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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

Predicting the drop size distribution (DSD) is essential in
particulate flows such as emulsions as it affects mass transfer
and heat transfer. In the current work we developed a novel
numerical method to account for droplet breakup. The droplet
breakup relies on an in-house developed correlation which
depends on the local shear rate and some fluid properties.
Commonly, a population balance equation (PBE) is employed
to describe the breakup and coalescence of the droplets;
however, such an approach does commonly not distinguish
between different slip velocities of the smaller and larger
droplets. Therefore, we propose a hybrid modelling strategy,
which combines an Eulerian-Eulerian two-fluid model (TFM)
and a Lagrangian discrete particle model (DPM), which is
referred to as the Hybrid TFM-DPM model. This method
enables the efficient evaluation of the poly-disperse liquid-
liquid drag force form the local distribution of the different
droplet diameters. The latter can be obtained by tracking
statistically representative droplet trajectories for each droplet
diameter class. Finally, we applied this novel approach to a
liquid-liquid emulsion in a stirred tank presented. The results
clearly show that the present method is able to predict the
droplet size distribution for different rotational speeds of the
stirrer.

Keywords: Emulsion, Droplet breakup, Coalescence,
Hybrid TFM-DPM

NOMENCLATURE

Notation

We Weber number, [-].

Re Reynolds number, [-].

A Dimensionless constant, [-].

a  Shear rate, [-].
D32 Sauter mean diameter, [m].
D90 90% of the droplets are smaller than this value, [m].

ka"ly Drag force acting on a parcel with d, ,[kg. m/s?].
g Gravity acceleration, [m/s?].

295

h  Characteristic length, [m].

K Interphase momentum exchange coefficient

L TImpeller diameter of stirred tank (Characteristic
length), [m].

U Velocity field, [m/s].

~

u Average velocity, [m/s].

Greek Symbols
O Mass density, [kg/m3].

Dynamic viscosity, [kg/m.s].
Interfacial tension, [kg/s?].
Turbulence dissipation rate. [m?/s?].
Collision frequency, [#/s].

Coalescence efficiency, [-].

Coalescence frequency, [#/s].
Shear stress, [kg/m.s?].

NN N MR

T 1.4 Collisional time scale.

¢ Dispersed phase volume fraction. [-]

Sub/superscripts
¢ Continuous phase.

d Dispersed phase.

k  Index of parcel.
p Parcel.

INTRODUCTION

Emulsions are widely used in the several industries such
as food, pharmaceutical, cosmetic, chemical and
petroleum. Drop size distribution (DSD) plays the key
role as it controls mass transfer and heat transfer of the
liquid-liquid system inside the reactor (Leng and
Calabrese, 2004). Wide range of studies are done both
numerically and experimentally to cover the DSD issues
in the stirred tank reactor. There are several experimental
studies focus on the single drop breakup experiment in
order to define the breakup kernel for the Population
balance equation (PBE) (Maal et al., 2012; Solsvik et al.,
2014; Solsvik and Jakobsen, 2015) and some others



investigated DSD regardless of the events happening to
each droplet (Boxall et al., 2010; Calabrese et al., 1986;
Coulaloglou and Tavlarides, 1977, 1976; Narsimhan et
al.,, 1980; Ohtake et al., 1987; Wang and Calabrese,
1986). In addition, there are some additional studies,
where computational fluid dynamic (CFD) in
combination with PBE modelling is performed to predict
the PSD of liquid-liquid emulsions (Agterof et al., 2003;
Roudsari et al., 2012).

PBE is commonly used to take account for the break up
and coalescence of the droplets, although it is
computationally not affordable to consider the different
slip velocities of the different droplet sizes. Furthermore,
the PBE requires kernels for breakup and coalescence,
which are difficult to obtain due to finding the parameters
such as the breakage frequency (Ramkrishna, 2000).

In the current work, a hybrid approach is proposed, which
combines the Eulerian-Eulerian two fluid model (TFM)
and the Lagrangian discrete particle model (DPM)
(Schneiderbauer et al., 2016a, 2016b). Here, the breakup
of the droplets can be evaluated based on individual
representative droplets. Moreover, hybrid TFM-DPM
strategy has the advantage to acquire the Sauter mean
diameter from DPM side (Lagrangian) and deliver it to
TFM in order to calculate the accurate interphase
momentum exchange term (Schneiderbauer et al., 2015).
However, this hybrid approach requires the local
equilibrium droplet size distribution. In the literature
there are correlations, which evaluate the global Sauter
mean diameter in a stirred tank reactors. The early stage
correlation was developed based on the Kolmogorov
length scale (Kolmogorov, 1941) by the work of Shinnar
and Church (Shinnar and Church, 1960) and Chen and
Middleman (Chen and Middleman, 1967) which reads,

