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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

In the present work we analyse applicability of the adaptive multiple
size-group (A-MuSiG) population balance method to modelling of
multiphase flows. The dispersed phase is split into M size-groups,
each one having its own mass- and momentum balance. An addi-
tional equation for the number density makes the method adaptive,
that is, the groups sizes are not prescribed a priory, but calculated.
A special attention is paid to the effect of the turbulent diffusion
on size distribution. The method is implemented in the multiphase
CFD code STAR-CCM+ of Siemens PLM Software.

Keywords: CFD, population balance, two-phase flows .

NOMENCLATURE
Greek Symbols m;;j  Group-to-group
o Volume fraction. mass flux, [kg/m?s].
p Mass density, n Number density,
[kg/)n3]. [m73].
T Reynolds  stress, u  Velocity, [m/s].
[Pa]. P Pressure, [ks/ms?].
S Number density
Latin Symbols source, [m~3s71].
Dy Coefficient of turbu- v Volume of a parti-
lent diffusion, [m*/s]. cle, [m].
L Particle size, [m)].
M Number of size Sub/superscripts
groups. p Particle.
INTRODUCTION

Population balance equations (PBE) are the general mathe-
matical framework describing different physical, chemical,
biological, and technological processes (Ramkrishna, 2000).
They deal with bubbles, droplets, bacteria, molecules, etc.
Hereafter we call them “particles”. Main object of a popula-
tion balance equation is number density n, e.g., the number
of particles having size, density, velocity and temperature in
the intervals [L,L+dL], [p,p +dp], [u,u+du], [T, T +dT],
respectively, is

n(L,p,u,T) x dL x dp x duy x duy x du; xdT. (1)
In the most general form the PBE reads:
)
5 = B(n) ~D(n), @)
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where B and D are “birth” and “death” rates due to transport,
coalescence, breakup, mass transfer, etc. If a particle is char-
acterised by a single parameter, e.g., size, Eq. (2) for n(L) is
called univariate PBE, otherwise it is multivariate PBE.
Eq. (1) provides a very detailed description of the system,
e.g., momentum is given by the integral
/(pun)depdudT. 3)
Therefore, by solving the PBE one gains more information
than from solution of a Navier-Stokes (NS) equation. It is
clear, that being a “theory of everything”, the PBE in form
of Eq. (2) is prohibitively time-consuming and has very lit-
tle practical value; it is why more restricted, more tractable
formulations are sought.
As an example imagine an isothermal bubbly flow. Inertia
of the bubbles is low and one can assume with high confi-
dence that the gas-liquid slip velocity depends on the local
flow conditions and the bubble size only; the multivariate
number density (1) can be represented as

n(L,u) ~n(L)d(u—U(L)), “4)

where U (L) = (u|L) is the conditional mean velocity.
Method of classes (Kumar and Ramkrishna, 1996; Bhole
et al., 2008), also known as multisize-group (MuSiG)
method (Lo, 1996) splits the dispersed (gas) phase into M
size-groups, that is

™=

n(L,u)~ ) n(L;)d(u—-U(L)). ®)

i=1

From the modelling point of view each group is a separate
phase in every aspect but the name; the groups move with
their own velocities and exchange mass, momentum and en-
ergy with other groups and with the continuous phase (Lo,
1996). Note that the method of classes in form (5) oc-
cupies an intermediate position between the univariate and
full multivariate PBEs, to be precise, it is a multivariate
method with a first-order univariate conditional moment clo-
sure (Klimenko and Bilger, 1999).

Recently, an adaptive discretisation has been proposed for
the method of classes (Vikhansky, 2013; Vikhansky and
Splawski, 2015), that is, the size-groups are not prescribed
a priory, but follow the evolution of the size distribution. The
first (simplified) version of the new adaptive multiple size-
group method (A-MuSiG) has been implemented in a devel-
opment version of the STAR-CCM+ simulation software of



A. Vikhansky

Siemens PLM Software. The final version, described in the
present paper, deals with the full set of the transport equa-
tions including turbulent dispersion and correct treatment of
spurious dissipation.

MULTIFLUID MODEL

Reynolds-averaged (RA) mass conservation equation for the
i group reads:

9P,
ot

where p,, is density of the dispersed phase, &; is RA volume
fraction of the i group and m;;, mj; are (averaged) mass
fluxes from the j** group to the i group and from the i/
group to the j™* group, respectively; (u;), is phase-averaged
velocity of the group (Fox, 2014):

+ V- (ppt (wi);) = mjj —mj, (6)

(ovuy)
ay

<uk>l = ) (7)
where o, u; are instantaneous values of volume fraction and
velocity; angular brackets mean Reynolds averaging.
Reynolds-averaged momentum conservation equation for the
i"" group reads:

%k%$EQL+V'@MaMM0M“M)=-4EVP

V.1, + (F)) + mij <uj>j —mj; <ui)i, (8)
where T; is Reynolds stress and F; is interaction force be-
tween the continuous phase and the i’ group. The Reynolds
stress T; is modelled by a RANS model, which can be found
elsewhere (Pope, 2000).

