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ABSTRACT 

This paper presents a numerical model intended to 
simulate the mooring load and the dynamic response of a 
moored structure in drifting ice. The mooring lines were 
explicitly modelled by using a generic cable model with a set 
of constraint equations providing desired structural properties 
such as the axial, bending and torsional stiffness. The 6 
degrees-of-freedom (DOF) rigid body motions of the structure 
were simulated by considering its interactions with the 
mooring lines and the drifting ice. In this simulation, a 
fragmented ice field of broken ice pieces can be considered 
under the effects of current and wave. The ice‒ice and ice‒
structure interaction forces were calculated based on a 
viscoelastic-plastic rheological model. The hydrodynamic 
forces acting on the floating structure, mooring line and 
drifting ice were simplified and calculated appropriately. The 
present study, in general, demonstrates the potential of 
developing a full numerical model for the coupled analysis of 
a moored structure in a broken ice field with current and wave. 

INTRODUCTION 

The use of moored structures in ice represents a promising 
solution for marine operations in Arctic and Sub-Arctic areas, 
in particular for the drilling, storage, production and offloading 
of hydrocarbons. Data from full-scale experiences (see e.g. 
[1]) and model basin experiments (see e.g. [2-5]) have been 
used for studying moored structures in ice. Mooring loads and 
structural response are usually reported in full-scale and 

model-scale tests of moored structures in ice. Back-calculation 
of ice actions have been performed by considering the ice force 
as the unknown in the equations of dynamic equilibrium for 
moored structures (see e.g. [6-9]). 

Numerical studies of moored structures in ice have been 
focusing on either broken ice, level ice, rubble or ridges, 
among which the broken or managed ice is perhaps the most 
relevant ice condition for prospective petroleum industry 
operations in the Arctic. Incoming ice will often be managed 
by assisting icebreakers, hence only smaller ice floes will 
interact with the moored structure. Murray and Spencer [10] 
used model test data to estimate inertial and damping 
coefficients caused by broken ice and a discrete element model 
to calculate ice forces on a turret moored tanker without 
inertial and damping contributions. A discrete element model 
was also developed by Hansen and Løset [11-12]. Their model 
was compared with the model tests of a turret moored ship 
described by Løset et al. [2]. A different approach was chosen 
by Sayed et al. [13]. They described broken ice as a 
cohesionless Mohr-Coloumb material and compared 
simulations against full-scale data from a conical drilling unit, 
named Kulluk [1]. Metrikin et al. [14] presented a novel 
numerical model for the simulation of a dynamic positioning 
(DP) vessel in managed ice which uses a physics engine for 
collision detection and contact force computation. In their 
model, a mooring system can also be implemented as external 
forces acting on the vessel. 

Due to the complexity of modelling interactions between 
mooring line, moored structure and drifting ice, previous 
numerical studies have been focusing on the ice actions, while 
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the mooring part is often simplified. In this paper, we present 
a numerical model intended to simulate the mooring load and 
the dynamic response of a moored structure in broken ice. The 
mooring lines were explicitly modelled by using a generic 
cable model with a set of constraint equations providing 
desired structural properties such as the axial, bending and 
torsional stiffness. The 6 degrees-of-freedom (DOF) rigid 
body motions of the structure were simulated by considering 
its interactions with the mooring lines and the drifting ice. In 
this simulation, a fragmented ice field of broken ice pieces can 
be considered under the effects of current and wave. The ice‒
ice and ice‒structure interaction forces were calculated based 
on a viscoelastic-plastic rheological model [15]. The 
hydrodynamic forces acting on the floating structure, mooring 
line and drifting ice were simplified and calculated 
appropriately. The present study, in general, demonstrates the 
potential of developing a full numerical model for the coupled 
analysis of a moored structure in a broken ice field with current 
and wave. 

The full-scale experience with the Kulluk structure, 
provides the best source of data for most considerations related 
to moored structure in various pack ice conditions [1]. 
Therefore, the Kulluk structure was selected as a prototype for 
the present numerical study and the numerical simulation 
results were compared with the relevant full-scale data. The 
mooring load is a result of the structural response and it differs 
from the ice load acting on the structure. This aspect was 
investigated by the numerical model. Waves are often 
neglected in numerical studies of ice‒structure interactions. A 
simplified wave force model was applied by the authors in a 
previous study for simulating wave-driven impact of an ice 
floe on a circular cylinder [16]. In the present study, wave 
forces were also considered in ice‒ice and ice‒structure 
interactions. However, there is no published data on the wave 
effects in such condition. This aspect still remains for further 
analysis. 

