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Abstract

The recently proposed locally refined B-splines, denotedEsplines, by Dokkert al.[6] may
have the potential to be a framework for isogeometric amakgsenable future interoperable com-
puter aided design and finite element analysis. In this papepropose local refinement strategies
for adaptive isogeometric analysis using LR B-splines awdstigate its performance by doing nu-
merical tests on well known benchmark cases. The theorynddtR B-spline is not presented in full
details, but the main conceptual ingredients are explaamekdllustrated by a number of examples.

1 Introduction

1.1 Background

Computer Aided Design (CAD) and Finite Element Analysis (FEA) are es$éatianologies in mod-

ern product development. However, the interoperability of these tedfjieslés severely disturbed by
inconsistencies in the mathematical approaches used. The main reasocofwistencies is that the
technologies evolved in different communities with the focus on improving disgtages in product

development processes, and taking little heed on relations to other stéfggen&eedback from anal-

ysis to CAD and refinement of the analysis model are essential for corpaged design optimization
and virtual product development. The current lack of efficient interalpility of CAD and FEA makes

refinement and adaptation of the analysis model cumbersome, slow antsiepe

The new paradigm of Isogeometric Analysis, which was introduced byhekgf al. [11], demon-
strates that much is to be gained with respect to efficiency, quality andsayaaranalysis by replacing
traditional Finite Elements by volumetric NURBS elements.

NURBS are not flexible enough to be a common basis for future CAD andri&#ly due to some
required properties in design and analysis such as locally refineabtsmawdate extraordinary points,
and trimless option. T-splines are a recently developed generalization BBSU3], [7], [20], they
were introduced to cure the above geometric limitations and to generate lboahrents in the mesh.
In context of isogeometric analysis, a new sub-class of T-splines semnsauitable (AS) T-splines [19]
have emerged, which is a significant step towards more versatility. Recesndytths also been published
works related to hierarchical refinement of splines introduced by #@nse Bartels [8]; see [22], [21],
[9], [4], [17], and [16].

We believe that the recently proposed locally refined LR B-splines by Bro&kal. [6] may have
the potential to form an alternative framework for future interoperabl®@Ad FEA systems. The new
approach directly operates on the spline spaces, and in this way a Ipeetcusn of piecewise spline
functions may be obtained. LR B-splines consist of smooth, piecewisegulghbasis functions that
constitute a partition of unity. Among other advanced features they may faclbizdeh-refinement.
Since this class of splines is rich and versatile, it may break new groundesmds to be attractive as
foundation for integrating CAD and FEA on one computational platform.

Our long term vision is to create a radically new computational platform with gohend versatile
refinement and adaptation procedures based on the concept of pfBss Downward compatibility to
existing NURBS-based models and the synergy of CAD and FEA expertis&cim development stage
will be essential and, at the same time, promote the broad acceptance andiigmn in both academia
and the software industry.

In any finite element analysis of real world problems, it is of great impoetdinat the quality of the
computed solution may be determined. However, the assessment of the gualitpraputed solution



is challenging, both mathematically and computationally. Thus traditionally, the qoélibe solution

is assessed manually by the scientist or engineer doing the simulation, butuhigligble. Numeri-
cal simulation of many industrial problems in civil, mechanical and naval ingudten require large
computational resources. It is therefore of utmost importance that cotigmalaresources are used as
efficiently as possible to make new results readily available and to expaneatine of which processes
may be simulated. We thus identify reliability and efficiency as two challenges inlaiom based
engineering.

These two challenges may be addressed by error estimation combined vitivadefinements. A
lot of research has been performed on error estimation and adaptile@iieement, see e.g. (Ainsworth
and Oden, 2000 [1]). However, adaptive methods are not yet astimauool, partly because the need
for a link to traditional CAD-system makes this difficult in industrial practiceeré] the use of an
isogeometric analysis framework may facilitate more widespread adoption tét¢hisology in industry,
as adaptive mesh refinement does not require any further communicétioimevCAD system.

1.2 Aim and outline of the paper

The aim of this paper is to present local refinement strategies using Litiri2s and investigate its
performance in adaptive isogeometric analysis by means of showing nah@sclts on well known
benchmark examples.

The paper is organized as follows:

In Section 2, we stated the preliminaries definitionBedplinesand meshesgo illustrate the local
refinement of B-spline using knot insertion. Then the basic importantdingmes to understandR B-
splinesconcept such asR-meshLR B-spline spaceandmeshline extensicare given. Our aim here is
to fix the notations, for a detailed mathematical description related to LR B-splieesfer the reader
to Dokkenet al. [6].

In Section 3, we give a brief introduction to the finite element method and the: foe@daptive
refinement in real world problems. The main characteristics of isogeometite &ement methods
using B-splines (or NURBS) and LR B-splines is presented. Furthereseribe a general approach,
that suits LR B-splines, to perform lockirefinement in adaptive isogeometric finite element method.

Section 4 is devoted to illustrate the local refinement strategies using LR Bspli& more gen-
eral discussion on different options for local refinement is giverenilie presented three specific local
refinement strategies which we shall investigate in the numerical examptemsed the last the con-
ceptual similarities between adaptive refinement in classical FEiMusisogeometric methods using
LR B-splines (forp = 1 and 2) are given.

Numerical experiments are performed in Section 5. The aim of this section isdtralie the per-
formance of the local refinement strategies of Section 4. In particulainwestigate whether adaptive
refinement using LR B-splines achieves optimal convergence rate, indélrater accuracy per degrees
of freedom (dofs) compared to the uniform refinement case, forsneoeth elliptic problems. For the
purpose we consider one synthetic case of refinement along the diagohelliptic PDEs with known
solutions.

We end this paper by giving some conclusion upon our findings in Section 6.



(a) Initial mesh (b) Tensor product refinement (c) Truly local refinement

Figure 1: Lack of local refinement of tensor B-splines.

2 Spline theory

The problem with traditional B-splines and NURBS is that they are formulasetgregsor products of
univariate B-splines. This means that refinement in one of the univariggdiles will cause the insertion
of an entire new row or column of knots in the bivariate spline space. Asamge of refinement around
a local point is achieved which also refine the other area of mesh. This isatled in Figure 1, where
we have recursively refined the lower right corner. Ideally we dowentt to insert any knot in the
upper right and lower left part of the mesh, but with B-splines and NURBIS is unavoidable. Thus
to achieve truly local refinement we need some new structure to the meshiwhichbased on global
tensor products. This is what T-splines, Hierarchical B-splines, &dtsplines address. T-splines
were first introduced by Sederbeggal. [20] and have, like NURBS, primarily been used in computer
aided design (CAD). In recent years T-splines have, howeven iné®duced to isogeometric analysis
[2, 7,18, 19].

In the following subsections we will present the LR B-splines, first webdistsing a vocabulary that
contains several definitions in section 2.1 and then we discuss the algoritlsedion 2.2 followed by
some properties of LR splines in Section 2.3

2.1 LR-splines

We start the introduction by describing the local knot vectors. From eliemeB-spline theory we
know that a knot vector of size + p + 1 will generaten linearly independent basis functions of degree
p. Usually this knot vector is required to start and end with a knot of multipljcity1, ensuring at least
p—+ 1 basis functions to be generated. If we ignore this restriction, it is cleanthatin generate a single
basis function using a knot vector of size 2. The purpose of open knot vectors (knot vectors with knots
of multiplicity p+ 1 at the start and end) is only to ensure interpolating end points which istadesus

in a number of ways, for instance to simplify the handling of Dirichlet boundanditions. From the
evaluation algorithms of B-splines, it follows that every single basis funatidirdepend on not more
thanp + 2 knots, each basis function using different knots. For instance, caresiskt of quadratic basis
function from the knot vectoe. We then have
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Figure 2: All quadratic basis functions generated by the khet [0,0,0,1,2, 3,3, 4,4, 4]. Each indi-
vidual basis function can be described using a local knot vector obtsleach§ + 2).

where the seven basis functions will be separately generated byddleknot vectorse,, ..., =7. One
might add here that we will not need the entire set of basis functions,eandve a subset of these,
keeping only the ones we are interested in. Even though it might be ins&guotiook at local basis
functions as a subsequence of a global knot vector, this is of little prhcihee. Instead we will not
require any global knot vect&, but rather create the local knot vect@&sin a different manner. The
concept local knot vectors is important for LR B-splines as they aré as¢he building blocks. We have
illustrated the basis functions given by Equation (1) in Figure 2. Using kmat vectors, we define a
single B-spline function as

Definition 1. A B-spline B(&) of degree® is a separable functioB : R” — R

n

Bg(&) =[] B=(¢) ©)

=1

defined by the: nondecreasing local knot vectdgé € RPi*2 and the degrees;, where eachB=: (¢¢)
are univariate B-spline functions of degreeover the knot vectoE".

Note that the degree is implicitly defined by the number of knots in each locavkctor.

Definition 2. The parametric coordinate spaceof dimension 1 2 and 3 is denoted using the greek
letters¢, n and¢ and is related in (2) as

(€1,6%,6%) = (&1, ¢) 3)
with the corresponding knot vectors begin denoted @, Z such that
(EL,E%E%) = (5.#,2). 4)

For any B-spline in higher dimension than 3 it is custom to use index notatioe. uflvariate,
bivariate and trivariate cases are as following

B=(¢) = Bg(§ = Bz1(&) = B=z(§)
Bz(¢',¢*) = Bg(n) = Bzi({)B=(n) = B=()Bx(n)
B=(¢',6%,¢%) = Bg(&n,() = Bzi(§Bz(n)Bz(() = B=z(£)By(n)Bz(().

We will in the remainder of the text regard bivariate B-splines unless otkerstated and use the short
hand notation

Bl&o&1---Epr1;m0m1--Mpr1] := B=(§) By (n), %)

where the local knot vectors are known (integers), i[0123;00145] for = = [0,1,2,3],22 =
[0,0,1,4,5]. This particular B-spline would be of polynomial degnee= 2 andps = 3 due to the
number of elements in the local knot vectors.



Also note that we are distinguishing between subscripts and superserigits mcal knot vectors as
the former refers to the index insetof B-splines while the latter is the parametric dimension. Consider
the set of biquadratic B-splines

{B[0123;0012], B[2345; 2245], B[1255;0112]} = { Bg , B, Bg, },
where
B.El(flafz = BE}( I)Baf( 2)
352(51752) = BE;( I)Bag( 2)
353(51752) = Bzé( 1)BE§( 2)
and
= = [0,1,2,3] =2 = [0,0,1,2]
= o= [2,3,4,5] Z3 = [2,2,4,5]
= = [1,2,5,5] 2 = [0,1,1,2].

Definition 3. A weighted B-splineis defined as
BL(&) =~ ][ B=(&),
=1

wherey € (0, 1].

The weighted B-spline is simply a B-spline multiplied by a scalar weighithis is to ensure that LR
B-splines maintain the partition of unity property, and should not be codfwih the rational weights
w which is common in NURBS (nhon-uniform rational B-splines). For simplicity, witt denote both
weighted and non-weighted B-splinesiasand assume that it is clear from the context if it is one or the
other.

Definition 4. A Box Meshor T-mesh is a partitioning of a two-dimensional rectangular dorgaifg;, | x
[n0,mn] INto smaller rectangles by horizontal and vertical lines.