In order to calculate the phase interaction forces the size of
the particles in the i/ group has to be specified. Prescribing
a constant size for the group one obtains the MuSiG method
(Lo, 1996). If the particles size distribution varies signifi-
cantly across the system, the fixed discretisation in the size
space is not efficient from the numerical point of view. In
order to track the size distribution adaptively, Egs. (6), (8)
have to be augmented by an equation for the number density
of the " group:

a(%’ + V(i) = (S),
where S; is the source term due to the breakage and coales-
cence of the particles, the RA number density flux is given
below by Eq. (14). Knowing the number density one calcu-
lates the equivalent diameter of a particle as

5/ 6Q;
mn; '

In order to close the model described by Eqgs. (6), (8), (9) one
has to specify m;; and (S;); it is done by a population bal-
ance algorithm. Note that the population balance algorithm
is local, that is, below we ignore the spatial variations of the
parameters of interest and concentrate on a single cell of a
finite volume method. Details of the A-MuSiG method are
given in (Vikhansky, 2013; Vikhansky and Splawski, 2015).
In a nutshell the method works as shown in Fig. 1; size of the
circle on the diagram corresponds to the volume fraction of
the size-group.

&)

di =

(10)

I Initially, all size-groups have the same volume fraction.
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Figure 1: Schematic representation of the A-MuSiG method.

I When two size-groups undergo coalescence, a new par-
ticle is created, while the volume fraction and number
densities of the parent size-groups reduces.

IIT Volume fraction and number density of the newly cre-
ated particle is redistributed among two nearest size-
groups using a version of the DQMoM method (Marchi-
sio and Fox, 2005). At that step we locally conserve the
first three moments of the distribution, namely, number
density, mean volume (i.e., volume fraction), and mean

square of the particles volume.

IV One can see that coalescence leads to depletion of the
size-groups with small diameters and accumulation of
the mass of the entire ensemble in the size-groups with
higher diameters. In order to restore the equal distribu-
tion of the volume fractions, we redistribute the number
density and volume fraction between each pair of neigh-
bour groups. In each pair-wise redistribution event the
first three moments of size distribution are conserved lo-

cally.

V By the end, each size-group has the same volume frac-
tion, the size-groups have new diameters.

NUMBER DENSITY TRANSPORT

Note that it follows from Eq. (7) (n;u;) # 7i; (u;);; in order to
model the RA number density flux one can represent n; as

o
ni= —.

(11)

Vi

Then

N 1 IRy
(niu;) = <0‘iuivi> =0 <ui>i§i + <06iui <V,> >, (12)

where the phase-averaged volume of a single particle is

Rl

— i
Vi =

n;

13)
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Figure 2: Schematic view of the diffusive flux.

Eq. (12) can be modelled using the gradient hypothesis:

(n,-u,-> =n; (u,->i —ﬁiDTV% =n; ((u,->i +DTVIHV,') , (14)
1

where Dy is coefficient of turbulent diffusion. There is no
particular physical justification for (14) except that we use
the same hypothesis for other scalars transported by turbu-
lent flow field, e.g., kinetic energy of turbulence, tempera-
ture, etc. Note that if the group’s volume V; is constant, the
diffusive flux in Eq. (14) vanishes.
The turbulence disperse the particles not just in the physi-
cal space, but also in the phase space. In order to illustrate
this effect let as consider transport of the particles without
breakup and coagulation. Since o; = v;n; multiplication of
the number density transport equation by v; and subtraction
from mass conservation after some algebra yields the equa-
tion for transport of the group’s volume:

av,'

E—f—u,--Vv,-:O. (15)
It can be multiplied by v; to result in
av? 2
y—i—ui-Vv,-—O (16)
Egs. (15)-(16) are averaged using the gradient closure:
a<vi> /
() V () + <ui : vv,.>
d (v
= ) V) -V D1V () =0, (D)
a<vi2> 2 24/
S )V () + (V07 )
o (v?
900 ) VO -V (DY ) =0, (18)

ot
In order to obtain equation for the second central moment of
V2 - <v,~>2> Eq. (17) is multiplied

by (v;) and subtracted from Eq. (18); after some algebra one
obtains:

the group’s volume G%i = <

962,

S+ (i) Vol — V- (DrVoy ) =2Dr [V wi)]?.
Ignoring of the RHS in Eq. (19) leads to the spurious dis-
sipation (underestimation of the standard deviation of the
size distribution) obtained in (Marchisio and Fox, 2005; Fox,
2003).