MATERIALS AND METHODS 

The FhSim Framework 

FhSim is a time-domain simulation tool that has been 
under constant development at SINTEF Fisheries and 
Aquaculture AS (recently named SINTEF Ocean) since 2006, 
and has served as the primary platform for software 
development through a series of research projects [17]. In most 
of these projects, the main role of FhSim has been to represent 
a framework for developing and numerically solving 
mathematical models based on Ordinary Differential 
Equations (ODEs) in the time domain. Model development in 
FhSim is modular, where complex systems are modelled as a 
collection of interconnected sub-models. When using FhSim, 
experts may focus on their special field of competence while 
taking advantage of verified models made by experts within 
other fields. 

In the present study, the FhSim framework was used for 
developing ice‒ice and ice‒structure interaction models. The 

existing simulation objects in FhSim were also used for 
modelling sea environments and the mooring components. 

Sea Environment 

FhSim contains implementations of sea environments 
providing realizations of wave fields (both regular and 
irregular), and facilitating queries for time dependent and 
spatial properties such as: 

 Wave elevation on a specified point on the water surface 

 Wave induced pressure at a specified point in the water 
volume 

 Wave induced particle velocity and acceleration at a 
specified point in the water volume 

 Ambient current velocity at a specified point in the 
water volume 

 Sea depth at a specified horizontal position 

The sea environments support both Airy and Gerstner 
wave theories and realization of JONSWAP and ISSC wave 
spectra. The interface to the sea environment objects is 
generalized to allow different sea state and wave theories to be 
used without changes to the other simulation models. 

In the present study, the wave field was defined explicitly 
by the sea environment model in FhSim, which was assumed 
to be undisturbed by the ice floes and a moored structure.  

Mooring Line 

The mooring lines were modelled by using a generic cable 
model in FhSim. Both ends of the cable need to be attached to 
either another sub-model (e.g. a moored structure) or to a fixed 
point in space (e.g. an anchor point), as this will define both 
the initial states of the cable and the manner in which the cable 
will interact with the other components in the system. 

Although the cable model in FhSim is essentially a 
collection of interconnected rigid bar elements exhibiting rigid 
body motion, they can be equipped with a selection of 
constraint equations providing desired structural properties 
such as bending, axial, and torsional stiffness, or contact 
detection and response. Each rigid bar element in the cable 
takes compression, but since a cable will consist of several 
elements the cable will be allowed to buckle under 
compression forces. The constraint equations are applied to the 
connections between elements and actively regulate the 
relative distance and orientation between adjacent elements 
through an elastic version of the Baumgarte stabilization 
method [18]. A thorough description of the theoretical and 
mathematical background for the cable model in FhSim can be 
found in [19]. 

Contact Detection and Contact Force Calculation 

In the simulation of ice‒ice and ice‒structure interactions, 
determining the contact surfaces between interacting ice floes 
and structures at each time step is a critically important and 
time consuming calculation. An efficient 3D contact detection 
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algorithm, called the fast common-plane (FCP) method [20], 
was used in the present numerical model.  

Herein, a common plane (CP) is a plane that, in some 
sense, bisects the space between the two contacting particles 
[21]. If the two particles are in contact, then both will intersect 
the CP, and if they are not in contact, then neither intersects the 
CP. As a result of using CP, the expensive particle-to-particle 
contact detection problem reduces to a much faster plane-to-
particle contact detection problem. Once the CP is established 
between two particles, the normal to the CP defines the 
direction of the contact normal, which in turn defines the 
direction of the normal contact force between the two particles. 
As compared with the conventional CP algorithms, the FCP 
approach recognizes that a common plane has identifying 
characteristics, which dramatically reduce the search space for 
the common plane. A thorough description of the FCP 
approach can be found in [20]. 

When a CP is found and the two ice floes are intersecting 
(see e.g. Figure 1), the depth of overlap (

c ) and the 

intersection area (
cA ) can be determined by solving a simple 

segment‒plane interaction problem. Multiple contacts are 
allowed in the simulation of ice‒ice and ice‒structure 
interactions and a viscoelastic-plastic rheology is applied at all 
contacts. Hence the normal contact force at time step p , 

( )c
n pF t , is expressed as: 

  ( )                               (1)c
n p ns c nv nF t k k v    

where 
nsk  is the normal elastic stiffness; 

nvk  is the normal 

viscous damping coefficient; 
nv  is the relative velocity 

(between the two contacting objects) in the normal direction. 
The magnitude of the normal contact force is controlled by a 
plastic limit expressed as: 

( )                                     (2)c
n p c cF t A   

where c  is taken to be the uniaxial compressive strength of 

ice. 