Definition 5. A Tensor Meshis a Box Mesh where there are no T-joints, i.e. all horizontal and vertical
lines span the entire lengtky, &,,] or [no, 7]

Definition 6. An LR-Mesh M,, is a Box Mesh which is the result from a series of single line insertions
{e;}7, from a initial tensor mestM,, i.e. M, D M,,_; D ... D M; D M, and each intermediate
stateM, ;1 = {M; Ug;} is a also a Box Mesh.

In other words, it must be possible to create the mesh by inserting one litiena, avhere these lines
never stop in the center of an element (knot span). See Figure 3 fmpéesof the different meshes.

Definition 7. A Box Mesh, Tensor Mesh or LR-Meshith multiplicities is a Mesh where each line
segment has a corresponding integer valuealled the line multiplicity. Each multiplicity must satisfy
0 < n < p, wherep is the polynomial degree (ig-direction for vertical lines and im-direction for
horizontal lines).

Note that it is possible to createca !-basis if using knot lines of multiplicity. = p.
Definition 8. Thesupport of a (weighted) B-spliné3 : R? — R
B(&,n) = ~vB=z(§)Bu(n)

E = [507617 "'7€p1+1] (6)
H = [77077717---777p2+1]

is the closure of all points where it takes nonzero value(&ey) € [0, &pi+1] X [0, Mpa+1]-

5



(a) Tensor mesh (b) Box meshnotan LR mesh (c) LR mesh and Box mesh

(d) Not an LR-mesh, nor a box meshe) LR mesh with multiplicities (f) Alternative way of drawing (e)

Figure 3: Note that there is no way to create the box mesh (b) from single Beetions (starting at
tensor mesh) where every intermediate state is also a box mesh. This isquisiezdor all LR meshes.

Definition 9. A meshlines is said totraverse the support of a (weighted) B-spliné : R? — R (see
(6)) if
e a horizontal lines =[], 7] x n* satisfies

& <&, &1 <&
no < n* < Mpyi,

e avertical lines = £* x [n{, nj] satisfies

50 < f* < §p1+1
o <105 Mpet1 <17

A horizontal line is said to traverghe interior if 79 < n* < n,,+1 and traversé¢he edgeif 7y = n* or
pe+1 = 1*. Similarly for vertical lines it is said to traverse the interiogif < £* < &,,+1 and traverse

the edge iy = £* oré,,+1 = &*.
See Figure 4 for examples on traversing meshlines.
Definition 10. A (weighted) B-splineB : R? — R (see (6)) hasninimal support on a LR MeshM if

1. for every horizontal line = [£(, &) x n* of multiplicity » in the meshM that traverses the
n unique: such thaty; = n* | if ¢ traverses the interior aB

support ofB, there eX'St{ ani such thaty; = n* , if « traverses the edge &f

2. for every vertical line = &* x [, n;] of multiplicity » in the meshM that traverses the support
of B. there exisd " uniguei such that; = & | if ¢ traverses the interior B
’ ani such that; = & | if e traverses the edge &f

6



(a) Line traversing the inte- (b) Line traversing the inte- (c) Line traversing the edge (d) Line neither traversing
rior of B rior of B of B the interior nor the edge of
B

Figure 4: Traversing the support of a basis function. Note that we dis§hdetween traversing the
edge and the interior of the supportBf

See Figure 5 for examples on minimal support.

Definition 11. Let M be an LR-mesh with multiplicities. A functio® : R? — R is called anLR
B-splineon M if

1. BL(&) = vB=(£)By(n) is a weighted B-spline where all knot lines (and the knot line multiplici-
ties) in= and? is also inM.
2. B has minimal support oM.

Definition 12. A meshline extensiore on an LR mesh\1,, is either

a new meshline,

an elongation of an existing meshline,

a joining of two existing meshlines or
increasing the multiplicity of an existing line

which causes one or more of the LR B-splines/ef), to not have minimal support af,, ;.

2.2 Refining LR B-splines

For local refinement, we again turn to existing spline theory. Tensor pt@tsplines form a subset of
the LR B-splines and they obey some of the same core refinement ideaallfgludit locally). From
tensor product B-spline theory we know that one might insert extra Koogsirich the basis without
changing the geometric description. This comes from the fact that we tiavelde the relation between
B-splines in the old coarse spline space and in the new enriched splire §oadnstance if we want to
insert the knot into the knot vectoE between the knot§_; ands;, then the relation is given by

Bz(§) = a1Bz, (§) + a2Bz=,(§), ()
where
I { 175_5 Ept1 %éé Ep+2
e <8<
8

ay = Epr2—E2)
3

1, &1

INIA
Iy Iy
IN N

{ §p+2 —f 52 €p+2

and the knot vectors are

[1]

(61,82, .81, ) iy Epr1, Epyal
[51,527-~-fi71,€;, iy --Spt1 ]
= [ &,..&-1.8 &, Epr1, Epral-
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|
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6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 :—==—==—1: s e
01 2 3 4 5 6 01 2 3 4 5 6 01 2 3 4 5 6
(@) LR meshMm (b) B[0234;0124] has minimal sup-  (c) B[0345;0145] has minimal sup-
port on M port on M
6 6 6
5 5 5 +
"
0
:
4 4 4
3 3 3
2 2 2t Mt eeeed
1 1 1
0 0 0
01 2 3 4 5 6 01 2 3 4 5 6 01 2 3 4 5 6
(d) B[0234;0012] has minimal sup-  (e) B[0013;1245] hasnot minimal (f) B[2345;1245] has minimal sup-
port on M support onM due to the meshline at  port onM, but is not an LR B-spline
n=3 on.M as the two highlighted lines are

missing fromM

Figure 5: Minimal support ensures that every meshline traversing tipoeLgd a B-spline should appear
in the local knot vector. Being an LR B-spline ensures the converseeteay line in the knot vector
appears in the mesi

Note that the insertion of the kngtinto = yields a knot vector of size + 3, meaning that it is
generating two B-splines. These two B-splines are the one being desbyitibe local knot vectors,
andz,, both of sizep + 2.

Let us look at an example using this technique. Say we want to iéseft% into the B-spline
=3 = [0,1,2,3]. This would give usy; = ay = % and the three functions are plotted in Figure 6. If
one were to insert the kngt= % into thesetof B-splines in Figure 2, then this will require two more
functions to be split, namely the functi@y = [0,0,1,2] and=4 = [1,2,3, 3]. All the three splitting
shown in Figure 6—7 will then take place. This insertion will replace three edglies with four new
linearly independent B-splines (see the knot vectors in the figure Iegeidéntify the four distinctive
new B-splines).

Bivariate functions are refined in one parametric direction at a time. By paivo local knot
vectors, one for each of the parametric directions we are able to cremtmiate B-spline. For instance
if we have the knot vectdE in the first parametric direction, arid in the second, we will have the
B-splineBE,fH(g, 77) = Bg(f)BH(n)

By using the splitting algorithm in Equation (7) for the 2D case when splitting indareetion, we
obtain:

B=(&,m) = B=z(§)Bu(n)
(1 Bz, (§) + a2 Bz, (€)) Bu(n) ©)
= 041331(5,77)"‘042-352(5777)'
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Figure 6: Splitting the B-splin& = [0, 1, 2, 3] into two separate B-splines by inserting the kéot

07p 07

—Z=100,0,1,32 ] —z=[1,3223 ]
06 - 06
—==[ 0,1,32,2] —Z=[ 3/2,23,3 |
osp ==[0,01, 2] Slaeaz=[1, 2,33
03F \ 03
0. 0.
01 01
[ 05 1 15 2 25 3 35 4 [ 05 1 15 2 25 3 35 4
(a) Insertingt = 2 inZ = (0,0,1,2). (b) Insertingt = 2in = = (1,2,3,3).

Figure 7: Displaying function splitting in the case tlgds not at the knotvector center.

For weighted B-splines, this becomes

Bg(&n) = +Bz(&n)
= v (a1Bz,(§) + asB=,(£)) Bu(n)
BEI (5, ’f]) + B’YEQ'Q (57 7])7

where

"Moo=y
Y2 = Qoy.

We now have everything we need to formulate the refinement rules. Thisevithplemented by
keeping track of the mesi,, and the spline spacg,. Note that we do not need to keep track of the
refinement historyM;, i = 1..n — 1, we only need to store the current state. For each B-sptiie

we store the following:

Z; € RP*+? - the local knot vector in the first parametric direction

H; € RP*2 - the local knot vector in the second parametric direction
v; € R - the scaling weight

¢; € R? - control points ind-dimensional space.

Through the refinement we aim at two points: keeping the partition of unityesvihg the geometric
mapping unchanged, i.8.,v;B; = 1 andf = >, v; B;c; for all levels of refinement.
Assuming a meshline extension is inserted, the refinement process istehaeaktby two steps.



e Step 1: Split any B-spline which support is traversed by tiewmeshline - update the weights
and control points

e Step 2: For all new B-splines, check if their support is completely traversed pyeaistingmesh-
line

We will here describe these two steps in detail.

2.2.1 When to split a B-spline

A B-spline may need to be split at either of the two refinement steps. In SteptésieveryB-spline
againsibnemeshline. In Step 2 we test evargwly created-spline againsall existing meshlines. This
is just a conceptual understanding of the process. In a computati@fizbten of this technique, both
of these searches could be done locally.

A B-spline is split whenever a meshline is traversing the interior of that B-si¢tiee Definition 9).

In the refinement process we will at multiple stages perform checks to eae fharticular function
is split by one particular meshline. The algorithm is in essence testing B-splija@sst meshlines, one
for one, and splitting every function that satisfies the splitting criterion. Bséis just formulating
which B-splines are going to be checked against which meshlines. Not tiet case of a meshline
extension being an elongation of an existing meshline or a joining of two existiesg, then we will use
the full length of the meshline to flag B-splines for splitting. Thus, in the case@&longation, we will
be using the union of the old line with the elongation and use this combined lengthtesting if lines
are traversing B-splines.

2.2.2 How to split a B-spline

The splitting itself is done through the use of Equation (8) and (9). Let sisnas that the functiom;
will be split and the result is the functiori$;, and By with correspondingy; andas,. We will now have
to make sure that we keep the geometric mapping unchanged and prékerpagtition of unity. There
are two cases which can arise:

e The new function 3, or Bs) already exist in our spline space (due to previous splitting).
e The new function is not present and must be added.

In the latter case of the function not already existing, we will need to creaféeitsimply add it to our
list of B-spline and give it weight and control point equal to it's paramtdtion, i.e.~; := «a;; and

c1 := ¢;. We then proceed to add it to the list of newly created functions which willubsequently
tested for splitting in Step 2. In the former case of the function already beesgpt, we simply update
the weight and control point and continue with the refinement procesisisinase, the control point will
be given ag; := (c171 + ¢ivian) /(71 +7via1) and the weight will be given by, := 1 +~;a4. Finally,

we remove the old function from our list of B-splines. This is illustrated in Allipon 1 where we have
assumed that the inserted knot is in Ex@ector (the#-case being completely analogue). Note that we
are keeping the unrefined knot vect#; unchanged in line 6-7, as it is apparent in Equation (9). We
are also storing all newly created B-splinesSip.,, as these will be required in Step 2 of the refinement
algorithm.

