Level Set Volume of Fluid method (Kwakkel et al., 2013),
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the Front Tracking method (Pan et al., 2008) and experi-
mental data (Pan et al., 2008). In such regime, the coales-
cence happens around maximum deformation. After the co-
alescence, the cusp at the merged interface is quickly flat-
tened. This phenomenon is nicely captured by all the numer-
ical simulations.

Regime Il

This regime always results in bouncing. A collision of
tetradecane droplets in 1 atm. air, Ry = 167.6 um, Vo = 0.492
m/s, We = 9.33, and B = 0 is shown in Figure 7. Again, the
results obtained using LFRM agree well with experimental
data (Pan et al., 2008) and other simulation results with FT
(Pan et al., 2008) and CLSVOF (Kwakkel et al., 2013).

Regime Il

This regime always results in coalescence, however the col-
lisions are hard collision (high weber numbers) resulting
in substantial deformation before merging. A collision of
tetradecane droplets in 1 atm. air, Ry = 169.7 um, Vp = 0.591
m/s, We = 13.63, and B = 0 is shown in Figure 8. The merg-
ing in this case occurs as the deformed droplet is flattened
to a disk shape while the incoming mass at the center of the
rear face is still heading forward resulting in dimpled shape
between 370 and 500 ms. Although this is not very clear in
the experimental results (Pan et al., 2008) but it was captured
properly by all the numerical simulations.

Regime IV

This regime of near head on collision results in separation
of droplets after merging as the kinetic energy is sufficient
to overcome the surface energy. A collision of tetradecane
droplets in 1 atm. nitrogen, Ry = 168 um, Vy = 1.260 m/s,
We = 62.2, and B = 0.06 is shown in Figure 9. A zero film
drainage time (which is justified by high weber number) is
used in the simulation. The different colour of droplets indi-
cate that each droplet has different droplet number and sepa-
rate data-structure.

The results obtained using LFRM match better with the ex-
perimental results (Qian and Law, 1997) compared to the
CLSVOF (Kwakkel et al., 2013). In Figure 9, a premature
separation is seen for CLSVOF. As explained in (Kwakkel
et al., 2013), the origin of this premature separation is the
less accurate curvature estimation in strongly deformed re-
gions. These errors in curvature estimation have a direct con-
sequence for the acting surface tension force, and over time
the droplet shape. This indicates that LFRM has more accu-
rate surface tension calculation for the same grid size. Also,
the size of the satellite droplet resembles the experimental
data better compared to the CLSVOF results.

CONCLUSION

The local front reconstruction method has been improved
and extended to allow for controlled coalescence. The new
method has been successfully validated by carrying out sim-
ulations of binary (near) head on droplet collisions. By using
experimentally observed film drainage times, a good match
with experimental data is observed. This shows that if an ac-
curate predictions of the film drainage time can be obtained
from a sub-grid model, LFRM can capture collision dynam-
ics in multiphase flows with physical realism. Finally, the re-
sults obtained using LFRM are compared with those of other
methods and a better agreement with experimental data is
seen, especially at high impact velocities.
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Figure 6: Merging collision sequence in regime I. LFRM results from present study, CLSVOF from (Kwakkel et al., 2013), FT and experi-
mental results from (Pan et al., 2008). Conditions: tetradecane in 1 atm. air, Ry = 107.2 um, Vy = 0.305 m/s, We = 2.3, and B = 0.
The film drainage time observed in experiments is 7; = 0.270 ms.
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Figure 8: Merging collision sequence in regime III. LFRM results from present study, CLSVOF from (Kwakkel et al., 2013), FT and experi-
mental results from (Pan et al., 2008). Conditions: tetradecane in 1 atm. air, Rg = 169.7 um, Vp = 0.591 m/s, We = 13.63, and B = 0.
The film drainage time observed in experiments is 7; = 0.246 ms.
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Figure 9: Near head on separating collision sequence in regime IV. LFRM results from present study, CLSVOF from (Kwakkel et al., 2013)
and experimental results from (Qian and Law, 1997). Conditions: tetradecane in 1 atm. nitrogen, Ry = 168 um, Vy = 1.260 m/s,
We = 62.2, and B = 0.06. The film drainage time is assumed to be zero.
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