The tangential contact force at time step p , ( )c
t pF t , is 

expressed as:  

1( ) ( )                               (3)c c
t p t p ts tF t F t k v t    

where  is the tangential contact force at time step 

1p  ; 
tsk  is the tangential elastic stiffness; 

tv  is the 

relative velocity in the tangential direction; t  is the time 
step. The magnitude of the tangential contact force is 
controlled the Coulomb limit expressed as: 

( ) ( )                                   (4)c c
t p n pF t F t 

 

where   is the frictional coefficient.   

 

Figure 1. Illustration of the common plane and the normal and 
tangential contact forces between two interacting ice floes. 

 

Figure 2. Illustration of the ice‒ice (and ice‒structure) interaction 
force model [15]. 

Kinematics of the Ice Floe and the Structure 

The dynamic responses of the ice floe and the structure in 
current and wave were obtained from the solution of the 6×6 
linear system, derived by applying Newton's second law in the 
body-fixed frame: 

6

1

( ) , 1,...,6         (5)ij ij j ij j ij j i
j

M A r B r C r F i


          

where 
ijM  are the components of the generalized mass 

matrix; 
ijA , 

ijB  and 
ijC  are the 6×6 added-mass, damping 

and restoring coefficients, respectively; 
iF  are the 

components of the excitation forces. 

Radiation Forces 

The added mass and damping coefficients of the ice floes 
and the structure were calculated by WAMIT [22] in the 
frequency domain. The present numerical model employs a 
time-domain formulation in order to couple the structure to the 
mooring lines and to incorporate the ice floe impact forces, 
which requires a time-domain formulation of the frequency-
dependent hydrodynamic coefficients. The added mass and 
damping forces from frequency-domain WAMIT data were 
transferred to the time domain by application of a linear system 
adaptation to the convolution integral of Cummin's equation 
[23] as proposed in [24]. For a combination of degrees of 
freedom (DOF) i  and j , the force takes the form of the 

equation: 

 
0

( ) ' ( ') '                 (6)
t

h ij ij ij ij ijF t A v K t t v t dt     

1( )c
t pF t 
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where the frequency response of the convolution integral is the 
complex function [25]: 

 inf( ) ( ) ( )                (7)ij ij ij ijK jw B jw jw A jw A    

The convolution integral is then replaced by a time 
dependent force ( )ij t , which is the output of a linear system 

selected to reproduce the frequency response of ( )ijK jw : 

( ) + (t)                              (8)h ij ij ij ijF t A v     

= ' + '                                  (9)ij ij ij ij jA B v   

= ' + '                                (10)ij ij ij ij jC D v   

The size of the linear system state ξ , and the matrices 

A' , B' , C'  and D'  are selected by fitting the system 
parameters to ( )ijK jw  (see e.g. Figure 3). In the present 

study, the Vector Fitting [26-28] method was used to select the 
system matrices for each degree of freedom combination with 
a common ξ  size of 8. Only the radiation forces where 

i j  were included due to the high level of symmetry of the 

Kulluk structure and the simplified ice floe geometry and to 
reduce computational complexity. The force ( )ij t  applied 

on each ice floe was scaled by its actual area compared to the 
ice floe geometry analyzed in WAMIT to account for the 
variations in ice floe shapes. 

The above mentioned technique is often referred as a 
state-space representation [24] of the radiation forces, which is 
well suited for an efficient time-domain simulation. 

 
Figure 3. Original frequency-dependent added mass and damping 

coefficients (WAMIT data) for the heave response of the Kulluk 
structure, plotted with the reconstructed values from the complex 

fitted ( )ijK jw  function. 

Excitation forces 

The excitation forces on a relatively small body in wave 
(the characteristic cross-sectional dimension of the ice floe is 
smaller than 1/5 of the wavelength considered in the present 
study) can be written as [29]: 

 
3

1

, 1,2,3                     (11)
i

p
i ij ij

jS

F pn ds A a i


     

where  is the pressure in the undisturbed wave field and 

1 2 3( , , )n n nn  is the unit vector of normal to the body 

defined to be positive into the fluid. The integration is over the 

wetted surface of the body. Further, 
1a , 

2a  and 
3a  are the 

acceleration components along the x-, y- and z-axes of the 
undisturbed wave field and are to be evaluated at the 
geometrical mass center of the body. 