2.2.3 LR spline definition

We define an LR spline as an application of the refinement algorithm.

Definition 13. An LR spline £ is a pair(M,,, S), whereM,, is an LR mesh and is a set of LR
B-splines onM,,, and

e for each intermediate stept, 1 = {M; Ue;} the new lines; is a meshline extension

e s={Bz,©}

i=

is the set of all LR B-splines o, resulting from Algorithm 2.
1

10



Algorithm 1 Local &-split

¢ {new knot}
B; {B-spline to be split B; € S)}
S {Spline space}
Snew  {Functions not present i}
calculate(a, ag) from (8)
2« SORTE UE)
E1 [ Ep)]
Eo + [§2, -, &p3]
7‘[1 — 'HZ‘
7'[2 — /HZ
if (21,H1) € Sthen
c1 <+ (e + ¢iviar) /(v + a1ys)
Y17+ o
. else
C| < C;
Y1 QY
addB; t0 S,,cu
s end if
cif (22, H2) € Sthen

1: parameters:

e e o e =
@ g R W NRO

17:  c9 < (Cg’yg + Ci’yioag) /(’YQ + Ozg’yi)
18:  7y2 & 72+ 2

19: else

20: Co < C;

21: Y2 — Q27;

22:  addBsto S,ew

23: end if

24: removeB; from S

Algorithm 2 LR B-spline refinement

S  {Spline space}

: parameters: M {LR mesh}

£  {Meshline extension}
2: for every B-splineB; € S do
3. if & splits B; then
4 perform split according to Algorithm 1
5. endif
6: end for
7
8
9

[Eny

. for every B-splineB; € S, do
for every existing edgé€; € M do
if £; splits B; then

10: perform split according to Algorithm 1
11: {note that this may enlarg§,,.., further}
12: end if

13:  end for

14: end for

11
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Figure 8: Inserting a local (vertical) meshline into a tensor product mesh.

We note that, there is no backwards dependence on the mesh, meaningitedah&index inM,,
seems to suggest that the LR spline is a sequence of meshes, it is endugeréhaxist one possible
sequence. After we have constructed the set of LR B-splinesignit is safe to discard any link to the
previous mesh\1,, ;.

Further, it does not matter if it is possible to make the ma4h in multiple ways. Indeedcny
ordering of the meshline insertions will produce the exact same end fursgameS. See Section 2.3.
As such, for any given LR mesM,,, the set of LR B-spline§ is unique.

While it is possible to define LR splines by using non-weighted B-splinespas th [6], we will
here only consider weighted ones as to maintain the partition of unity which is ampan finite element
methods.

Definition 14. Thecardinality of an LR splinel = (M,,, S), whereS = {BVE (5)}m

- is the number
of B-splines in the se§, and is denoted .

|L] = m. (10)

2.2.4 Example

As an example we look at the insertion of two local knot lines in the tensomptadesh given by the
global knot vector&€ = H = [0,0,0,1,2,4,5,6,6,6]. We first introduce the line spanning, n) €
(3,1) — (3,5), see Figure 8. The line will split the three B-splines illustrated in Figure 9. &\utate
the corresponding-values from Equation (8) and get

B[0124; 1245]=B[0123; 1245]+§B[1234; 1245
B[1245; 1245)= 2 B[1234; 1245]4 2 B[2345; 1245 (11)

B[2456; 1245]= 23[2345; 1245]+ B(3456; 1245

Updating these splits sequentially, we get the following. Let the numericalasdlic 1,2, 3, 4 denote
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2 2 2

1 1 1

000 000 000

000 1 2 3 4 5 666 000 1 2 3 4 5 666 000 1 2 3 4 5 666

(@  B[0124;1245] = (b)  B[1245;1245] = (c)  B[2456;1245] =
B[0123; 1245] + 33[1234; 1245] + + B[2345; 1245] +
1 B[1234; 1245] 2 B[2345; 1245] B[3456; 1245]

Figure 9: B-splines split by the new meshline.

Splitting B, Splitting By, Splitting B,
Vi C; Vi C; Vi C;
B | 1 Cq 1 Cq 1 Ca
By | 1/3 Cq 1 %ca + %cb 1 %ca + 2¢
Bg 2/3 Cy 1 gcb + §Cc
By 1 Ce

Table 1: Numerical values for weights and control points as Algorithm 2téer® insert the meshline
in Figure 8.

the new B-splines and alphabetical indi¢es a, b, ¢ denote the old basis, i.e.

B, = B[0123;1245]
By, = B[1234;1245]
By = B[2345;1245]
B, = B[3456;1245]
B, = B[0124;1245]
B, = B[1245;1245]

[ ]

B, = DB|2456;1245

Note that at the tensor product case, all weightsill be equal to one. After the first split of the old
function B,, we establish the new functiorf$; and B,. Their weights will simply be thevw-values 1
and 1/3 and the control points will remain unchanged= c> = ¢,. Splitting the second function in
Equation (11)B, will cause one of the result8; to be already present, so we update the corresponding
weights and control point according to line 9 - 10 in Algorithm 1. The pred¢gshown in Table 2 and
the numerical values are tabulated sequentially according to wheneveofgae B-splines3,,, B, and
B, are being split.

We would now proceed to Step 2, and test every new B-sfiiine3,, B3 and B4 against all previ-
ously inserted meshlines, but as this is the first inserted line, this is unaegceSeme of the supports of
the unrefined B-splines are depicted in Figure 10.
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(a) B[24565; 2456] (b) B[0124; 0012 (c) B[1245; 2456]

Figure 10: B-splinesot split by the new meshline.

Next we insert another line, this time spanniffgn) € (1,3) — (5,3) as shown in Figure 11. We
first iterate througlStep 1of the refinement. Here, 4 B-splines will be completely traversed by the new
meshline as illustrated in Figure 12. We keep our old convention of numberingldhB-splines by
alphabetical letters = a, b, ¢, d and the new B-splines by numerical numbets 1,2, .. ..

2 2

B[1234;1245) = [ B[1234;1234) + S B[1234; 2345)

B[2345;1245] = 23[2345; 1234]+§B[2345;2345}
1

B[1245:2456] = B[1245:2345] + B[1245: 3450

1
B1245:0124] = B[1245;0123] + 5 B[1245;1234]

or more compact

2 2
B, = -B —-B
a 3 1+3 2

2 2
B, = -B3+-B
b 3 3+3 4

1
B. = Bs+ By

By = Br+ 3By
We note that none of the new B-splines on the right hand side are equaéllysth be considered as new
functions with corresponding weights and control points set by line 12in Bdgorithm 1. Again, we
show some of the B-splines in the vicinity of the newest meshline that are littedpsee Figure 13.
We now proceed t&tep 2of Algorithm 2. There are 8 new B-splines and all of these would have to be
checked against the previous line and see if they are to be further split.tukas out, two of the new
functions are now completely traversed by the previous line since theiodumgve decreased with the
knot insertion. These arB; and Bg as depicted in Figure 14

2 2
B1245:2345] = B[1234;2345) +  B[2345; 2345

2 2
B1245:1234] = B[1234;1234] + J B[2345; 1234

or

2 2
Bs = =B -B
5 3 2+3 4
2 2
By = =B —-B
8 3 1+2 3

14



666

000

000 1 2 3 4 5 666

Figure 11: Inserting another local (horizontal) meshline.

666 666

666 666

1 1 1

000 000 000 000

000 1 2 3 4 5 666 000 1 2 3 4 H 666 000 1 2 3 4 5 666 w0 1 2 3 4 5 666

() Basis B, split, (b) Basis B, split, (c) Basis B. split, (d) Basis By spli,

B[1234;1245] = B[2345;1245] = B[1245;2456] = B[1245;0124] =
2 B[1234;1234] + 1B[2345;1234] +  B[1245;2345] + 1B[1245;0123] +
2 B[1234; 2345] B[2345; 2345] 1 B[1245; 3456] B[1245; 1234]

Figure 12: B-splines split by the new meshline.

Step 1 Step 2

Splitting B,, By, B. and By Splitting Bs Splitting Bg

Vi Ci Vi (&) Vi (&)
By | 2/3 ca 2/3 ca 8/9 1(6cq + 2cq)
Bs | 2/3 Cq 8/9 %(GCa +2¢c.) | 8/9 %(GCG + 2¢,)
Bs | 213 Cy 2/3 Cy 8/9 7(6617 + QCd)
B, | 213 c 8/9 L(6cy+2c.) | 8/9 %(6% + 2¢.)
By | 1/3 c. <RemoveBs>
Bg | 1 Ce. 1 Ce 1 Ce
B7 1 Cq 1 Cq 1 Cq
Bg | 1/3 Ccq 1/3 Cq <RemoveBg>

Table 2: Numerical values of weights and control points as Algorithm 2 itetatemsert the meshline in
Figure 11.
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. . .
. . .
(a) B[2456; 2456] (b) B[0123; 1245) (c) B[0012; 1245]

Figure 13: B-splinesot split by the new meshline.

666 666
5 5
4 4
2
1 1
000 000

000 1 2 3 4 5 666 000 1 2 3 4 5 666
(a) B-spline (b) B-spline
Bs = B[1245; 2345) split Bs = B[1245; 1234] split
by the old meshline by the old meshline

Figure 14:NewB-splines split by amld meshline in Step 2 of the refinement algorithm.

000 1 2 3 4 5 666 000 1 2 3 4 5 666
(@ B-spline (b) B-spline
By = B[1234;2345] not Bg = B[1245; 3456] not
split by the old meshline split by the old meshline

(knotline already present)

Figure 15: New B-splines unchanged by the existing meshline in Step 2 adéfithement algorithm.
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2.3 LR spline properties

Consider a LR splinéM,,, S). Then
1. >, viBi(€) =1, i.e. the LR B-splines form a partition of unity.
2. (Mi41,Si+1) D (M, S;), i.e. the LR spline is nested.

3. Ifthere exist§ two mestjline insertions ligts, €1, ..., en—1} @and{ &y, o €n—1}suchthatM;; =
{M; Ueg;}, M1 = {M; U¢&;} and the final mesh is equalt,, = M,,, then the spline space is
equalS,, = S, i.e. the LR spline refinement is order independent.

4. S = {B,(£)};~, does in general not form a linearly independent set.

2.3.1 Partition of unity

The set of LR B-splines form a partition of unity, i.e.

> iBi€) =1 (12)
=1

Proof: Since the refinement consists of repeated use of Algorithm 1, we will ordwy shat the
partition of unity is preserved through one step of this algorithm. The glasalltrthen follows from
induction. Following our convention of enumerating old B-splines alphabetitdinew B-splines nu-
merical, let us name the three functiofis 1, 2} such that

Ba(§) = a1 B1(§) + a2 Ba(§) (13)
There are three outcomes of the algorithm:
e B; and B, already exist in the spline space
e B, but notB, already exist in the spline space
e neitherB; nor B, exist in the spline space.

