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Abstract

The recently proposed locally refined B-splines, denoted LRB-splines, by Dokkenet al. [6] may
have the potential to be a framework for isogeometric analysis to enable future interoperable com-
puter aided design and finite element analysis. In this paper, we propose local refinement strategies
for adaptive isogeometric analysis using LR B-splines and investigate its performance by doing nu-
merical tests on well known benchmark cases. The theory behind LR B-spline is not presented in full
details, but the main conceptual ingredients are explainedand illustrated by a number of examples.

1 Introduction

1.1 Background

Computer Aided Design (CAD) and Finite Element Analysis (FEA) are essential technologies in mod-
ern product development. However, the interoperability of these technologies is severely disturbed by
inconsistencies in the mathematical approaches used. The main reason for inconsistencies is that the
technologies evolved in different communities with the focus on improving disjoint stages in product
development processes, and taking little heed on relations to other stages. Efficient feedback from anal-
ysis to CAD and refinement of the analysis model are essential for computer-based design optimization
and virtual product development. The current lack of efficient interoperability of CAD and FEA makes
refinement and adaptation of the analysis model cumbersome, slow and expensive.

The new paradigm of Isogeometric Analysis, which was introduced by Hugheset al. [11], demon-
strates that much is to be gained with respect to efficiency, quality and accuracy in analysis by replacing
traditional Finite Elements by volumetric NURBS elements.

NURBS are not flexible enough to be a common basis for future CAD and FEAmerely due to some
required properties in design and analysis such as locally refineable, accommodate extraordinary points,
and trimless option. T-splines are a recently developed generalization of NURBS [3], [7], [20], they
were introduced to cure the above geometric limitations and to generate local refinements in the mesh.
In context of isogeometric analysis, a new sub-class of T-splines as analysis-suitable (AS) T-splines [19]
have emerged, which is a significant step towards more versatility. Recently there has also been published
works related to hierarchical refinement of splines introduced by Forsey and Bartels [8]; see [22], [21],
[9], [4], [17], and [16].

We believe that the recently proposed locally refined LR B-splines by Dokkenet al. [6] may have
the potential to form an alternative framework for future interoperable CAD and FEA systems. The new
approach directly operates on the spline spaces, and in this way a broad spectrum of piecewise spline
functions may be obtained. LR B-splines consist of smooth, piecewise polynomial basis functions that
constitute a partition of unity. Among other advanced features they may facilitatelocal h-refinement.
Since this class of splines is rich and versatile, it may break new ground andseems to be attractive as
foundation for integrating CAD and FEA on one computational platform.

Our long term vision is to create a radically new computational platform with powerful and versatile
refinement and adaptation procedures based on the concept of LR B-splines. Downward compatibility to
existing NURBS-based models and the synergy of CAD and FEA expertise ineach development stage
will be essential and, at the same time, promote the broad acceptance and dissemination in both academia
and the software industry.

In any finite element analysis of real world problems, it is of great importance that the quality of the
computed solution may be determined. However, the assessment of the quality of a computed solution
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is challenging, both mathematically and computationally. Thus traditionally, the qualityof the solution
is assessed manually by the scientist or engineer doing the simulation, but this isunreliable. Numeri-
cal simulation of many industrial problems in civil, mechanical and naval industry often require large
computational resources. It is therefore of utmost importance that computational resources are used as
efficiently as possible to make new results readily available and to expand the realm of which processes
may be simulated. We thus identify reliability and efficiency as two challenges in simulation based
engineering.

These two challenges may be addressed by error estimation combined with adaptive refinements. A
lot of research has been performed on error estimation and adaptive mesh refinement, see e.g. (Ainsworth
and Oden, 2000 [1]). However, adaptive methods are not yet an industrial tool, partly because the need
for a link to traditional CAD-system makes this difficult in industrial practice. Here, the use of an
isogeometric analysis framework may facilitate more widespread adoption of thistechnology in industry,
as adaptive mesh refinement does not require any further communication with the CAD system.

1.2 Aim and outline of the paper

The aim of this paper is to present local refinement strategies using LR B-splines and investigate its
performance in adaptive isogeometric analysis by means of showing numerical results on well known
benchmark examples.

The paper is organized as follows:
In Section 2, we stated the preliminaries definitions ofB-splinesandmeshesto illustrate the local

refinement of B-spline using knot insertion. Then the basic important ingredients to understandLR B-
splinesconcept such asLR-mesh, LR B-spline space, andmeshline extensionare given. Our aim here is
to fix the notations, for a detailed mathematical description related to LR B-splineswe refer the reader
to Dokkenet al. [6].