The first term in Equation (11) is the Froude-Kriloff force. 
The second term physically represents the fact that the 
undisturbed pressure field is changed due to the presence of 
the body (diffraction force). It should be noted that Equation 
(11) only calculates the forces. The resulting moments can also 
be obtained by the integration over the wetted surface of the 
body, and the 6-DOF diffraction forces can be calculated using 
the velocity potentials due to forced motion of the body (added 
mass and damping) instead of the diffraction potential, for 
details see [29] and [30].  

In addition to the Froude-Kriloff and diffraction forces, 
the viscous drag force is calculated using Morison's equation: 

1
( )                       (12)

2
v

d dC A  w i w iF V V V V  

where   is the water density; 
dC  is the drag coefficient (

1.0 ); 
dA  is a reference area (e.g. the cross-sectional area of 

the body perpendicular to the flow direction); 
wV  is the 

wave-induced particle velocity; 
iV  is the velocity of the ice 

floe. 

Furthermore, the Coriolis effect is taken into account 
when solving the 6-DOF equations of motions in the body-
fixed frame. Therefore the expression for the force 
components in Equation (5) can be written as: 

 +  +  +                                   (13) p v Cor cF F F F F  

where 
1 2 3 4 5 6( , , , , , )F F F F F FF  is the total external force 

acting on the ice floe; pF  is the Froude-Kriloff and 

diffraction forces; vF  is the viscous drag force; CorF  is the 
Coriolis force which is a fictitious force induced by a non-
uniformly rotating frame (i.e. the body-fixed frame) relative to 

the inertial frame (for details see e.g. [31]); cF  is the ice‒ice 
and ice‒structure interaction force. 

SIMULATION SETUP 

The Kulluk structure was selected as a prototype for the 
present numerical study. Monitoring of ice conditions and 
measurements of ice forces have provided a comprehensive 
and unique set of data from the full-scale experience with the 
Kulluk structure. The monitoring included records of ice cover 
conditions as well as descriptions of ice management 
operations. The ice forces were measured using the tension 
values on the mooring lines. Wright [1] carried out a 
comprehensive analysis of the observations and 
measurements. He summarized ice loading episodes in a 
manner that clearly links ice forces to ice conditions, ice 
management activities, and the mode of ice interaction with 
the structure. The present simulations address the categories of 
"tight" managed ice and managed ice with "good ice 
clearance" which were identified by Wright [1]. 

 

p
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The Kulluk Structure 

Figure 4 shows the numerical model of the Kulluk 
structure with a twelve-line mooring system. The main 
dimensions of Kulluk were found in [1] and given by Table 1. 
As no information on the location of the Kulluk’s center of 
gravity was available, it was assumed to be at the geometric 
center of its near-circular hull, and at the same elevation as its 
full-displacement waterline [32].  

The mooring system was attached below the waterline at 
a radial distance of 18 m from the hull center (the location of 
the full-scale fairleads). The mooring lines were assumed to be 
exactly 30° apart and of equal length. The main properties of 
individual mooring lines were found in [32] and given by Table 
2. In the numerical model, an effective elastic modulus of 67.5 
GPa was used to model the full-scale line stiffness which is 
expressed as: 

  /                                         (14)k EA l  

where E  is the effective elastic modulus; A  and l  are the 
cross-sectional area and the length of the mooring line, 
respectively. 

 
Figure 4. The simulated Kulluk structure with a twelve-line mooring 

system. 

Table 1. Dimension of the Kulluk structure in full scale [1]. 

Draft 12.5 m 

Diameter at deck 81 m 

Diameter at waterline 70 m 

Diameter at hull bottom 62 m 

Displacement 28,000 t 

Cone angle 31.4 º 

 

 

 

 

Table 2. Properties of the Kulluk mooring line in full scale [32]. 

Diameter 88.9 mm 

Unit weight (Dry) 33.78 kg/m 

Unit weight (Submerged) 28.00 kg/m 

Length 917 m 

Depth 52 m 

Line stiffness 456.65 kN/m 

Breaking load 5.1 MN 

The Broken Ice Field 

Figure 5 shows an example of the simulated broken ice 
filed driven by current and wave, in which the ice floes were 
randomly formed with polygonal shapes. The managed ice 
fragment sizes observed were typically 20 m to 40 m [1]. For 
the simulation of "tight" managed ice, the floe sizes were taken 
from a uniform random distribution between 30 m and 40 m, 
covering an area of 1.2 km by 2.0 km which was confined at 
the boundaries perpendicular to the drift direction. For the 
simulation of managed ice with "good ice clearance", the floe 
sizes were taken from a uniform random distribution between 
20 m and 30 m, covering an area of 0.24 km by 2.0 km with 
contact-free boundaries, in which case the ice floes were, as 
shown in Figure 6 and [1], drifting in an unconstrained manner 
and easily cleared around the structure.         