D
=2 = Awe™ (1)
L

There are similar works available, which give different
correlations for the global Sauter mean diameter
(Calabrese et al., 1986; Coulaloglou and Tavlarides,
1976; Wang and Calabrese, 1986). However, there is no
available local correlation for Sauter mean diameter
based on the local fluid dynamic parameters (such as
turbulence dissipation rate, €) as it is difficult to obtain.
Therefore, we investigated the droplet breakup in a
Taylor-couette flow, in which the measurement of fluid
dynamic parameters such as shear rate is well defined
(Farzad et al., 2016). The resulting correlation depends
on the shear rate and the fluid physical properties like
density, viscosity and interfacial tension which is written
as below (Farzad et al., 2016),

1 1 033 -6.6
h H, Pe

273
=L e

v H,
Note that, the power of h becomes zero due to
combination of the h, Weber number and Reynolds

) )
_ pah
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number. Therefore, the normalized Sauter mean diameter
is independent of the characteristic length (h).

Finally, while the modelling of breakup can be efficiently
realized on a droplet level, the coalescence of the droplets
would require resolving the collisions between individual
droplets. In the following, we present novel models for
breakup and coalescence. On the one hand, the breakup
model is connected to equation (2) and on the other hand,

the coalescence model represents a different
discretization strategy of the population balance
equations.

DROPLET BREAKUP MODEL

The present breakup model depends on the local Sauter
mean diameter (equation 2), which can be obtained by
using the local shear rate and the system’s physical
properties. Furthermore, our in-house experimental data
(Farzad et al., 2016) reveals that the standard deviation
scales linearly with the Sauter mean diameter, i.c.

o =0.33D;,, and that the DSD follows a log-normal

distribution; this observation is also consistent with
literature (Boxall et al., 2010). Therefore, the full local
equilibrium DSD can be determined by using the Sauter
mean diameter form the correlation (equation 2) and

o = 0.33D;, . Thus, if a droplet is much larger than the
the mean droplet size given from the DSD it might be
prone to breakup. In this work, we employ the Dy, for

this threshold, which can be computed in each
computational cell from the corresponding local DSD

(Figure 1). If a droplet is larger Dy, we sample a random
number following the log-normal distribution. Only if
this random number is larger than Dy, as well, the

droplet will break into two daughter droplets, where the
diameter of the first daughter droplet is given by a second
random number following the log-normal distribution.
Note that, based on our assumption the local droplets

(parcels) which are smaller than Dy, remain stable as

they are inside the local size distribution. Therefore, the
local size distribution is constant and global size
distribution changes till it reaches a steady state.
Consequently, the diameter of the second daughter
droplet can be easily computed from the volumes of the
mother droplet and the first daughter droplet. This model
was implemented as a user-defined function (UDF) to be
used in the ANSYS FLUENT. The numerical
implementation scheme will be discussed later. Note that
breakup is not resolved for each droplet as it
computationally costly and in most of the cases
impossible; therefore, DPM uses parcels instead of
particles which represent a group of particles with the
identical diameter to reduce the computational costs.



Computational cell

Upper breakup limit
(DD} is calculated
from the correlation

-
Lagrangian
Trajectory of the pancel

-

Figure 1: Schematic view of Lagrangian parcel which enters a
specific computational cell with an upper breakup limit. If the
parcel is larger than the limit then it breaks; otherwise, it
remains unchanged.

DROPLET COALESCENCE MODEL

Modelling coalescence is more demanding compared to
the breakup. Coalescence can be thought as the

combination of collision frequency ¢(d,d’) and

coalescence efficiency A(d,d"). Thus, a general form
of the coalescence frequency reads (Coulaloglou and
Tavlarides, 1977; Leng and Calabrese, 2004),
I'(d,d")=¢(d,d")Ad,d") 3)
Computing the collision frequency directly from droplet
interactions is computationally very demanding and
would decline the benefits of the hybrid approach.
Therefore, we follow Coulaloglou and Tavlarides
(Coulaloglou and Tavlarides, 1977), who defined the

collision frequency and coalescence efficiency as below:
1/3

g(d’dr):cl 18+¢(d+dl)2(d2/3 +dl2/3)]/2 (4)

dd'
Gia)

H.p.E
o’(+¢)’

Ad,d") = exp(-c, )

Coalescence may occur when at least two droplets collide
with each other; however, as noted above computing I’
from the interactions of the Lagrangian parcels would
considerably decrease the computational efficiency of the
present model. Thus, a different strategy is required to
compute the rate of coalescence for the actual Lagrangian
parcel. This strategy is outlined in the following: First,
similar to PBE modelling we introduce a specific number
of diameter classes. For each of this diameter classes, we
are able to compute the corresponding volume fraction
from mapping the data coming from the Lagrangian
parcels to the Eulerian grid used for the TFM solution.
Second, based on these “imaginary coalescence partners”
given from this binning, we are able to compute the
individual rates of coalescence (equation (3)). Note that
the representative diameter of each bin is given by its mid
diameter. Therefore, if we have N parcels and M bins in
a cell, there are MXN combinations (e.g. N ~ 2 X 10°
M = 13). Third, the amount of volume created due to
coalescence is locally stored regarding to its new
diameter class in the appropriate diameter bins. Note that
all the coalescence which can produce droplets larger

than local Dy, were neglected in order to reduce the

computational cost as they are prone to breakup again in
the next time step.