In Section 3, we give a brief introduction to the finite element method and the need for adaptive
refinement in real world problems. The main characteristics of isogeometric finite element methods
using B-splines (or NURBS) and LR B-splines is presented. Further we describe a general approach,
that suits LR B-splines, to perform localh-refinement in adaptive isogeometric finite element method.

Section 4 is devoted to illustrate the local refinement strategies using LR B-splines. A more gen-
eral discussion on different options for local refinement is given. Then we presented three specific local
refinement strategies which we shall investigate in the numerical examples section. At the last the con-
ceptual similarities between adaptive refinement in classical FEMversusisogeometric methods using
LR B-splines (forp = 1 and 2) are given.

Numerical experiments are performed in Section 5. The aim of this section is to illustrate the per-
formance of the local refinement strategies of Section 4. In particular, weinvestigate whether adaptive
refinement using LR B-splines achieves optimal convergence rate, in termsof better accuracy per degrees
of freedom (dofs) compared to the uniform refinement case, for non-smooth elliptic problems. For the
purpose we consider one synthetic case of refinement along the diagonal and elliptic PDEs with known
solutions.

We end this paper by giving some conclusion upon our findings in Section 6.
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(a) Initial mesh (b) Tensor product refinement (c) Truly local refinement

Figure 1: Lack of local refinement of tensor B-splines.

2 Spline theory

The problem with traditional B-splines and NURBS is that they are formulated as tensor products of
univariate B-splines. This means that refinement in one of the univariate B-splines will cause the insertion
of an entire new row or column of knots in the bivariate spline space. As an example of refinement around
a local point is achieved which also refine the other area of mesh. This is illustrated in Figure 1, where
we have recursively refined the lower right corner. Ideally we do notwant to insert any knot in the
upper right and lower left part of the mesh, but with B-splines and NURBS, this is unavoidable. Thus
to achieve truly local refinement we need some new structure to the mesh whichis not based on global
tensor products. This is what T-splines, Hierarchical B-splines, and LR B-splines address. T-splines
were first introduced by Sederberget al. [20] and have, like NURBS, primarily been used in computer
aided design (CAD). In recent years T-splines have, however, been introduced to isogeometric analysis
[2, 7, 18, 19].

In the following subsections we will present the LR B-splines, first we establishing a vocabulary that
contains several definitions in section 2.1 and then we discuss the algorithms insection 2.2 followed by
some properties of LR splines in Section 2.3

2.1 LR-splines

We start the introduction by describing the local knot vectors. From elementary B-spline theory we
know that a knot vector of sizen+ p+ 1 will generaten linearly independent basis functions of degree
p. Usually this knot vector is required to start and end with a knot of multiplicityp+ 1, ensuring at least
p+1 basis functions to be generated. If we ignore this restriction, it is clear thatwe can generate a single
basis function using a knot vector of sizep+2. The purpose of open knot vectors (knot vectors with knots
of multiplicity p+1 at the start and end) is only to ensure interpolating end points which is advantageous
in a number of ways, for instance to simplify the handling of Dirichlet boundaryconditions. From the
evaluation algorithms of B-splines, it follows that every single basis functionwill depend on not more
thanp+2 knots, each basis function using different knots. For instance, consider a set of quadratic basis
function from the knot vectorΞ. We then have

Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]

Ξ1 = [0, 0, 0, 1 ]

Ξ2 = [ 0, 0, 1, 2 ]

Ξ3 = [ 0, 1, 2, 3 ]

Ξ4 = [ 1, 2, 3, 3 ] (1)

Ξ5 = [ 2, 3, 3, 4 ]

Ξ6 = [ 3, 3, 4, 4 ]

Ξ7 = [ 3, 4, 4, 4],
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Figure 2: All quadratic basis functions generated by the knotΞ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. Each indi-
vidual basis function can be described using a local knot vector of 4 knots each (p+ 2).

where the seven basis functions will be separately generated by thelocal knot vectorsΞ1, ...,Ξ7. One
might add here that we will not need the entire set of basis functions, and remove a subset of these,
keeping only the ones we are interested in. Even though it might be instructive to look at local basis
functions as a subsequence of a global knot vector, this is of little practical value. Instead we will not
require any global knot vectorΞ, but rather create the local knot vectorsΞi in a different manner. The
concept local knot vectors is important for LR B-splines as they are used as the building blocks. We have
illustrated the basis functions given by Equation (1) in Figure 2. Using localknot vectors, we define a
single B-spline function as

Definition 1. A B-splineB(ξ) of degreesp is a separable functionB : Rn → R

BΞ(ξ) =
n
∏

i=1

BΞi(ξi) (2)

defined by then nondecreasing local knot vectorsΞi ∈ R
pi+2 and the degreespi, where eachBΞi(ξi)

are univariate B-spline functions of degreepi over the knot vectorΞi.