In the present study, the thickness of each floe was taken 
from a uniform random distribution between 2.5 m and 2.7 m, 
which yielded a mean ice thickness of 2.6 m. This setup 
referred to a specific ice thickness category defined in [1]. In 
addition, three different ice concentrations (50%, 70% and 
90%) and one current velocity (0.4 m/s) were considered.  

The dramatic attenuation of short waves in the marginal 
ice zone (MIZ) was confirmed by several field experiments. 
This is the reason why ocean waves typically have not been 
taken into account when considering ice loads on offshore 
structures. As there was no wave records available in [1], only 
a long period wave ( 20 sT  ) which tends to be less 
attenuated by ice [33] was considered for a comparative study. 

 
Figure 5. A simulated broken ice field (1.2 x 2.0 km) driven by current 

and wave ("tight" setup). 
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Figure 6. A simulated broken ice field (0.24 x 2.0 km) with free 
boundaries and driven by current ("good ice clearance" setup). 

Ice‒Ice and Ice‒Structure Interactions 

According to the previous numerical studies [15, 34, 11, 
12, 35], the parameters of the viscoelastic-plastic rheology 
need to be adjusted in order to fit the ice floe kinematics and 
ice‒structure interaction forces. The normal elastic stiffness is 
in principle related to the elastic modulus of ice, and found to 
be of the order of the elastic modulus multiplied by the ice 
thickness in a collision between two equally sized disks. The 
normal viscous damping coefficient and the tangential elastic 
stiffness are determined from the normal elastic stiffness. 

In the present study, a series of simulations were 
performed, varying the contact parameters. The values of the 
parameters yielding the best results are given in Table 3. These 
values were used for the simulations which are presented in the 
following. The same contact parameters were used for both 
ice–ice and ice–structure interactions. 

Table 3. Values of the contact parameters used in the simulations. 

Normal elastic stiffness 1.3 MN/m 

Normal viscous damping coefficient 2.6 MN∙s/m 

Tangential elastic stiffness 0.78 MN/m 

Compressive strength 2.5 MPa 

Frictional coefficient 0.3 

SIMULATION RESULTS 

Figure 7 shows an example of the simulated time series of 
the ice forces, while the corresponding mooring loads (total 
horizontal loads from the 12 mooring lines) and horizontal 
offsets of the Kulluk structure are given in Figure 8 and Figure 
9, respectively.  

By comparing Figure 7 with Figure 8, it can be seen that 
the time series of the ice forces are generally similar to the 
mooring loads. However, it is also evident that the simulated 
ice forces have higher individual peaks than the mooring loads, 
which was attributed to some individual ice floe impacts that 
were short in duration. For example, the first impact of the ice 

floe on the structure caused a rapid rise in the force, and in a 
very short time the ice floe was diverted and cleared the 
structure. The individual ice floe impact force was investigated 
in a previous study by the authors [16], which will not be 
further discussed in the present paper.  

Figure 9 shows an example of the simulated time series of 
the horizontal offsets of the structure. This result is well below 
the offset tolerances (1 to 3 m over a 20 to 60 m operating 
range [1]). However, the dynamic response of the structure and 
the resulting offset are highly dependent on the mooring 
stiffness. As there was only one mooring stiffness (i.e. the line 
stiffness given in Table 2) used in the present simulations, this 
discussion is not taken any further either. 

The mooring load induced by ice‒structure interactions 
will be discussed in the present paper. Therefore, the direct 
current and wave loads (see e.g. the very beginning part of the 
mooring load time series shown in Figure 8) will be excluded 
from the simulation results that are presented in the following. 
As there were more boundary effects when the structure was 
entering the broken ice field, the first 1500 s of the time series 
will also be excluded in the following analysis. Therefore, each 
time series analyzed covered an ice floe area of about 1 km in 
distance. 

 
Figure 7. A simulated time series of the ice forces (Ice concentration: 

70% (tight); Current velocity: 0.4 m/s). 