297

After storing the volume of the created droplets, they
should be off loaded correctly into the available parcels
with appropriate diameter. The volume remains stored
until an appropriate parcel enters the computational cell;
this procedure is known as “Bus stop model”
(Schellander et al., 2012). Bus stop model helps to reduce
the computational cost since always injecting the
coalescence volume as a new parcel increases the
computation time. However, there might be no suitable
parcel available (regarding to its diameter class) in the
surrounding; then, a new parcel should be injected in the
next time step (flow time).

Two-fluid Model (TFM)

Resolving the motion of all droplets are computationally
costly; therefore, it is more realistic to consider the
averaged equation of motion and treat them as an
Eulerian phase (Crowe et al., 2011). Continuity and
momentum equations for the dispersed phase read
(Ranade, 2001),

Continuity equation

0 _
a(adpd)nLV.(adpdud):O 6)
Momentum equation
0 - - -
5(adpdud)+v'(adpdudud): %)

-a,Vp+V.(a,t )+ F, +a,p,g

F 4 Which denotes the interphase momentum exchange

between the dispersed phase and the continues phase
reads,

F, =K, @, —u,) (3

In reality most of the dispersed multiphase flows such as
droplets and particles are poly-disperse; therefore, Sauter
mean diameter is required to calculate the interphase
momentum exchange properly (Schneiderbauer et al.,
2015).

Continuity and momentum equations for the continuous
phase in a similar manner. This Eulerian-Eulerian
approach is also known as TFM.

Discrete phase model (DPM)

This model provides the movement of a single or a cluster
of particles (parcel) and tracks them in the flow field.
Tracking the parcel trajectories gives the Lagrangian
information. The momentum equation for the parcel
trajectory is,

0 oly
a(“p,k):kal' +g @)

Hybrid model

Combining Lagrangian and Eulerian models yields the
hybrid model. The TFM model predicts the flow field by



solving the Navier-Stokes equation and the DPM model
passes the extra information (e.g. Sauter mean diameter)
to the TFM part in order to improve the accuracy of the
Eulerian part (Schneiderbauer et al., 2015). Furthermore,
sensitivity analysis on several numerical settings reveals
that the hybrid model is reliable (Schneiderbauer et al.,
2016b).

This model is able to calculate the local Sauter mean
diameter which changes the poly-disperse drag force
(Figure 2). The modified Lagrangian trajectory can be
written as below (Schneiderbauer et al., 2016a) ,

%)=

—(u,, ) +F" +g
at TcoLd p’k ‘ ¢

(7

°
®
0®
.[’ .:P A
See
Discrete Continuous Hybrid Mode

Figure 2: Single Lagrangian parcel trajectory (left side), the
continuous droplets travels with local average velocity
(middle), hybrid model in which consider the impact of the
other existing droplets on the Lagrangian trajectory (right
side)

RESULTS AND DISCUSSION

The numerical work by Roudsari et al. (Roudsari et al.,
2012) and the experimental data by Boxall et al. (Boxall
et al., 2010) were used to validate the proposed models.
These works are similar; however, the first one (Roudsari
etal., 2012) explains the CFD simulation of the water-in-
oil emulsion in stirred tank by applying PBE and
validating their results by the second paper (Boxall et al.,
2010) which contains the experimental data. The so
called Conroe oil was used as the continuous phase and
distilled water as the dispersed phase (Boxall et al.,
2010). The Conroe oil density, viscosity and interfacial
tensions are 842 kg/m?, 3.1 cP and 20 mN/m,
respectively. The same geometry was used as Roudsari et
al. (Roudsari et al., 2012). However, they used multiple
reference frame (MRF) to simulate the impeller’s
rotation and ran the simulation in steady state but in the
current work, dynamic simulation in combination with
sliding mesh (SM) was carried out. Hexahedral mesh
(Figure 3) of stirred tank reactor (Rushton turbine 6
blades and 4 baffles) was generated by using ANSYS
ICEM (260,000 cells).

298

Figure 3: Stirred tank reactor mesh

As noted above, the Sauter mean diameter correlation,
the breakup and the coalescence models were
implemented as a UDF. The simulation of liquid-liquid
system in stirred tank reactor including the hybrid TFM-
DPM in combination with k-¢ turbulence model was
carried out by ANSYS FLUENT16.2. The time step size
was 0.01s.