Note that the degree is implicitly defined by the number of knots in each local knot vector.

Definition 2. The parametric coordinate spaceof dimension 1 2 and 3 is denoted using the greek
lettersξ, η andζ and is related in (2) as

(ξ1, ξ2, ξ3) = (ξ, η, ζ) (3)

with the corresponding knot vectors begin denoted asΞ,H,Z such that

(Ξ1,Ξ2,Ξ3) = (Ξ,H,Z). (4)

For any B-spline in higher dimension than 3 it is custom to use index notation. The univariate,
bivariate and trivariate cases are as following

BΞ(ξ1) = BΞ(ξ) = BΞ1(ξ) = BΞ(ξ)
BΞ(ξ1, ξ2) = BΞ(ξ, η) = BΞ1(ξ)BΞ2(η) = BΞ(ξ)BH(η)

BΞ(ξ1, ξ2, ξ3) = BΞ(ξ, η, ζ) = BΞ1(ξ)BΞ2(η)BΞ3(ζ) = BΞ(ξ)BH(η)BZ(ζ).

We will in the remainder of the text regard bivariate B-splines unless otherwise stated and use the short
hand notation

B[ξ0ξ1...ξp+1; η0η1...ηp+1] := BΞ(ξ)BH(η), (5)

where the local knot vectors are known (integers), i.e.B[0123; 00145] for Ξ1 = [0, 1, 2, 3],Ξ2 =
[0, 0, 1, 4, 5]. This particular B-spline would be of polynomial degreep1 = 2 andp2 = 3 due to the
number of elements in the local knot vectors.
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Also note that we are distinguishing between subscripts and superscripts on the local knot vectors as
the former refers to the index in asetof B-splines while the latter is the parametric dimension. Consider
the set of biquadratic B-splines

{B[0123; 0012], B[2345; 2245], B[1255; 0112]} = {BΞ1
, BΞ2

, BΞ3
},

where

BΞ1
(ξ1, ξ2) = BΞ1

1
(ξ1)BΞ2

1
(ξ2)

BΞ2
(ξ1, ξ2) = BΞ1

2
(ξ1)BΞ2

2
(ξ2)

BΞ3
(ξ1, ξ2) = BΞ1

3
(ξ1)BΞ2

3
(ξ2)

and
Ξ1
1 = [0, 1, 2, 3] Ξ2

1 = [0, 0, 1, 2]
Ξ1
2 = [2, 3, 4, 5] Ξ2

2 = [2, 2, 4, 5]
Ξ1
3 = [1, 2, 5, 5] Ξ2

3 = [0, 1, 1, 2].

Definition 3. A weighted B-splineis defined as

Bγ

Ξ
(ξ) = γ

n
∏

i=1

BΞi(ξi),

whereγ ∈ (0, 1].

The weighted B-spline is simply a B-spline multiplied by a scalar weightγ. This is to ensure that LR
B-splines maintain the partition of unity property, and should not be confused with the rational weights
w which is common in NURBS (non-uniform rational B-splines). For simplicity, wewill denote both
weighted and non-weighted B-splines asB and assume that it is clear from the context if it is one or the
other.

Definition 4. A Box Meshor T-mesh is a partitioning of a two-dimensional rectangular domain[ξ0, ξn]×
[η0, ηn] into smaller rectangles by horizontal and vertical lines.

Definition 5. A Tensor Meshis a Box Mesh where there are no T-joints, i.e. all horizontal and vertical
lines span the entire length[ξ0, ξn] or [η0, ηn].

Definition 6. An LR-MeshMn is a Box Mesh which is the result from a series of single line insertions
{εi}

n
i=1 from a initial tensor meshM0, i.e.Mn ⊃ Mn−1 ⊃ ... ⊃ M1 ⊃ M0 and each intermediate

stateMi+1 = {Mi ∪ εi} is a also a Box Mesh.

In other words, it must be possible to create the mesh by inserting one line at atime, where these lines
never stop in the center of an element (knot span). See Figure 3 for examples of the different meshes.

Definition 7. A Box Mesh, Tensor Mesh or LR-Meshwith multiplicities is a Mesh where each line
segment has a corresponding integer valuen, called the line multiplicity. Each multiplicity must satisfy
0 < n ≤ p, wherep is the polynomial degree (inξ-direction for vertical lines and inη-direction for
horizontal lines).

Note that it is possible to create aC−1-basis if using knot lines of multiplicityn = p.