We will here show that this holds for the first case, since the proof fortwlmeother cases are
completely analog. Assume that the partition of unity holds before splitting, 2¢, tfien

> By YiBi(§) +(n +a1v.)Bi(§) +(r2 + azv.)Ba(§) =
Z";zl:% a%‘Bz’(ﬁ) +71B1(§) +72B2(§) +Ya(1 B1(§) + a2 B2(§)) =
z:glz’%’ %Bi(€) +1Bi(€) +72Ba(€) +YoBa(€) =1

(14)

2.3.2 Nested space

A spline spaces;_; C §; is said to be nested, if for anfy € S;_1 there exist alf € §; such thatf = f
For LR splines the functiong and f can be represented by their control pointsfas > iy Bici and
f =", Bi&. In order to find the relation between an arbitrgry= [c] and f = [¢], we need to find
the relationship between their control points defining them.

As the refinement algorithm, is a repeated use of (7), which is a linear relat®mcan formulate
the relations between the set of old B-splines and the set of enrichelinBssps a matrixC’ € R™*"™,
satisfying

Bold = CBnew- (15)
Hence given any’ = [c], we can findf = [¢] by ¢ = CTe.
The LR mesheg\V1 are as such nested by construction.
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Figure 16: Example of a linearly dependent LR mesh using biquadratidiBesp The shaded B-spline
B[2356; 1246] is a linear combination of 7 smaller B-splines; their relation given in (16)

2.3.3 Independence of meshline insertion order

LR splines are ingepengentpf the ordering at which the meshlirle extermiemsgrted. That means if
L={M,,S.},L={M,,S,} and the meshes are equed,, = M,,, thenS,, = S,,,. For this proof,
see Dokkeret al.[6].

2.3.4 Linear dependence

The LR splines are not linearly independent, in general. As an examgiadarly dependent set of LR
B-splines, see Figure 16. Here the linear dependence relation is given a

720 - B[2368;1246] = B[5678; 2346] + 135 - B[2356; 2456] +

108 - B[3567; 3456] + 268 - B[3456; 2345] +

324 - B[4567;2345] + 360 - B[2346; 1245] + (16)
384 - B[3468; 1234].

2.4 Linear independence of LR splines

As shown above, one cannot guarantee that an arbitrary LR-mesbdsging a linearly independent
set of functions, however there are several ways to ensure thatgtessof functions you get is in fact
linearly independent. We will here briefly describe three methods, bdtificdetails we reference the
work of Dokken et.al [6].

2.4.1 Hand-in-hand principle

Mourrain [15] presented a formula independent of choice of basishieodimensionality of a spline
space over a T-mesh. This result is generalized in [6] to also addressafjenultiplicities and any
dimension. Used in the bivariate setting it provides a topological equaticedbas the polynomial
degrees, the elements, the edges and their multiplicities and the vertices. @&yiofpshe change
of these components, we are able to predict the dimension increase ofitteesgace for classes of
meshline insertions.

Definition 15. A primitive meshline extensionis a meshline extension which increases the dimension
of the spline space by one.

18



In particular we note that any meshline extension of the following type
e inserting a new meshline spannipg@lements,
e elongation of a meshline by one element and
e increasing the multiplicity of a meshline of length
are primitive.

Proposition 1. Let £ = {M, S} be a refinement of = {M, S}, whereM = {MU¢}. Ifcis a
primitive meshline extension okt andS is linearly independent thef is linearly independent ot
if and only if

2] = ‘E‘ .y (17)

Proof: We know from the dimension formula formula that the dimension of the functiacesghould
be equal to one greater than the dimension of the old space. What is letivtdsthat the LR Spline
space does in fact increase in size, i.e. the new function is not a lineaireioh of the existing ones.
This can be seen from a continuity perspective. Any meshline extensiodegilease the continuity of
the basis at the point where the mesh is extended and at least one B-splinghe splitting scheme
include this new knot within its support. Th$sC S, with strict inclusion and the theorem is proved.

Take note that many meshline extensions can be formulated as a series oferimeshline ex-
tensions. One such example is the insertion of a new meshline of lengthich can be formulated
as one new meshline of lengthandp — n meshline extensions of length one. One can as such care-
fully go hand-in-hand and ensure that the LR spline at all stages offinemeent is coinciding with the
theoretical dimension proved by Mourrain.

2.4.2 Peeling algorithm

Another option is by the peeling algorithm and the notion of local linear indidgrece.

Definition 16. An elementR = (&1,&2) x (1, m2) in @ box mesh is an open set where no horizontal or
vertical lines cross.

Note that elements on LR splines means that all B-spline§’&®n R since all reduced continuity
appears across meshlines.

Definition 17. An elementR in an LR spline is said to becally linearly independentif there exist no
choice of coefficientgc; } such that

> ciBi(§) =0, VEER (18)
i€SR
except for the trivial solutiom; = 0,Vi. HereSz denotes the set of all B-splines with support on the
elementR.

Since all B-splines are polynomials when restricted to one particular elemestclgar that an
element is locally linearly independent if and only if the $gt consists of exactlyp + 1)(q + 1)
B-splines, wherg andq is the polynomial degree of the LR spline.

The Peeling algorithm is given in Algorithm 3. Here, we keep track of two #hinfithe set of B-
splines that may appear in a (global) linear dependence relation

Z ciBi(§) =0 (19)

and the set of possible areas where this may occur. Line 2-11 is just intiiatiz@here we remove all
locally linearly independent elements and the B-splines with support on. tidse next lines comes
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Algorithm 3 Peeling algorithm

S {Spline space}

Q {Parametric domain}

Srp  {possible linearly dependent B-splines}
Qrp {areas of possible linear dependence}

1: parameters:

2: Sip <« S

3 Qrp + N

4: for every elemenRk € ) do

5. if Rislocally linearly independerihen

6: Qrp + Qrp \R

7 for every B-splineB; with support oriR do
8: Stp + Sip \ B;

9: end for

10: endif

11: end for

12: while Q7 p or §;,p changedio

13: for all elementsk € Q;p do

14: if R has support of exactly one B-spliig € Sy, then
15: Qrp < Qrp \ R

16: SLD<_SLD\Bi

17: end if

18: end for

19: end while

from the realization that (19) may never contain only one term. There hawe &b least two B-splines
with coefficientse; # 0 for a nontrivial relation to exist. We may then in line 14-16 remove this B-spline
and the element from possible linear combinations. The remowva) iof line 16 will in turn decrease the
number of B-splines with support on several rectangles which may ¢haséstatement in line 14 to
trigger more. As such, one may peel away B-spline after B-spline untibbtweo things happen: There
are no B-splines left in the séY, p andS is proven linearly independent or all elemeRtss M, p have
support of two or more B-splines. In the latter case thmeg exist a linear combination, and further
investigation is required.

2.4.3 The tensor expansion

From any LR splineC = { M, S} expand the LR mesiM to a full tensor mesh. This will create a map
from the LR spline basis to the tensor product basis and can be desasilf£s). Since we know that the
tensor product B-splines are linearly independent, the LR spline Sagilsalso be linearly independent
if and only if the matrixC' has full rank [14].

In a computational realization of these methods it is possible to describe the Giatsixg rational
numbers under the assumption that the initial tensor product mésleonsisted of integer or rational
knots. This is due to the fact that all refinements are done by halving eatimkerval, and all splitting of
B-splines, results in rational expressions seen in (8). It is then possibtempute the rank of the matrix
usingexactarithmetics, and this is what is done in the work within this paper. For a more datignal
efficient implementation of this method, consider using integers modulus somslaigkenne prime, for
instancep = 23! — 1. This gives a faster, more robust method at the cost of the very unlikeht ¢hat
one of the matrix entries by chance becomes a multipfeasfd the method produces the wrong result.
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2.4.4 Choice of methodology

The tensor expansion for checking for linear independence dossaletto well with increasing problem
sizes, but it has the advantage of always working for all meshes artthgities. The hand-in-hand
principle has the drawback that it disallows a few refinements and the paddimgthm, while necessary,
it is not sufficient for linearly dependent meshes, meaning that it caregghat an LR spline is linearly
independent, but it cannot prove it linearly dependent.

Itis of course possible to combine these techniques, where one couddtimce narrow the possible
areas of linear dependence down to only a subset of the mesh usingtimg pégorithm and proceeding
with tensor expansions in only these areas for full verification.

For all numerical experiments presented in this paper, we tested for lirdgwendence using the
tensor expansion method, and no linearly dependent cases wereetiest@axhen using the full span and
the structured mesh refinement techniques of Section 4 (below).

In fact we conjecture that by virtue of the particular choice of refinenseheme (full span and
structured mesh) you will always be in a subset of the linearly independriSplines, similar to the
subclass of T-splines which are the analysis suitable T-splines [14].
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3 Isogeometric analysis

3.1 The Galerkin finite element method
3.1.1 The variational formulation

Many problems in science and engineering can be addressed by solanigtzonal problem. Given a
Hilbert space), a continuous, coercive bilinear forat-, -) and a continuous linear functionak V*,
whereV* is the dual space @, the variational formulation is defined by: finde V such that such that

a(u,v) =1l(v) Yve. (20)

The existence and uniqueness of the solution to this continuous problenanangeed by the Lax-
Milgram theorem. The Galerkin Finite Element (FE) approximation to this varidtiomdlem may
then be given as follow: Given a finite subspagec V andl € V*, findu;,, € V), such that

a(up,vyp) = l(vy) Yop € V. (21)

3.1.2 A priori error estimates

For cases when the bilinear forag-, -) is selfadjoint the FE-solution;, is the optimal approximation
to the analytical solutiom as measured in the “a-norm” (often denoted “energy-norm” symbolized with

E)

l[u —upl|p = Valu —up, u—up). (22)

If the analytical solution (of a variational problem involving first orderfeliéntiation) is sufficiently
smooth, i.ex € HPT!, and the FE mesiM| is regular and quasi-uniform, the error in the approximate
FE-solution on a family of uniformly refined meshgs1;}, is bounded by

lu —up||g < ChP||ul| got1, (23)

whereC' is some problem-dependent constans the characteristic size of the finite elemeptdenotes
the highest degree of a complete polynomial in the FE basis|afig»+1 denotes the Sobolev norm of
orderp + 1.

For problems where the solution is not sufficiently smoatky, H?*!, e.g. problems with singulari-
ties within the solution domain or on its boundary, we have the error bound

lu = un||z < Ch||ul| gosts, (24)

where the value of the non-negative real parametdepends on how the family of meshgs1,} are
created. Assume thatis a real number characterizing the strength of the singularity. For asegoé
uniformly, or nearly uniformly, refined meshes we then have

a = min{p, \}. (25)
Thus, when\ < p the rate of convergence is limited by the strength of the singularity, and nogto th
polynomial order.

3.1.3 Adaptive mesh refinement (AMR)

For classical FEM the main method for obtaining an optimal grid for minimizing theadjlebergy
error (a-norm), has been to do adaptive grid refinement with the aimtafnilg an (quasi) uniform
element error distribution. This approach has shown to be effectivaler tw eliminate any "pollution”
from singularities in the domain or at the boundary as well as achieving optionakergence rates for
problems involving rough right hand sides. Thus, by means of adaptigh reénement we may achieve

a=p (26)
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An important step in such adaptive refinement processagsterirorierror estimation that provides
a reliable element error distribution, see Ainsworth and Oden [1]. To eeljguasi) uniform element
error distribution we may subdivide those elements that have an elementhexres above the average,
or we may restrict ourself to subdivide those with thpercent elements with largest error contribution.