Breakup

The correlation of Sauter mean diameter (equation 2) was
determined based on the dilute oil-water system
(dispersed phase volume fraction was 1%) (Farzad et al.,
2016); however, the volume fraction of dispersed phase
in the experimental work of Boxall et al. (Boxall et al.,
2010) is 15% and it can increase the Sauter mean
diameter of the droplets due to coalescence (Coulaloglou
and Tavlarides, 1976). Therefore, a linear correction
factor was defined in the UDF based on the local volume
fraction of the secondary phase in order to modify the
correlation (equation 2) (Coulaloglou and Tavlarides,
1976) .

Déz =(+n¢)D,,, )

where n is set to 6.5. Simulation was ran for two
rotational speeds, 300 RPM and 600 RPM. The initial
droplets with diameter of 0.6 mm and 0.3 mm were
injected at t=0 for the 300 RPM (Figure 4) and the 600
RPM (Figure 5) cases, respectively.
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Figure 4: Cumulative drop size distribution at 300 RPM -Water
in Conroe oil - Curves show the DSD (simulated) at t=0, 3 and
6 second- shaped scattered experimental data are taken from
Boxall et al. (Boxall et al., 2010)- Nabla shaped points are CFD

simulation results taken from Roudsari et al. (Roudsari et al.,
2012)
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Figure 5: Cumulative drop size distribution at 600 RPM -Water
in Conroe oil - Curves show the DSD (simulated) at t=0, 3 and
6 second-Diamond shaped scattered experimental data are
taken from Boxall et al. (Boxall et al., 2010)- Nabla shaped

points are CFD simulation results taken from Roudsari et al.
(Roudsari et al., 2012)

As it can be seen from figure 4 and 5, the final status of
the simulated results are in a good agreement with the
experimental data (Boxall et al., 2010). Comparing the
figures at t=3s (real flow time) reveals that the simulation
at 600 RPM reached faster to its final state is compared
to the 300 RPM. Therefore, mixing process is happening
faster at 600 RPM in comparison with 300 RPM.
However, studying the mixing time is not in the scope of
this work. In addition, simulated DSD at 600 RPM
follows the experimental data (Boxall et al., 2010) more
accurately than compared to the simulated data provided
by Roudsari et al. (Roudsari et al., 2012). Furthermore,
using Lagrangian tracer trajectories provides the
possibility to distribute the final simulated results into a
large number of bins (400) in order to get smooth DSD.
Roudsari et al. (Roudsari et al., 2012) used 7 bins as a
part of PBE model available on the ANSYS FLUENT;
therefore, their results are not as smooth as the results in
the current work.
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Coalescence

In order to validate the coalescence model, we study a
process dominated by droplet coalescence. For example,
when reducing the rotational speed was reduced from 600
RPM to 300 RPM breakup becomes negligible compared
to coalescence. Nevertheless, both the breakup and the
coalescence models were involved in this part of the
simulation. The constant values of collision frequency,

c, =129

c, = 7.32¢"? were selected from (MaaB et al., 2007).
However, the constant for the collision frequency was

and coalescence efficiency,

increased to ¢; =1, in order to speed up the simulation

to obtain the preliminary results. Figure 6 illustrates
initial results of the coalescence model, where the curve
at t=0 is the DSD at 600 RPM and after 0.5s (real flow
time) DSD is almost close the experimental data at 300
RPM (Boxall et al., 2010).
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Figure 6: Cumulative drop size distribution evolves by time
from 600 RPM to 300 RPM due to coalescence -Water in Crone
oil - Curves show the DSD (simulated) at t=0, 0.1 and 0.5
second-Diamond shaped and square shaped scattered

experimental data are taken from Boxall et al. (Boxall et al.,
2010)

CONCLUSION

In this work, we presented novel breakup and
coalescence models for liquid-liquid emulsions in
combination with and Euerlian-Lagrangian Hybrid
model. The main advantage compared to state of the art
PBE modelling approaches is the Lagrangian nature of
our approach, which allows the simple evaluation of, for
example, residence time distribution.

The breakup model is based on an in-house correlation
for Sauter mean diameter (Farzad et al., 2016), while the
coalescence model is based on literature correlations.
These models were combined with a hybrid TFM-DPM
strategy, which allows the efficient analysis of poly-
disperse systems. Final results for breakup show that the
breakup model works fairly well for the validation case
(Boxall et al., 2010; Roudsari et al., 2012). The initial
results for the coalescence model are in a good agreement
with the experiment (Boxall et al., 2010). However, these
models, especially the model for coalescence require
further investigation and more validation cases.
Especially, larger systems will be subject to future
investigations.
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