Definition 8. Thesupport of a (weighted) B-splineB : R2 → R

B(ξ, η) = γBΞ(ξ)BH(η)

Ξ = [ξ0, ξ1, ..., ξp1+1] (6)

H = [η0, η1, ..., ηp2+1]

is the closure of all points where it takes nonzero value, i.e.(ξ, η) ∈ [ξ0, ξp1+1]× [η0, ηp2+1].
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(a) Tensor mesh (b) Box mesh,not an LR mesh (c) LR mesh and Box mesh

(d) Not an LR-mesh, nor a box mesh
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(e) LR mesh with multiplicities (f) Alternative way of drawing (e)

Figure 3: Note that there is no way to create the box mesh (b) from single line insertions (starting at
tensor mesh) where every intermediate state is also a box mesh. This is a prerequisite for all LR meshes.

Definition 9. A meshlineε is said totraverse the support of a (weighted) B-splineB : R2 → R (see
(6)) if

• a horizontal lineε = [ξ∗0 , ξ
∗
1 ]× η∗ satisfies

ξ∗0 ≤ ξ0, ξp1+1 ≤ ξ∗1
η0 ≤ η∗ ≤ ηp2+1,

• a vertical lineε = ξ∗ × [η∗0, η
∗
1] satisfies

ξ0 ≤ ξ∗ ≤ ξp1+1

η∗0 ≤ η0, ηp2+1 ≤ η∗1.

A horizontal line is said to traversethe interior if η0 < η∗ < ηp2+1 and traversethe edgeif η0 = η∗ or
ηp2+1 = η∗. Similarly for vertical lines it is said to traverse the interior ifξ0 < ξ∗ < ξp1+1 and traverse
the edge ifξ0 = ξ∗ or ξp1+1 = ξ∗.

See Figure 4 for examples on traversing meshlines.

Definition 10. A (weighted) B-splineB : R2 → R (see (6)) hasminimal support on a LR MeshM if

1. for every horizontal lineε = [ξ∗0 , ξ
∗
1 ] × η∗ of multiplicity n in the meshM that traverses the

support ofB, there exist

{

n uniquei such thatηi = η∗ , if ε traverses the interior ofB
ani such thatηi = η∗ , if ε traverses the edge ofB

2. for every vertical lineε = ξ∗ × [η∗0, η
∗
1] of multiplicity n in the meshM that traverses the support

of B, there exist

{

n uniquei such thatξi = ξ∗ , if ε traverses the interior ofB
ani such thatξi = ξ∗ , if ε traverses the edge ofB
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(a) Line traversing the inte-
rior of B

(b) Line traversing the inte-
rior of B

(c) Line traversing the edge
of B

(d) Line neither traversing
the interior nor the edge of
B

Figure 4: Traversing the support of a basis function. Note that we distinguish between traversing the
edge and the interior of the support ofB.

See Figure 5 for examples on minimal support.

Definition 11. LetM be an LR-mesh with multiplicities. A functionB : R2 → R is called anLR
B-splineonM if

1. Bγ

Ξ
(ξ) = γBΞ(ξ)BH(η) is a weighted B-spline where all knot lines (and the knot line multiplici-

ties) inΞ andH is also inM.
2. B has minimal support onM.

Definition 12. A meshline extensionε on an LR meshMn is either

• a new meshline,
• an elongation of an existing meshline,
• a joining of two existing meshlines or
• increasing the multiplicity of an existing line

which causes one or more of the LR B-splines onMn to not have minimal support onMn+1.

2.2 Refining LR B-splines

For local refinement, we again turn to existing spline theory. Tensor product B-splines form a subset of
the LR B-splines and they obey some of the same core refinement ideas (globally not locally). From
tensor product B-spline theory we know that one might insert extra knotsto enrich the basis without
changing the geometric description. This comes from the fact that we have available the relation between
B-splines in the old coarse spline space and in the new enriched spline space. For instance if we want to
insert the knot̂ξ into the knot vectorΞ between the knotsξi−1 andξi, then the relation is given by

BΞ(ξ) = α1BΞ1
(ξ) + α2BΞ2

(ξ), (7)

where

α1 =

{

1, ξp+1 ≤ ξ̂ ≤ ξp+2

ξ̂−ξ1
ξp+1−ξ1

, ξ1 ≤ ξ̂ ≤ ξp+1

(8)

α2 =

{

ξp+2−ξ̂
ξp+2−ξ2

, ξ2 ≤ ξ̂ ≤ ξp+2

1, ξ1 ≤ ξ̂ ≤ ξ2

and the knot vectors are

Ξ = [ξ1, ξ2, ...ξi−1, ξi, ...ξp+1, ξp+2]

Ξ1 = [ξ1, ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1 ]