In classical FEM, the traditional way of refining a quadrilateral elemeny subdivision, i.e. insert-
ing a cross to obtain four new elements. If the aspect ratio (width to lengthisatindesirable large, one
may extend the algorithm to inserts only a single line, splitting the element into twoleaveets. This
way of adaptive refinement give raise to so-called “hanging nodestticch there are several techniques
to reestablish the appropriat&- continuity.

3.2 The isogeometric finite element method
3.2.1 Spline spaces

In isogeometric FE methods we introduce splines as basis functions. Theonasion spline bases are
tensor, either defined by B-splines or NURBS. Herein we will use tepsmgtict B-splines as well as
locally refined B-splines denoted LR B-splines. Given the global knotove= = (&1, &2, ..., mapt1]
and™ = 1,12, ..., Mn+q+1] and anm x n grid of control pointsC; ;, then a tensor 2D B-splines surface
of polynomial ordep in z-direction andy in y-direction may be written as follows:

F(&n) =YY CijBpz(€) - Byw,(n) (27)

i=1 j=1
Here, the local knot vector8; and?; are defined as a subsequence of the corresponding global knot
vectors= and#, respectively. The function space we use is given by

Spq = sPan{ By, ;(£) ® Bg,;(m)H1Y -y (28)
For LR B-splines, these will instead be defined over a single running lgludbex ¢ using the local knot
vectors=; and#; by

Ndo f

F(&,n) =Y %CiByz, (&) By, (n) (29)
=1

where the regularity is given by the local knot vectors anid the weighting factors needed to obtained
partition of unity, see the Section 2. Let the function space spanned by-§Rie basis functions be
denoted by

Lpq = Spa”{BEi (&, 77)} (30)
A proper function space for the FE trial functiong and the FE test functions,, to achieve a
compatible FE space is as follows:
Vi(Q) = {wn € V(Q) | wi(F~ (21, 22)) € Lpq(&,m) } (31)

where the coordinqte mapping F is assumed to be an onto and invertible mapwima@bthf: parameter
domain denoted b§? and the true domaif?, i.e. for any(x, z2) € Q2 there exis{¢*, n*) € €2 such that

(z1,22) = F(£,1%).

n
1=

3.2.2 Convergence rates for splines

Our model problem herein is the Poisson problem for which we have that:
| —upl|le = Valu —up, v —up) = (V(uw—up), V(u—up)) = [u—up| g (32)

Thus, for our model problem the a-norm is equal tokhesemi-norm. The a priori convergence estimate
given in Equation (23) is proven to hold for tensor B-splines (or NURB8g Bazilevet al. [3]. We
conjecture that it also holds for the LR B-splines that we are using hé¥eitre that we are not actively
using the a priori convergence rates in our adaptive refinement sésteglowever, we will in the
numerical studies compare the obtained convergence rates towardethgiven by Equation (23).
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3.2.3 Adaptive refinement of isogeometric finite elements

As shown in Section 3.1.3 by proper adaptive mesh refinement (AMR) weutiieg the full power of
higher order methods and that is highly relevant for Isogeometric FE-m®ti@ne important application
of LR B-splines is to use them as an enabling technology for achieving optmnakrgence order, i.e.
accurate and efficient FE-models. Herein, our aim is to demonstrate arnleg®rformance obtain by
adaptive refinement using LR B-splines. Thus, we have chosen tdigatesthis by solving benchmark
problems with known analytical solution — the exact error is thus computable.

The refinement algorithm chosen herein is based on increasing our sadptge bys - ng,r new
degrees of freedom for each iteration, whéres a prescribed growth parameter. This is achieved by
continued refinement of the elements having the greatest elemental emtobaton, p., to the global
relative errorp

u—unllp@.)

u—"u
. = and o H hHE(Q) _

(33)
||UHE(Qe) HUHE(Q)

Typical we choos&% < 8 < 20%. Small values for3 gives more accurate refinement process,
whereas larger values result in fewer refinement steps.

Regarding adaptive refinement of isogeometric finite elements there hanesbme recent attempts
using T-splines and hierarchical B-splines, see [5, 7, 21, 22]. dnsaon to mark those elements (knot-
span) with highest energy error and subdivide into into four new elenbgritserting a cross (ignoring
large aspect ratio elements for now) through the element center.

As discussed in the previous section, the length of the crossing LR meshilhésve to be of a
certain length in order to actually split a basis function properly. The atdngth is depending on the
surrounding topology of the mesh, and may split some neighboring elementsvimtoew elements.
In order to do a splitting we will need to compute the length of the new knot lineagore a proper
meshline extension. This can be extracted by the element to basis functiespmrdence, which lists
all basis functions which have support on each particular element. Thisaslg available as it is needed
in the assembly of the stiffness matrix, so no extra computations are regMioeelover, this eliminates
the need for expensive topological searches.
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4  Adaptive mesh refinement using LR B-splines

4.1 LR spline refinements

Although Dokkernet al.[6] describe how to manipulate the LR B-splines when inserting knot lines, it is
still up to the implementer to choose exactly which knot lines to use for refinguognbses. The inserted
knot lines must at least entirely split an existing B-spline, which puts a minimugtiHeequirement on
it. This is to ensure a proper meshline extension which causes a B-splineate afshaving not minimal
support, according to Definition 12. We have several options availalbds \@hing the refinement. Not
only the length and the position of the knot lines, but also their multiplicity as sghirgsneral open for
duplicate knots. We will in the numerical examples investigate how much impaet thegces made in
the refinement process have on the properties of the resulting LR B-spliaee.

As a starting point for the refinement algorithm we have a list of element eordributionsp., see
(33). This may be an estimated error based on some a posterior error esstona&xact error in case
of a known exact solution. For all results presented here, we are tignigtter. A straightforward
implementation would be to refine titepercent elements with largest error contribution. However, this
will not suffice for our purposes, since we will be comparing diffeneriinement schemes. To ensure
a proper growth of the solution spadewe propose to continuously insert new knot lines according
to some algorithm until we havg percent more B-splines in our spline space. This will ensure that
different refinement schemes are comparable.

To see an example of the converse, consider inserting a new knot in aidddiate set of B-splines.
Using multiplicity 1, this will increase your spline space by 1, while using multipligityill causep
new B-splines, even though the number of elements refined is the same irabeth ¢

Definition 18. Therefinement parameter 8 of an iterative scheme is defined such that two LR splines
L; andL;_, satisfy

Lio1 C L;
(1+8)1Lia] < [L4]

Which simply states thaf; should be a refinement af;,_; and the number of B-splines (not elements)
should grow by at least percent each iteration.

Assume we have a LR-mesh as given in Figure 17 and we want to refinketherdT, = [2,4] x
[1,2]. To find out what are appropriate LR meshline extensions, we list alliBespwith support on this
element and these are shown in Figure 18 and tabulated in Table 3. An slaVioice when choosing
the refinement line, is to make sure that it is refingvgryB-spline over that element. This can simply be
done by making it run from the smallesknot value to the largest, and likewise in the other parametric
direction. In this particular case one would then haveliae going from¢ = 0 to £ = 6 with constant

0 1 2 3 4 5 6

Figure 17: LR-mesh with an element marked for refinement
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Table 3: B-splines with support dB, 4] x [1, 2] in Figure 17 - 18.

) i X i
1 [0024] x [0002]
2 [0245] x [0002]
3 [2456] x [0012]
4 [0024] x [0023]
5 [0245] x [0023]
6 [2456] x [0123]
7 [0024] x [0234]
8 [0246] x [0235]
9 [2466] x [1235]

n = 1.5 such that it passes through the center of the element. For the other pardimetthis would
then have to run fromy = 0 to n = 5 through§ = 3. This is the "safe" way of refining, as one will have
little reason to prioritize refining some B-splines over others given the limitednrgton available.

However another obvious option also comes to mind. Since we are tlmagrefinement, it is
natural to want the refinement lines to be as local as possible. One migiat @w@f we should insert
the smallest possible line, while still being long enough that it actually splits areévspline. This
information can directly be computed from the local B-spline listin Table 3 axan iterate through the
list and choose the smallest knot vector and choose this. Note that this witimése loss of uniqueness,
since bothE; and=3 has parametri¢-length 4 in the above example. We now must decide on whether
to use=; and insert[0, 4] or to use=3 and insert2, 6]. Of course this will have implications on the
resulting spline space, but without more knowledge of the underlyinggamght is not possible to say
which one is advantageous over the other. We thus propose to @ckiamfunction of all the available
with smallest parametric support. Notice again we don’t need any topoldgfcaimation about the
surrounding mesh topology to insert the knot lines. We are simply extracterg emformation we need
locally, and the resulting refinement will not yield any more than what is eedduere.

As all generalizations of B-spline spaces, LR B-splines do also allowuplichte knots. Duplicate
knots work just in the same way as they do for regular tensor produptiBes, in which the B-splines
all have continuityC?~" wherep is the spline polynomial degree amd is the knot multiplicity. We
may choose to insert not regular knot lines, but also knot lines of higlérplicity. This is obviously a
good idea if we actuallyantthe lower continuity for instance if we either are doing geometry modelling
or if we know something about the underlying problem. However this is nobtihereason to include
the double knot lines. As will become apparent later, this will help us keefimement more localized
and reduce the propagation effects.

So to sum up: we have several design parameters when choosingean@finscheme. We may
choose

e which B-splines with support on the element to refine
e the location of the element split
e the multiplicity of the inserted knot lines

the second point refers to the fact that one doesn’t necessarytmesshte a cross through the element
centeras described in the example above. There is nothing preventing us frertinggwo lines in both
directions through each element, placing them one third from the edgeeadfahively splitting the ele-
ment into 9. For this discussion, we will restrict ourself to inserting crogsesigh the element centers.
These are all illustrated in Figure 19 where we refine a shaded elemegtifsament techniques.
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1 1
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1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4
(a) B[0024;0002] (b) B[0245;0002] (c) B[2456;0012]
5 5
4 4
3 3
2 2
1 1
T T 0 : : : 0 T
1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4
(d) B[0024;0023] (e) B[0245;0023] (f) B[2456;0123)
5 5
4 4
3 3
2 2
1 1
! ! 0 T T T T 0
1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4
(9) B[0024;0234] (h) B[0246; 0235] (i) B[2466;1235]

Figure 18: All B-splines with support on the elemént4] x [1,2].
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0 1 2 3 4 5 6
(a) Minimal span refinement - refining B-spline in
Figure 18a

0 1 2 3 4 5 6
(c) Refining all B-splines with support (see Fig-
ure 18)

0 1 2 3 4 5 6
(b) Minimal span refinement - refining B-spline in
Figure 18c

0 1 2 3 4 5 6
(d) Off center line insertion splitting same as in (a)

0 1 2

4 5 6

(e) Duplicate knot line insertion, splitting the same

asin (a)

Figure 19: Different choices for refining the shaded element.
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4.2 Local refinement strategies for LR B-splines

We will here present three different local refinement strategies thabwilised in our numerical exam-
ples. The starting point for all of these is the assumption that we have iddmtifiet of elements which
needs refinement and proceed to refine these using one of threeistraldmp goal is to split the marked
element (knot span) into four new elements by inserting a cross. Howeveidready discussed, this
cross cannot be limited to only spanning the marked element.

4.2.1 Full span

Our strategy here is to refireveryB-spline with support on the marked element. The inserted meshline
in the¢-direction will then have to span from the minimaknot to the maximung-knot of all functions

with support on the marked element. Likewise for the meshline imttgection. The exact length of
the two inserted meshlines are extracted by using the list of element to B-sphimespondence.