 
Figure 8. A simulated time series of the mooring loads (Ice 

concentration: 70% (tight); Current velocity: 0.4 m/s). 
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Figure 9. A simulated time series of the horizontal offsets of the 

structure (Ice concentration: 70% (tight); Current velocity: 0.4 m/s). 

DISCUSSIONS 

Ice Interaction Modes 

In the analysis of Wright [1], the ice interaction events 
where “good ice clearance” was seen around the Kulluk were 
treated separately from the situations involving “tight” 
managed ice conditions with poor clearance, or those 
involving ice pressure. These two types of events gave rise to 
different ice interaction behaviors and in turn, different load 
levels.  

Figure 10 compares the simulation results with full-scale 
data, where the simulated ice floes were in the same ice 
thickness category (2.5 to 2.7 m) with the full-scale 
measurements. Both the measured and the simulated plots are 
the maximum load values during certain ice interaction events. 
The comparison shows that the simulation results with the 
"good ice clearance" setup are close to the average level of the 
full-scale data with "good ice clearance", while the simulation 
with the "tight" setup are slightly higher than the upper bound 
of the full-scale data with "good ice clearance" and tends to be 
in the average level of the full-scale data in "tight" managed 
ice.  

The "tight" managed ice with the pressure from 
converging ice cover was not considered in the present study. 
However, a confined ice cover may also give rise to such 
pressure conditions. In that case, ice accumulating in front of 
the structure formed a relatively stationary zone of compacted 
floes, which would cause a considerable rise in the force. The 
compacted floes might also clear round the structure and 
accumulate again (see e.g. in Figure 11), which would cause a 
fluctuation of the forces (see e.g. in Figure 8). 

Figure 12 shows the power spectrum of a simulated time 
series of the mooring load, in which the low-frequency 
components were associated with the above mentioned 
accumulating and clearing process within the ice floes, while 
the high-frequency components drew into the natural 
frequency of the structure.    

 
Figure 10. Plot showing a comparison between the simulation results 

and full-scale data [1]. 

 

Figure 11. Plot showing the compacted ice floes in front of the 
structure. 

 

Figure 12. Plot showing the power spectrum of a simulated time 
series of the mooring load. 

Wave Effects in Ice‒Structure Interactions 

Very few numerical studies have been dealing with the 
compound effects of waves and ice on structures. Sun and 
Shen [35], e.g., present a model that was used to determine the 
loads of a particular type of ice driven by waves and current 
on circular cylinders. Their model was based on the discrete 
element method that has been commonly used for simulating 
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pancake-ice dynamics. Although the load found in their study 
from pancake ice was much lower than the hydrodynamic 
counterpart, it was also mentioned that under wave actions 
other types of ice might produce strong forces on offshore 
structures. 

Figure 13 shows an example of the simulated time series 
of the mooring loads in moving broken ice driven by current 
and wave, where a 0.4 m/s current velocity (same as the 
simulations presented above) and an irregular wave field of 2 
m significant wave height and 20 s mean wave period were 
considered. The direct current and wave loads have been 
excluded from the time series and the simulation result without 
wave is also given in Figure 14. By comparing Figure 13 with 
Figure 14, it is evident that the mooring loads were increased 
and more fluctuated in waves. 

Figure 15 compares the simulation results in different ice 
concentrations. The compared maximum mooring loads were 
increased by about 40% to 50% in wave (significant wave 
height: 2 m; mean wave period: 20 s). A higher increasing rate 
was also found in lower ice concentrations. However, these 
effects need to be verified by more data.   

 
Figure 13. A simulated time series of the mooring loads in moving 
broken ice driven by current and waves (Ice concentration: 70% 

(tight); Current velocity: 0.4 m/s; Significant wave height: 2 m; Mean 
wave period: 20 s). 

 
Figure 14. A simulated time series of the mooring loads in moving 

broken ice driven by current (Ice concentration: 70% (tight); Current 
velocity: 0.4 m/s). 

 

Figure 15. Plot showing a comparison between the simulations 
without and with wave. 

CONCLUDING REMARKS 

The present study, in general, demonstrates the potential 
of developing a full numerical model for the coupled analysis 
of a moored structure in a broken ice field with current and 
wave. Based on the comparison with full-scale data, the 
present numerical model seems to produce realistic results in 
moving broken ice driven by current. Further investigations 
are needed regarding the wave effects in ice‒structure 
interactions, the influence of the shape and size of the ice floes 
on the loads, and the influence of the mooring stiffness on the 
dynamic response of the structure. 
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