Ξ2 = [ ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1, ξp+2].
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(a) LR meshM (b) B[0234; 0124] has minimal sup-
port onM

(c) B[0345; 0145] has minimal sup-
port onM

(d) B[0234; 0012] has minimal sup-
port onM

(e) B[0013; 1245] hasnot minimal
support onM due to the meshline at
η = 3

(f) B[2345; 1245] has minimal sup-
port onM, but is not an LR B-spline
onM as the two highlighted lines are
missing fromM

Figure 5: Minimal support ensures that every meshline traversing the support of a B-spline should appear
in the local knot vector. Being an LR B-spline ensures the converse: that every line in the knot vector
appears in the meshM

Note that the insertion of the knot̂ξ into Ξ yields a knot vector of sizep + 3, meaning that it is
generating two B-splines. These two B-splines are the one being described by the local knot vectorsΞ1

andΞ2, both of sizep+ 2.
Let us look at an example using this technique. Say we want to insertξ̂ = 3

2 into the B-spline
Ξ3 = [0, 1, 2, 3]. This would give usα1 = α2 = 3

4 and the three functions are plotted in Figure 6. If
one were to insert the knot̂ξ = 3

2 into thesetof B-splines in Figure 2, then this will require two more
functions to be split, namely the functionΞ2 = [0, 0, 1, 2] andΞ4 = [1, 2, 3, 3]. All the three splitting
shown in Figure 6–7 will then take place. This insertion will replace three old B-splines with four new
linearly independent B-splines (see the knot vectors in the figure legendto identify the four distinctive
new B-splines).

Bivariate functions are refined in one parametric direction at a time. By pairing two local knot
vectors, one for each of the parametric directions we are able to create a bivariate B-spline. For instance
if we have the knot vectorΞ in the first parametric direction, andH in the second, we will have the
B-splineBΞ,H(ξ, η) = BΞ(ξ)BH(η).

By using the splitting algorithm in Equation (7) for the 2D case when splitting in onedirection, we
obtain:

BΞ(ξ, η) = BΞ(ξ)BH(η)

= (α1BΞ1
(ξ) + α2BΞ2

(ξ))BH(η) (9)

= α1BΞ1
(ξ, η) + α2BΞ2

(ξ, η).
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Ξ = [0, 1 , 3/2, 2    ]
Ξ = [    1 , 3/2, 2, 3]
Ξ = [0, 1 ,        2, 3]

Figure 6: Splitting the B-splineΞ = [0, 1, 2, 3] into two separate B-splines by inserting the knot3
2 .
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Ξ = [0, 0, 1 , 3/2 ]

Ξ = [ 0, 1 , 3/2, 2]
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(a) Insertingξ = 3
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in Ξ = (0, 0, 1, 2).
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in Ξ = (1, 2, 3, 3).

Figure 7: Displaying function splitting in the case thatξ̂ is not at the knotvector center.

For weighted B-splines, this becomes

Bγ

Ξ
(ξ, η) = γBΞ(ξ, η)

= γ (α1BΞ1
(ξ) + α2BΞ2

(ξ))BH(η)

= Bγ1
Ξ1

(ξ, η) +Bγ2
Ξ2

(ξ, η),

where

γ1 = α1γ

γ2 = α2γ.

We now have everything we need to formulate the refinement rules. This will be implemented by
keeping track of the meshMn and the spline spaceSn. Note that we do not need to keep track of the
refinement historyMi, i = 1...n− 1, we only need to store the current state. For each B-splineBγi

Ξi

we store the following:

• Ξi ∈ R
p+2 - the local knot vector in the first parametric direction

• Hi ∈ R
p+2 - the local knot vector in the second parametric direction

• γi ∈ R - the scaling weight
• ci ∈ R

d - control points ind-dimensional space.

Through the refinement we aim at two points: keeping the partition of unity andleaving the geometric
mapping unchanged, i.e.

∑

i γiBi = 1 andf =
∑

i γiBici for all levels of refinement.
Assuming a meshline extension is inserted, the refinement process is characterized by two steps.
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• Step 1: Split any B-spline which support is traversed by thenewmeshline - update the weights
and control points
• Step 2:For all new B-splines, check if their support is completely traversed by any existingmesh-

line

We will here describe these two steps in detail.

2.2.1 When to split a B-spline

A B-spline may need to be split at either of the two refinement steps. In Step 1 we testeveryB-spline
againstonemeshline. In Step 2 we test everynewly createdB-spline againstall existing meshlines. This
is just a conceptual understanding of the process. In a computational realization of this technique, both
of these searches could be done locally.