This strategy will make sure that all B-splines with support on the marked alefkot span) are
treated equally and all of them will be split by the refinement. However, thelshick of this strategy is
that one get a somewhat large footprint. Moreover, the neighbouringeeks will be split by a single
line which will in essence double their aspect ratio. This is depicted in Fidlaevhere one can clearly
see the rectangular shaped neighbouring elements arising from thisystrateg

4.2.2 Minimum span

This refinement strategy inserts a cross through the marked element wéthtéhe aim of making
the refinement footprint as small as possible. Thus, we want the insertdines to be as short as
possible, but still splitting at least one B-spline. From the list of element tpllBescorrespondence we
may deduct which B-splines having the smallgsandn-support. Note that this comes with the loss of
uniqueness as there may be several B-splines with the same lengtitedpiae, but with different local
origin, i.e. for the B-spline and; we may have/,, | —&; = &), | — &) but&l # & (see Figure 18a - 18c).
This local refinement strategy is depicted in Figure 20b where we hawegho split only one of the
several available B-splines. Due to the (in general) lack of uniquerfaskich B-splines to split, we
will herein propose to do eandomchoice of which B-spline to refine. This will cause properties such
as symmetry to be lost.

4.2.3 Structured mesh

The idea of refining elements is a legacy from the finite element method whenrg iegerted vertex
would correspond to an additional degree of freedom. With LR B-splirissstinot the case and as seen
from the two previous schemes the required length of the inserted meshligagamgdrom element to
element. Another way of refining LR B-splines is identifyiBgsplineswhich needs to be refined as
opposed to whiclelements In the case of the synthetic diagonal refinement problem presented later
these are easily extracted as all functions along the diagonal that sgtisfyy; fori = 0,....,p + 1.
However, for general isogeometric finite element computations we neettaacto identify which B-
spline to be refined. We propose the following definition

Definition 19. TheB-spline error is the sum of element error over all supported elements, i.e.
leliany = D lelik (34)
KeM(N;)

where M (NV;) is the set of elements on which the B-spliNeis nonzero, andle|| x is the usual element
error measured in energy norm,

lell% = alu — up, u—up)q, (35)

Once the B-splines which are subject to refinement are identified, wegqutdo refine these by
inserting a net of knot lines halving the largest supported knot intergadh@wn in Figure 21.
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(@) Full span - split all functions on (b) Min span - split one random func- (c) Structured Mesh - split all knot
one element, here only two of all the tions on one element, note that for odd spans on one B-spline, notice that no
nine functions with support on this el- order splines (or by a poor random bad aspect ratio elements are created
ement is depicted pick), the symmetry would be lost

3 4 5 6 777

Figure 20: The ideas behind the different refinement strategies, hestdtied on a quadratic tensor
product mesh. Notice the fundamental difference in that 20a - 20b isngfam element, while 20c is

refining a B-spline.

(a) Iteration 1 (b) lteration 2 (c) lteration 3

Figure 21. Three iterations of an example structured mesh refinement. Mwioswe at each iteration
halve the largest supported elements. A selection of LR B-splines over thie fmeen iteration 3 is

depicted in Figure 22

4.2.4 Regularity

We note that just like tensor product B-splines, LR B-splines also allowdpticate knots. The effects
of duplicate knots is twofold. Firstly it reduces the regularity, such thaid &hmultiplicity m will give

rise to aCP~™ function across that knot, whepds the polynomial degree. In addition to the decreased
regularity, one also decreases the support of the function. This will mdiminish the propagation
effects of the refinement. We will investigate refinement using differenilagities.

4.3 Hanging nodes in FEM versus LR B-splines

Adaptive refinement of classical quadrilateral (Lagrange) FE has hehieved by means of many dif-
ferent approaches, e.g: Subdivision of marked

e patch of elements into smaller elements with transition zones to cafifagontinuity
¢ elements into four new elements using multipoint constraints to coatairontinuity
¢ elements into four new elements using transition elements to conitadontinuity

To give some insight into the developed local refinement strategy using-EpliBes we will below il-

lustrate how it fopp = 1 compares to the the concept of using transition elements for adaptivemefibe
of FE grid. The comparison is chosen for a basic refinement case andwe like to emphasize that
adaptive refinement using LR B-splines is in general more versatile thamtioept of using transition

elements.
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Figure 22: Some example quadratic LR B-splines over the LR mesh fromeF2dur
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Figure 23: The transition element concept: Horizontal split of the centneegleinto two new elements.

4.3.1 Refinementforp =1

Assume that we want to divide the centre FE element in the grid shown in FA8unrgwo elements by a
horizontal split. The concept of using transition elements then implies that we to the left anafitie
centre element introduce 5-noded transition elements, see Hughes{Ejure 24 we have displayed
the element nodal shape functions for three of the five nodes. Forlnaxie 4 the nodal shape functions
for the 5-noded transition element are identical to those for node 1 amdhikfetandard bilinear 4-noded
quadrilateral. However, for node 2 and 3 we have to modify the elemeat sbdpe functions compared
to the 4-noded in order to achieve that the shape function in nedealuated at nodg is either equal
tolif i = 5 orequal to0 if i« # j. Finally the element shape function for the new inserted node 5
is as displayed in Figure 24c. It is easy to verify tii&t-continuity is attained for the refined FE grid
displayed in Figure 24.

To achieve the same refinement using LR B-splines we would insert a htaizoeshline as displayed
in Figure 25. The nodal basis functions corresponding to those in Fjlae24c are displayed in the
Figures 26-28, respectively. The leftmost column is showing an alteena#ly of plotting LR B-splines
and is to be understood in the following way. Each continuity reduction line ieeLBymeshlines, is
plotted. For each B-spline we plot an ellipse with center at the Greville powerdge value of the
local knot vector) and with a size corresponding to the size of the stpptinat particular B-spline.

A horizonal split is chosen for simplicity instead of a cross, but the thispasison apply for a cross as well.
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(a) Element nodal shape function for (b) Element nodal shape function for (c) Element nodal shape function for
element node 4 is unchanged node 3 is modified the inserted node 5

Figure 24: The transition element concept: The 5-noded transition elemeiitsselement nodal shape
functions.

1111

11

11 3 5 7 9 1111

Figure 25: LR B-spline refinement: Inserting a horizontal meshline in dodr split the centre element
into two new elements.

Furthermore, we have shaded the ellipse for the particular B-spline whsbtloven, as well as the support
of that function.

The discrete function space after refinement is identical for the FE arB-&fline case. The only
difference is that we in the LR B-spline case get three more elements, ashferethe FE case we only
get one new element. However, notice that we in Figure 23 have stipulatéctisition elements to
indicate that one should treat them as two elements when performing nunietécgation. The reason
being that the element nodal shape functions 2, 3, and 5, are not infisiitelgth across the stipulated
line (they are onlyC?). Thus, in practice we need to do the same amount of work related to numerica
integration for both the FE and LR B-spline case.
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(a) Function space and support (b) Top view (c) Perspective view

Figure 26: B-spline3[135;579].
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0 2 4 6 8 10 12 0 2 4 6 8 10 12 0o

(a) Function space and support (b) Top view (c) Perspective view

Figure 27: B-splineB[357; 679].

12

(a) Function space and support (b) Top view (c) Perspective view

Figure 28: B-splineB[357; 567].
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4.3.2 CY-Refinement forp = 2

To make a comparison between classical Lagrange functions and LR spiithep = 2, we must
considerC? elements. This is perfectly possible by using double knot lines, which is deree The
example mesh is taken from the diagonal refinement casg fer2 andm = 2 which is going to
be discussed in the Section 5.2. We see that the Greville poinis for2 do in fact line up with the
traditional way of drawing Lagrangian biquadratic finite element nodesh&Ve the usual 9 nodes for
each element, provided that there are no hanging nodes nearby. Natedndhat the basis functions
themselves are different. LR B-splines are non-negative, while Lggr&umctions do take negative
values. Nevertheless, they have the same support, and we see tmat gr@ilanging nodes, the basis
functions vanish. This is equivalent to setting multipoint-constraints on treesneffectively removing
them as a degree of freedom. This is can be seen in Figure 29 - 33, sévemal of the B-splines are
shown. Also note that there is no upper bound on the number of hangites lom a single element, as
several elements have 2 hanging nodes in this example.

Itis interesting to see that one might recreate the Lagrangian functioa,sgdac with hanging nodes.
However it is important to note that this is something that we in general will ndbtdo. Doing this
causes us to loose the smoothness which is characteristic of all spline, st ¢his is a property which
we would like to preserve.

(a) Function space and support (b) Top view (c) Perspective view

Figure 29: B-spling3[0448; 0448]
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(a) Function space and support (b) Top view (c) Perspective view

Figure 30: B-spline3[4488; 0004]

(a) function space and support (b) Top view (c) Perspective view

Figure 31: B-spline3[4488; 0044]

(a) function space and support (b) Top view (c) Perspective view

Figure 32: B-spling3[0224; 2448|
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(a) function space and support (b) Top view (c) Perspective view

Figure 33: B-spline3[2448; 0044]
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5 Numerical Results

5.1 Preliminaries

To demonstrate the performance of adaptive refinement using LR B-spleestudy one synthetic case
and two Poisson type problems with known analytic solutions. The synthedadeastediagonal Re-
finemenis chosen as it illustrates very well the spreading effect of the refinessbrimes and has been
addressed by other researchers in the isogeometric community ([5,)7, Tt first Poisson example
denoted_-shapeis chosen as it has a point singularity at the boundary that cause®cedorvergence
rate when performing uniform refinement. Whereas the next Poissblepmninterior Layerhas a rough
right hand side that impose a sharp layer along a circular arc in the intétiegr domain. The asymptotic
convergence rate is here suboptimal for uniform refinement until themmi€lement sizé, becomes
smaller than a threshold given by the width of the interior layer.

The aim of the numerical experiments herein is to investigate whether adegdtivement using LR
B-splines achieves optimal convergence rate for non-smooth problergtsat it gives better accuracy
per dof compared to uniform refinement. Thus, the adaptive strategwésltwa refining a prescribed
portion of the the elements, i.8.- ne; having the greatest elemental contributipnto the global errorp
in order to achieve uniform element error distribution. Furthermore, we teanvestigate the sensitivity
in accuracy and convergence rates towards relevant parametgrslgrmpmial ordeip, regularityC”™ and
local refinement strategies.