19)
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Figure 3: Water flow field.

Since the spurious dissipation is a result of the turbulent dif-
fusion, proper discretisation of the diffusive flux might solve
the problem (Vikas et al., 2013). The root cause of the spu-
rious dissipation can be illustrated by Fig. 2; the particles
belonging to the same size-group at different neighbour cells
have different diameters. It is not enough to calculate the to-
tal number density flux; one has to know the number 7, of
the particles of size Vo moving from left to right, and number
n_ of the particles of size v{ moving from right to left. Here-
after we use two conditions. Firstly, the difference between
fiy and n_ is equal to the diffusive flux across the cell face:

fiy —h_ =aDrv-Viny, (20)

where v is normal to the cell face and 71y is number density
at the face. Secondly, the total mass flux by diffusion is zero,
that is

Yoy = ViA_. 21
Solution of Egs. (20)-(21) yields:
. _ M _
Ay = nfﬂ —VODTV -Vinv,
o =7if—2—Drv-Vinv. (22)
Vi — Vo

Once the fluxes 7, 7i_ are calculated, corresponding num-
bers of particles with size Vg, v; are added to the right (left)
cell according to the algorithm described in Fig. 1, (Vikhan-
sky, 2013).

RESULTS AND DISCUSSION

Performance of the A-MuSiG method can be illustrated on
a liquid-liquid pipe flow downstream of a restriction (Percy
and Sleicher, 1983; Galinat et al., 2005). The continuum
phase is water, the dispersed phase is n-heptane. There is
a recirculation zone behind the obstacle as shown in Fig. 3;
the shear at the edge of the jet produces high dissipation rate,
which causes intensive breakup of the droplets.

The adaptive nature of the method is demonstrated in Fig. 4;
we perform the calculations with 5 size-groups and plot
group diameters at the axis of the pipe. Initially, size of the
biggest group increases because of coalescence, as the flow
passes the orifice (at x = 0) a strong breakup happens. Fig. 4
can be interpreted in the following way: since there are 5
groups, one can say that approximately 10% of the droplets
volume is below the first group diameter, 30% is below the
second group diameter, etc., 90% is below the fifth group
diameter. Since the A-MuSiG method is adaptive, only 5
size-groups suffice for quite detailed description of the size
distribution.

For an M-independent characterisation of the droplets size
distribution we use different definitions of mean diameters:

d. — r=a Zi’l,’dlp
e Y nd!’

(23)
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Figure 4: Group diameters at the pipe axis.

Figure 5: Mean diameters at the pipe axis with (dashed lines) and
without (solid lines) spurious dissipation.

where the most important for applications are ds3 (volume-
mean diameter), d3» (Sauter mean diameter), d3g (volume-
based diameter), and d;o (arithmetic mean diameter); ds3 >
dzp > d3p > djo. For a mono-disperse system all diameters
are equal; a high difference between, e.g., d43 and d}o implies
a high standard deviation of the size distribution.

In order to examine the effect of the often-neglected spurious
dissipation we plot all four mean diameters mentioned above
in Fig. 5. As one could expect, the biggest error is just behind
the obstacle where the size distribution undergoes the fastest
change, and therefore the RHS in Eq. (19) is biggest. Calcu-
lations without a proper treatment of the spurious dissipation
term significantly narrower size distribution than that using
Eq. (22).

The M-dependence of the results is illustrated in Fig. 6.
Apart from the fact that smaller M implies a narrower pre-
dicted distribution, one can see that M = 3, 5, 9 give quite
close prediction of ds3, d3», d3g, while calculation of djg
is less precise. It follows from the current formulation of
the A-MuSiG method; since each size-group represents the
same portion of volume fraction, more small particles are
lumped together in the same (smallest) size-group. Even
M = 3 resolves the distribution quite well up to x < 0.2, that
is, breakup is less sensitive to the number of size-groups. For
many applications the Sauter mean diameter d3; is the single
most important particles size characteristics; our numerical
experiments suggest that reliable engineering estimates can

Figure 6: Mean diameters at the axis of the pipe calculated with 3
groups (dash-dotted), 5 groups (dotted), 9 groups (solid).
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be done with a small (M = 3 —5) number of the size-groups.

CONCLUSIONS

The paper presents an adaptive method for combined mod-
elling of multiphase flows and breakup/coalescence pro-
cesses; few size groups suffice for reliable prediction of mean
characteristics of the polydisperse ensemble. The method
solves for mass, momentum balance of each size-group, what
extends it beyond a simple univariate population balance
method. The effect of turbulent diffusion on size distribution
is analysed and a special treatment is proposed to neutralize
the spurious dissipation.
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