A B-spline is split whenever a meshline is traversing the interior of that B-spline (see Definition 9).
In the refinement process we will at multiple stages perform checks to see ifone particular function

is split by one particular meshline. The algorithm is in essence testing B-splinesagainst meshlines, one
for one, and splitting every function that satisfies the splitting criterion. The rest is just formulating
which B-splines are going to be checked against which meshlines. Note thatin the case of a meshline
extension being an elongation of an existing meshline or a joining of two existing ones, then we will use
the full length of the meshline to flag B-splines for splitting. Thus, in the case ofan elongation, we will
be using the union of the old line with the elongation and use this combined length when testing if lines
are traversing B-splines.

2.2.2 How to split a B-spline

The splitting itself is done through the use of Equation (8) and (9). Let us assume that the functionBi

will be split and the result is the functionsB1 andB2 with correspondingα1 andα2. We will now have
to make sure that we keep the geometric mapping unchanged and preservesthe partition of unity. There
are two cases which can arise:

• The new function (B1 orB2) already exist in our spline space (due to previous splitting).
• The new function is not present and must be added.

In the latter case of the function not already existing, we will need to create it.We simply add it to our
list of B-spline and give it weight and control point equal to it’s parent function, i.e. γ1 := α1γi and
c1 := ci. We then proceed to add it to the list of newly created functions which will be subsequently
tested for splitting in Step 2. In the former case of the function already being present, we simply update
the weight and control point and continue with the refinement process. Inthis case, the control point will
be given asc1 := (c1γ1 + ciγiα1) /(γ1+γiα1) and the weight will be given byγ1 := γ1+γiα1. Finally,
we remove the old function from our list of B-splines. This is illustrated in Algorithm 1 where we have
assumed that the inserted knot is in theΞ-vector (theH-case being completely analogue). Note that we
are keeping the unrefined knot vectorHi unchanged in line 6-7, as it is apparent in Equation (9). We
are also storing all newly created B-splines inSnew as these will be required in Step 2 of the refinement
algorithm.

2.2.3 LR spline definition

We define an LR spline as an application of the refinement algorithm.

Definition 13. An LR spline L is a pair(Mn,S), whereMn is an LR mesh andS is a set of LR
B-splines onMn, and

• for each intermediate stepMi+1 = {Mi ∪ εi} the new lineεi is a meshline extension

• S =
{

BΞi
(ξ)
}m

i=1
is the set of all LR B-splines onMn resulting from Algorithm 2.
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Algorithm 1 Local ξ-split

1: parameters:

ξ̂ {new knot}
Bi {B-spline to be split (Bi ∈ S)}
S {Spline space}
Snew {Functions not present inS}

2: calculate(α1, α2) from (8)
3: Ξ← SORT(Ξ ∪ ξ̂)
4: Ξ1 ← [ξ1, ..., ξp+2]
5: Ξ2 ← [ξ2, ..., ξp+3]
6: H1 ← Hi

7: H2 ← Hi

8: if (Ξ1,H1) ∈ S then
9: c1 ← (c1γ1 + ciγiα1) /(γ1 + α1γi)

10: γ1 ← γ1 + α1γi
11: else
12: c1 ← ci
13: γ1 ← α1γi
14: addB1 to Snew
15: end if
16: if (Ξ2,H2) ∈ S then
17: c2 ← (c2γ2 + ciγiα2) /(γ2 + α2γi)
18: γ2 ← γ2 + α2γi
19: else
20: c2 ← ci
21: γ2 ← α2γi
22: addB2 to Snew
23: end if
24: removeBi from S

Algorithm 2 LR B-spline refinement

1: parameters:
S {Spline space}
M {LR mesh}
E {Meshline extension}

2: for every B-splineBi ∈ S do
3: if E splitsBi then
4: perform split according to Algorithm 1
5: end if
6: end for
7: for every B-splineBi ∈ Snew do
8: for every existing edgeEj ∈M do
9: if Ej splitsBi then

10: perform split according to Algorithm 1
11: {note that this may enlargeSnew further}
12: end if
13: end for
14: end for

11
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Figure 8: Inserting a local (vertical) meshline into a tensor product mesh.

We note that, there is no backwards dependence on the mesh, meaning that while the index inMn

seems to suggest that the LR spline is a sequence of meshes, it is enough that there exist one possible
sequence. After we have constructed the set of LR B-splines onMn, it is safe to discard any link to the
previous meshMn−1.

Further, it does not matter if it is possible to make the meshMn in multiple ways. Indeedany
ordering of the meshline insertions will produce the exact same end functionspaceS. See Section 2.3.
As such, for any given LR meshMn, the set of LR B-splinesS is unique.