All the cases are analysed with LR B-splines of polynomial oyder 2, 3, 4. We have performed
the tests with different regularity,”, were0 < r < p — 1, obtained by using multiple knot lines. The
multiplicity m = 1 corresponds to maximum regularity= p — m = p — 1 whereasn = p corresponds
to minimum regularity: = p — m = 0. We have used two different local refinement strategies denoted
full spanandstructured mesh

For the synthetic cad@iagonal Refinememe present the following results:

¢ Refined grids: Representative examples of refined grids
e Tables showing the number of dofs and elements for each refinement step
e Graphs showing the relation between number of elements and number of dofs

For the two Poisson casds-$hapeandinterior Layer we present the following results:

Convergence plot: Log of relative error vs log of number of degréé®edoms {4of)
Refined grids: Representative examples of refined grids

Error distribution: Elemental contributiop,, to the total errop

Root mean square error of the element error distribution

The exact erroe = u — uy, is measured in the energy norm (a-notifa)| z as given in Equation (22).
Let [le||p(q) and||e]|(q.) be the global and element error, respectively. Then we define thenesan
square of exact element error:

n, 1/2
1 el
lellrms = <ne| > _(lellp@.) — HeHavg)2> /llellavg (36)

e=1
where the average exact element error is defined as

el

1
|leflavg = TZIZH@HE(Q@) (37)
e=1

The quantity root mean square of exact element error given in Equ&&)nnfeasures the deviation
from an uniform element error distribution. For uniform element errdridistion we havd|e||rms = 0.
Thus, we refer tasymptotically optimal mesh refineméste Kvamsdal and Okstad [12]) as a sequence
of meshes satisfying

lim ||e||rms = 0 (38)

h—0
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(a) 1strefinement (b) 3rd refinement (c) 5th refinement

Figure 34: The Diagonal Refinement problefull spanandstructured meshefinement strategy using
single knot lines and bicubic B-splines. Note that in the special case obrbhgefinement, these
strategies coincide completely

5.2 Diagonal refinement

As an introductory example we look at the diagonal refinement. This exargiiégints some of the
problems that local refinement strategies face since the request femefnt is in conflict with the
parametrization direction. With the parametrization being parallel to the cotedinas, and the diago-
nal 45 degrees on this, one will have to refine both parametric directioadlyedDorfelet al. [7] showed
that under T-spline refinement this could provoke a worst-case socemaere the mesh lines propagate
through the entire domain.

We will here present three different refinement strategies for this patiproblem and analyse the
resulting spline space resulting from these. The starting point for all sétlsethe assumption that we
have identified a set of elements which needs refinement (here: the disjements) and proceed to
refine these using one of three strategies.

As discussed already, every inserted mesh line must at least span fuetsafpat least one basis
function. Thus it is in general not possible to only insert a single crossigfr one element when
refining. If the inserted knot lines are limited to that element, then they will in rgémet be long
enough to traverse the entire support of a basis function.

5.2.1 Results

Several refinement strategies was tested to see their performance ceritigriark test for local refine-
ment. The setup was usimpg= 3 in each parametric direction and trying to refine the elements along the
diagonal. No a priori knowledge on the problem was used as the inpyustes given set of elements

to be refined on a general LR B-spline. The first strategy that we testedhsfull spanstrategy which

for all tagged elements, chooses to refine all B-splines with support baldraent. To accomplish this,

we need a rather long mesh line in b@thand»-direction. Thus the characteristic propagation effect is
rather large as can be seen in Figure 34 where several steps of tremefit process have been illus-
trated. Even if the propagation is clearly apparent, the refinement is stilhwech contained in a band
along the diagonal and global refinement is avoided.

The diagonal test case is very exceptional in the sense that bad esjieetements that are char-
acteristic of thefull spanrefinement are all canceled out by the next level on the diagonal. Thkus th
full spanstrategy produces identical meshes asstinectured mesistrategy. However, the differences
between these two strategies become apparent when they are used aptwveaefinement process as
shown in the next two subsections.

The final option is theninimum spamefinement. Due to the fact that this picks a random function we
introduce stochastic effects in our refinement strategy and things swsgimasetry is in general lost. It
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(a) 1strefinement (b) 3rd refinement (c) 5th refinement

Figure 35: The Diagonal Refinement probleiinimum spanrefinement strategy using single knot
lines.
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 36: The Diagonal Refinement probleliinimum sparrefinement using double knot lines.

does however turn out to be more local than in the previous two casesediits of a series of iterations
using this refinement strategy is plotted in Figure 35. Note that after thedfisement, not a single
line is added to the top left and bottom right portion of the mesh. This is due totémpatatory basis

functions at the edge which only span one element. Since the algorithm aesnpashline lengths, it
will always favor crossing zero-span elements such as the ones |latdteredges.

Although the latter refinement strategy does indeed reduce the effecpEgation, it is still appar-
ent. Inspired by similar results for T-splines [5], we now test duplicate knes. The effect of splitting
the elements using both double and triple knot lines is here shown in Figumred3&7a The results are
quite promising as the triple knot line insertion remoadispropagation into neighbouring elements. It
is kept perfectly local and results in a very good mesh. One thing to keep ththongh when inserting
duplicate knots is that each B-spline is splitted into more than two new B-splihesrésults in a larger
growth of the total number of B-splines than when using single knot linesv8o if the mesh seems
tighter, or more compact, Figure 37 contains more B-splines than the mesh e Biju

The correspondingndexmesh to Figure 36-37 is given in Figure 38-39. Notice the high aspect ratio
of some of the elements in Figure 35 and to a lesser degree in 36. This is dfeaevlich happens
when inserted knot lines are traversing neighbouring elements and isstiotted to the element being
refined. Of course, it is possible to combat this effect by recursivelgrimg more lines to compensate
for this aspect ratio, but that would be in contrast with what we are tryirachieve here, which is to
keep the refinement as local as possible.
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(a) 1strefinement (b) 3rd refinement (c) 5th refinement

Figure 37: The Diagonal Refinement probledinimum sparrefinement using triple knot lines.

(a) 1strefinement (b) 3rd refinement (c) 5th refinement

Figure 38: The Diagonal Refinement problem: Index domaimfmimum refinementsing double knot
lines.

5.2.2 Degrees of freedom versus elements

From the numerical experiments we observe that the number of basis fsfitex dofs) versus number
of elements varies significantly with the regularity. If we compare the mesh ssigte knot line refine-
ment (C?-refinement) in Figure 35 with the mesh using triple knot lines refinemerdt{aefinement) in
Figure 37 we get the numbers displayed in the Table 5. The most refihetesh is containing approx-
imately 5 times as many degrees of freedom Esdthan half the number of elements when compared
with the most refined’?-mesh.

We may take a deeper look into exactly how much this effect is apparent tijnglthe number of
basis functions and elements for our diagonal refinement case. We m@thpaninimum span refine-
ment using single, double and triple knot lines. The results are given ie SabVe see a clear tendency
that theC? refinement keeps above 7:1 ratio between the number of degreesadifread the number
of elements, whereas for the C2-refinement the ratio is dropping belowrthie most refined grid.

For any univariat&’'"-regular B-spline basis we note thaf elements gives

Ndof = Nel(p —7r) +7 — 1 (39)

wherep is the polynomial order and the knot multiplicityss = p — r. For a tensor product spline with

nZ, elements itis clear that this give§, ; = ((p — r)ne1)* + O(nel). For our particularinimum spajn

case we havg = 3 andr = 0, 1, 2 and it seems reasonable thats is approximatel\8 times larger than

nel for C° and a facton.6 for C? at the most refined grid. We see that LR B-splines shows a somewhat
similar growth of basis function to elements as regular tensor product Besplioes. This is shown in
Figure 40 where the tabulated values are plotted.
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Figure 39: The Diagonal Refinement problem: Index domaimfmimum refinemenising triple knot
lines.

Table 4: The Diagonal Refinement problem: Number of elements vs degfréeedom using théull

spanstrategy.

refinement count C?-elements C?-DOFs| C'-elements C'-DOFs| C?-elements C°-DOFs
1 4 25 4 36 4 49
2 16 49 16 100 16 169
3 64 121 46 220 46 439
4 196 253 112 452 112 1009
5 496 505 250 908 250 2179
6 1132 997 532 1812 532 4549
7 2440 1969 1102 3612 1102 9319

For the solution of stationary problems such as the ones considered in pleisthess doesn’t have too
many implications. However, for the solution of a time-dependent non-lidaatigty problem, where
the global coefficient (stiffness) matrix must be assembled for each iterétis might be a drawback.
The cost of numerical integration (by Gaussian quadrature) is domingtdtemnumber of Gaussian
integration points and hence the number of elements. Due to this huge disgrdyeaween the number
of dofs and the number of elements, one might argue that measuring geneerrates and running time
should no longer be plotted as a function of dofs, but rather as a furaitieglements. For our purposes
however we note that the bottleneck is still the solution of the linear systenuatieqs, and hence we
keep the convergence plots with dof along the x-axis.
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Table 5: The Diagonal Refinement problem: Number of elements vs degfde=sedom using the
minimum sparstrategy.

refinement count C?-elements C?-DOFs| C'-elements C'-DOFs| C%-elements C°-DOFs
1 4 25 4 36 4 49
2 10 31 10 60 10 103
3 26 47 26 124 22 199
4 66 87 66 248 46 379
5 198 191 150 484 94 727
6 506 364 325 956 190 1411
7 1215 747 682 1904 382 2767

Degrees of freedom vs Elements ratio
14 T T T

—&—m=1
—H— m=2
12 —&—m=3
—¥%— m=1
—%— m=2
—*—m=3

Figure 40: The Diagonal Refinement problem: Ratio of degrees of dreedkrsus elements using
bothfull span(squares) anchinimum spargstars) local refinement strategy. For tensor product bicubic
splines, we have the asymptotic limit of 9 for = 3, 4 form = 2 and1 for m = 1, see Equation (39).
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5.3 L-shape
5.3.1 Problem definition

The problem consist of solving the stationary heat equation, or LaptamienV?« = 0 on a L-shaped
domainQ = [-1,1]?\ [0, 1] with appropriate boundary conditions, see Figure 41.

Vu =0 in Q

u =0 on 9Qp (40)
gu =g on 90y

with g(x,y) given by the exact solution at the Neumann edgesarizking an outward unit normal. It
can be shown that
20 + 7T>

Uez (r, 0) = 72/% sin < (41)
is a solution to the Laplace equatidi®u = 0, and this is what we will be using as our analytical
solution. The generation gfis straightforward fromu.,. but is not given as a simple expression and the
details are omitted here. The homogeneous Dirichlet boundary conditioveis gty = 0,z € [0, 1]
andz = 0,y € [0, 1], while all other edges are given with Neumann conditions (see Figure Mb&g
that the exact solution, which is pictured in Figure 41b exhibit a singularitiyeabrigin. The function
has a sharp edge at that point, and the derivative is not well defined the

In Figure 42 we see that the convergence for uniform mesh refinemkmitisd by the strength of
the singularity, i.e. the convergence rate is equattg2 = —1/3. For problems where the solution
is not sufficiently smoothy, ¢ HP*!, as the L-shape with a singular point on its boundary, we do not
obtain optimal convergence. In particular, the use of high order polynsisithen inefficient.

5.3.2 Results

In Figure 42 we show the results obtained by adaptive refinement usirg-&itines. The results are
displayed using different polynomial order= {2, 3, 4}, portion of refinement = {5, 20}, multiplici-
ty/regularitym = {0, p — 1} and local refinement scheme.

The main observation is that we achieve optimal asymptotic convergenceahtef¢r (quasi) uni-
form element error distribution), i.e-q/2 = —p/2 = {—1,-3/2, -2} for p = {2, 3,4}, respectively.