While it is possible to define LR splines by using non-weighted B-splines, as done in [6], we will
here only consider weighted ones as to maintain the partition of unity which is important in finite element
methods.

Definition 14. Thecardinality of an LR splineL = (Mn,S), whereS =
{

Bγ

Ξi
(ξ)
}m

i=1
is the number

of B-splines in the setS, and is denoted
|L| = m. (10)

2.2.4 Example

As an example we look at the insertion of two local knot lines in the tensor product mesh given by the
global knot vectorsΞ = H = [0, 0, 0, 1, 2, 4, 5, 6, 6, 6]. We first introduce the line spanning(ξ, η) ∈
(3, 1)→ (3, 5), see Figure 8. The line will split the three B-splines illustrated in Figure 9. We calculate
the correspondingα-values from Equation (8) and get

B[0124; 1245]=B[0123; 1245]+1
3B[1234; 1245]

B[1245; 1245]= 2
3B[1234; 1245]+2

3B[2345; 1245]
B[2456; 1245]= 1

3B[2345; 1245]+B[3456; 1245]
(11)

Updating these splits sequentially, we get the following. Let the numerical indicesi = 1, 2, 3, 4 denote

12
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(a) B[0124; 1245] =
B[0123; 1245] +
1

3
B[1234; 1245]
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(b) B[1245; 1245] =
2

3
B[1234; 1245] +

2

3
B[2345; 1245]
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(c) B[2456; 1245] =
1

3
B[2345; 1245] +

B[3456; 1245]

Figure 9: B-splines split by the new meshline.

SplittingBa SplittingBb SplittingBc

γi ci γi ci γi ci
B1 1 ca 1 ca 1 ca
B2 1/3 ca 1 1

3ca +
2
3cb 1 1

3ca +
2
3cb

B3 2/3 cb 1 2
3cb +

1
3cc

B4 1 cc

Table 1: Numerical values for weights and control points as Algorithm 2 iterates to insert the meshline
in Figure 8.

the new B-splines and alphabetical indicesi = a, b, c denote the old basis, i.e.

B1 = B[0123; 1245]

B2 = B[1234; 1245]

B3 = B[2345; 1245]

B4 = B[3456; 1245]

Ba = B[0124; 1245]

Bb = B[1245; 1245]

Bc = B[2456; 1245]

Note that at the tensor product case, all weightsγ will be equal to one. After the first split of the old
functionBa, we establish the new functionsB1 andB2. Their weights will simply be theα-values 1
and 1/3 and the control points will remain unchangedc1 = c2 = ca. Splitting the second function in
Equation (11)Bb will cause one of the resultsB2 to be already present, so we update the corresponding
weights and control point according to line 9 - 10 in Algorithm 1. The process is shown in Table 2 and
the numerical values are tabulated sequentially according to whenever each of the B-splinesBa, Bb and
Bc are being split.

We would now proceed to Step 2, and test every new B-splineB1, B2, B3 andB4 against all previ-
ously inserted meshlines, but as this is the first inserted line, this is unnecessary. Some of the supports of
the unrefined B-splines are depicted in Figure 10.

13
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(a)B[24565; 2456]
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(b)B[0124; 0012]
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(c)B[1245; 2456]

Figure 10: B-splinesnot split by the new meshline.

Next we insert another line, this time spanning(ξ, η) ∈ (1, 3) → (5, 3) as shown in Figure 11. We
first iterate throughStep 1of the refinement. Here, 4 B-splines will be completely traversed by the new
meshline as illustrated in Figure 12. We keep our old convention of numbering the old B-splines by
alphabetical lettersi = a, b, c, d and the new B-splines by numerical numbersi = 1, 2, . . ..

B[1234; 1245] =
2

3
B[1234; 1234] +

2

3
B[1234; 2345]

B[2345; 1245] =
2

3
B[2345; 1234] +

2

3
B[2345; 2345]

B[1245; 2456] =
1

3
B[1245; 2345] +B[1245; 3456]

B[1245; 0124] = B[1245; 0123] +
1

3
B[1245; 1234]

or more compact

Ba =
2

3
B1 +

2

3
B2

Bb =
2

3
B3 +

2

3
B4

Bc =
1

3
B5 +B6

Bd = B7 +
1

3
B8

We note that none of the new B-splines on the right hand side are equal, soall will be considered as new
functions with corresponding weights and control points set by line 12 - 13in Algorithm 1. Again, we
show some of the B-splines in the vicinity of the newest meshline that are not splitted, see Figure 13.
We now proceed toStep 2of Algorithm 2. There are 8 new B-splines and all of these would have to be
checked against the previous line and see if they are to be further split. Asit turns out, two of the new
functions are now completely traversed by the previous line since their support have decreased with the
knot insertion. These areB5 andB8 as depicted in Figure 14