We clearly see that high regularity (i.e. low multiplicity) is efficient when we compelative error
versus number of degrees of freedom. At first glance this seems ottt &-shape is one of the bench-
marks for demonstrating the need for local refinement. Moreover, in theeadxample we concluded
that the "perfect" local refinement was the one which introdycedl multiple knot lines as this did
not propagate at all. However, introducing double knot lines will splibdzasis function intéhreenew
functions, as opposed to inserting a single knot line for splitting it into twotdfge knot lines this will
of course split each function into four new ones. This means that the multiptdike insertion actually
gives a faster growth of the degrees of freedom. Furthermore, wihaethe convergence results are
more sensitive to the tested variation of local refinement strategies forripghgomial orderp and
higher percentage of elements added in each refinetheébtice that for(p, m) = (4, 1) thestructured
meshrefinement gives a higher error than for tiudl spanrefinement strategy. Furthermore, from our
experiments we saw that fgr= 50 we did not always obtain optimal convergence rate, i.e. the value of
B should not be chosen too large.

The resulting grids are different for the different local refinememttsgies. This is illustrated in the
Figures 43—-45 where we have displayed the effect on the refined girig different local refinement
strategies. As can be seen in the two Figures 43 and 4fulllgpanmethod have more elements with
high aspect ratios than tistructured mesimethod, but the latter one give a more widespread stepwise
uniform refinement towards the singularity point. However, when terminatn8300 dofs, the two
methods produce quite similar global energy error. In general, the twereliff refinement strategies are
both able to refine sharply around the origin where the singularity appears
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(@) The domairf2 and the boundary conditions (b) The exact solution, see Equation (41)

Figure 41: The L-shape problem: A Poisson problem with a singularity poitihe boundary.

In Figure 46 we have displayed the root-mean square of the exact eleman{in % measuring the
deviation from uniform error distribution) versugys obtained for uniform refinement using B-splines
and adaptive refinement using LR B-splines. We see immediately that fonttoern refinement using
B-splines the root mean square for the error distribution increases witherof uniform refinements.
This is as expected as the error in the vicinity of the singularity point will be rancemore dominant
with uniform refinement. The highly non-uniform error distribution is cowsis with the observed
reduced convergence order in Figure 42. For the adaptive refidslwge see that fop = 2 therms
of the error distribution reduces in the first refinement steps and thanascmore or less constant
rms = 5 — 8- 107!, As discussed in the paragraph above the lack of sufficient refineamaumd the
singularity point prevent thems to approach to zero. However, the values obtained may be classified as
guasi-uniform, i.e. thems is bounded when increasimges. Forp = 3 we see that thems-values are a
bit higher (around 1) and more differences between the differentlefitaement strategies. The results
for p = 4 is even more spread and in particular foe= 20 we observe that thems-values are slightly
non-decreasing. This is consistent with the observation made aboveat.torth = 4 we get noticeable
higher error forg = 20 than fors = 5, see Figure 42 f). Notice that the local refinement strafatjy
spanhave the lowestms-value in all cases! Furthermore, that low multiplicity (ve.= 1) gives lower
rms-values forfull spanthan for high multiplicity, but this is not always the case for greictured mesh
method.

44



Energy norm vs degree of freedom

Energy norm vs degree of freedom
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Figure 42: The L-shape problem: Relative global errors (in %) (medsur the a-norm) versusqoef
obtained for uniform refinement using B-splines and adaptive refinesmesing LR B-splines. The
dotted lines are the suboptimal convergence @(egolf/?’) valid for (quasi) uniform refinement and
the optimal asymptotic convergence rates (valid for (quasi) uniform eIeenmrtdistribution)O(ngolf),
O(nge/?), O(ng2) for p = {2,3, 4}, respectively.
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(@) (pmsb) =(2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) =(3,1,0,5) (d) (pmsb) =(3,1,2,5)

/ /
/ /
/ /

/ /

(e) (pmsb) =(4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 43: The L-shape problem: The 3rd adaptively refined 4figlobtained by using LR B-splines
with different polynomial degrees = {2,3,4} and local refinement strategies, but same multiplicity
m = 1 andg = 5 (notice thatg is denoted in the subfigure captions).
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Figure 44: The L-shape problem: The 12th adaptively refined.gytid obtained by using LR B-splines
with different polynomial degrees = {2,3,4} and local refinement strategies, but same multiplicity

m = 1 andg = 5 (notice thatg is denoted in the subfigure captions).
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Figure 45: The L-shape problem: The final adaptively refined g#igl obtained by using LR B-splines
with different polynomial degrees = {2,3,4} and local refinement strategies, but same multiplicity

m = 1 andg = 5 (notice thatg is denoted in the subfigure captions).
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Root mean square

error vs degrees of freedom

Root mean square error vs degrees of freedom
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Figure 46: The L-shape problem: Root-mean square of exact elemmen{iar¥%) (measuring the devi-
ation from uniform error distribution) versus;o; obtained for uniform refinement using B-splines and

adaptive refinement using LR B-splines. Results displayeg for {2, 3,4} (from top to bottom) and
B = {5,20} (left to right).
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5.4 Interior layer
5.4.1 Problem definition

The next test problem is a Poisson problem on a unit square with a sherpritayer due to a highly
varying right hand side (volumetric forcing). The problem is given as
Viu = f(x,y) in Q
u =up(z,y) on OQp (42)
% = g(x’ y) on aQN

and has an exact solution given by

u(x,y) = arctan (S(\/(:r —1.25)2 + (y + 0.25)2 — g)) : (43)
Note that the right hand sidz, i) is generated by taking the Laplacia¥i¥) of the analytical solution
given in Equation (43) and similarly(x, y) is found by taking normal derivative, |§% of the analytical
solution. The analytical solution depicted in Figure 47b displays a "from&-yf behavior where the
solution is rapidly changing across a circular band through the domainpidiiéem is mathematically
smooth i.ew € HPT(Q) for any finitep. However, due to the highly varying right hand side we
may only expect optimal convergence order when the elementsgéss than a given threshold that
depends on the sharpness/bandwith of the interior layer. Hence, wexpest suboptimal convergence
rate for uniform mesh refinement when the mesh is not fine enough.

In Figure 48 we see that the convergence for uniform mesh refinenienited by the low regularity
of the right hand side, i.e. the convergence rate is equal@g® = —1/2. However, we see that for
refined grids with small enough element sz 1/40 (i.e.nqof = 1600) we obtain optimal convergence
order. Thus, our refinement goal is here to resolve the interior layadeguately as possible in order to
obtain optimal convergence order, in an adaptive grid refinement gsdowards a global solution of a
certain accuracy measured in the a-norm.

5.4.2 Results

In Figure 48 we show the results obtained by adaptive refinement usinB-EBlines. The results
are displayed using different polynomial order= {2, 3,4}, portion of refinementt = {5, 10, 20},
multiplicity m = {0, p — 1} and local refinement strategy.

The main observation is that we achieve optimal convergence rate, after dinements, i.e.
—q/2 = —p/2 = {-1,-3/2,-2} for p = {2,3,4}, respectively. However, we see that for high
polynomial order § = {3,4}) we need more refinements than for low order to obtain optimal conver-
gence rate. Furthermore, fpr= 4 we observe some “extra” refinement along the Dirichlet boundary
due to the fact that ¢ S*. Compared to uniform refinement the errors for adaptive refined raesiieg
LR B-splines are about 10 times lower. The sharper the interior layer, the pnonounced this error
difference will become.

We clearly see that high regularity (i.e. low multiplicity) is efficient when we compalative error
versus number of degrees of freedom. Furthermore, we see thatergence results are not sensitive
to variation of3, whereas local refinement strategies have some influence for highopalgiorder.

The resulting grids are different for the different local refinememttsgies. This is illustrated in the
Figures 49-51 where we have displayed the effect on the refined girig different local refinement
strategies. As seen, the LR B-splines makes it possible to refine sharply victhity of the interior
layer. Furthermore, we may see from the two Figures 49 and 50 thddltrepan method have more
elements with high aspect ratios than #trictured mesimethod, whereas the latter one gives a more
widespread uniform refinement on subdomains along the interior layparticular, the differences are
pronounced at the\3 grid. However, at about,; = 3000 the two methods produce quite similar
global energy error. Notice, that the final grid foe= 4 shows extra refinement along the Dirichlet part
of the boundary due to the fact that the inhomogeneous Dirichlet boyindaditions are approximated.
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Figure 47: The Interior Layer problem: A Poisson problem with roughtiiigimd side.
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Energy norm vs degree of freedom Energy norm vs degree of freedom
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Figure 48: The Interior Layer problem: Relative global errors (in %)dsueed in the a-norm) ver-
susngoes Obtained for uniform refinement using B-splines and adaptive refinenusimg LR B-splines.
The dotted lines are the optimal asymptotic convergence rates (valid foi(queform element error

distribution) O (n k), O(ng/?), O(ng2) for p = {2, 3,4}, respectively.
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(@) (pmsb) =(2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) =(3,1,0,5) (d) (pmsb) =(3,1,2,5)

(e) (pmsb) =(4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 49: The Interior Layer problem: The 3rd adaptively refined gvid obtained by using LR
B-splines with different polynomial degregs= {2,3,,4} and local refinement strategies, but same
multiplicity m = 1 ands = 5 (5 is denoted in the subfigure captions).
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(@) (pmsb) =(2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) =(3,1,0,5) (d) (pmsb) =(3,1,2,5)

(e) (pmsb) =(4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 50: The Interior Layer problem: The 12th adaptively refined grigh obtained by using LR
B-splines with different polynomial degregs= {2, 3,4} and local refinement strategies, but same
multiplicity m = 1 andg = 5 (3 is denoted in the subfigure captions).
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-
(e) (pmsb) =(4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 51: The Interior Layer problem: The final adaptively refined gvt,, obtained by using LR
B-splines with different polynomial degregs= {2, 3,4} and local refinement strategies, but same
multiplicity m = 1 ands = 5 (5 is denoted in the subfigure captions).
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6 Conclusions

In this paper we have investigated adaptive refinement in isogeometricenading LR B-splines. Tra-
ditional tensor product B-splines lack the ability of local refinement whictemsded in order to achieve
optimal convergence order in real world applications. In particular, driginder isogeometric meth-
ods based on tensor product B-splines are not able to exploit the feli offered by isogeometric
analysis when applied to problems involving singularities or rough right bates.

Herein, the newly developed LR B-splines have been applied as adegftivement in isogeometric
analysis. Different local refinement strategies has been propodethalemented in the object oriented
codelFEM.

We have performed an extensive set of numerical tests to investigaterfbenmnce of using LR
B-splines to achieve accurate results measured in energy norm (a-aodnoptimal convergence rates
for the classical benchmark tests L-shape and Interior Layer. Thégese very good and we achieved
optimal convergence rates for both test cases, and the sensitivity toditfedent choices of local refine-
ment strategies and prescribed portion of refinement was moderateerffuotie, high regularity gives
less error versus degrees of freedoms compared to low regularitg (fiven polynomial order) in all
cases.

We conjecture that the application of the full span and structured meskemedint strategies, both
generates a subclass of LR B-splines that are linearly independent, ortii#inged for linear indepen-
dence testing. No linearly dependent mesh has been discovered whiehese strategies. The proof
for this is left as a topic for future investigation.

We think the LR B-splines may serve well as a framework for adaptive og&ic methods as
they are both versatile and manageable with regards to development oélgemgpose finite element
software. The framework open new vistas for interoperable CAD amd$yStems, and more research
and developments should be pursued to fully exploit these possibilities.
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