B[1245; 2345] =
2

3
B[1234; 2345] +

2

3
B[2345; 2345]

B[1245; 1234] =
2

3
B[1234; 1234] +

2

2
B[2345; 1234]

or

B5 =
2

3
B2 +

2

3
B4

B8 =
2

3
B1 +

2

2
B3

14



666

5

4

3

2

1

000

000          1              2              3              4             5           666

Figure 11: Inserting another local (horizontal) meshline.
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(a) Basis Ba split,
B[1234; 1245] =
2

3
B[1234; 1234] +

2

3
B[1234; 2345]
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(b) Basis Bb split,
B[2345; 1245] =
1

3
B[2345; 1234] +

B[2345; 2345]
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(c) Basis Bc split,
B[1245; 2456] =
B[1245; 2345] +
1

3
B[1245; 3456]
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(d) Basis Bd split,
B[1245; 0124] =
1

3
B[1245; 0123] +

B[1245; 1234]

Figure 12: B-splines split by the new meshline.

Step 1 Step 2
SplittingBa, Bb, Bc andBd SplittingB5 SplittingB8

γi ci γi ci γi ci
B1 2/3 ca 2/3 ca 8/9 1

8(6ca + 2cd)
B2 2/3 ca 8/9 1

8(6ca + 2cc) 8/9 1
8(6ca + 2cc)

B3 2/3 cb 2/3 cb 8/9 1
8(6cb + 2cd)

B4 2/3 cb 8/9 1
8(6cb + 2cc) 8/9 1

8(6cb + 2cc)
B5 1/3 cc <RemoveB5>
B6 1 cc 1 cc 1 cc
B7 1 cd 1 cd 1 cd
B8 1/3 cd 1/3 cd <RemoveB8>

Table 2: Numerical values of weights and control points as Algorithm 2 iterates to insert the meshline in
Figure 11.
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(a)B[2456; 2456]
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(b)B[0123; 1245]
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(c)B[0012; 1245]

Figure 13: B-splinesnot split by the new meshline.
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(a) B-spline
B5 = B[1245; 2345] split
by the old meshline
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(b) B-spline
B8 = B[1245; 1234] split
by the old meshline

Figure 14:NewB-splines split by anold meshline in Step 2 of the refinement algorithm.
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(a) B-spline
B2 = B[1234; 2345] not
split by the old meshline
(knotline already present)

666

5

4

3

2

1

000

000          1              2              3              4             5           666

(b) B-spline
B6 = B[1245; 3456] not
split by the old meshline

Figure 15: New B-splines unchanged by the existing meshline in Step 2 of the refinement algorithm.

16



2.3 LR spline properties

Consider a LR spline(Mn,S). Then

1.
∑m

i=1 γiBi(ξ) = 1, i.e. the LR B-splines form a partition of unity.

2. (Mi+1,Si+1) ⊃ (Mi,Si), i.e. the LR spline is nested.

3. If there exists two meshline insertions lists{ε0, ε1, ..., εn−1} and{ε̃0, ..., ε̃n−1} such thatMi+1 =
{Mi ∪ εi}, M̃i+1 = {M̃i ∪ ε̃i} and the final mesh is equalMn = M̃n, then the spline space is
equalSn = S̃n, i.e. the LR spline refinement is order independent.

4. S = {Bi(ξ)}
m
i=1 does in general not form a linearly independent set.

2.3.1 Partition of unity

The set of LR B-splines form a partition of unity, i.e.

m
∑

i=1

γiBi(ξ) = 1 (12)

Proof: Since the refinement consists of repeated use of Algorithm 1, we will only show that the
partition of unity is preserved through one step of this algorithm. The global result then follows from
induction. Following our convention of enumerating old B-splines alphabetical and new B-splines nu-
merical, let us name the three functions{a, 1, 2} such that

Ba(ξ) = α1B1(ξ) + α2B2(ξ) (13)

There are three outcomes of the algorithm:

• B1 andB2 already exist in the spline space

• B1, but notB2 already exist in the spline space

• neitherB1 norB2 exist in the spline space.

We will here show that this holds for the first case, since the proof for thetwo other cases are
completely analog. Assume that the partition of unity holds before splitting, i.e. (12), then

∑m
i=1

i 6=1,2,a
γiBi(ξ) +(γ1 + α1γa)B1(ξ) +(γ2 + α2γa)B2(ξ) =

∑m
i=1

i 6=1,2,a
γiBi(ξ) +γ1B1(ξ) +γ2B2(ξ) +γa(α1B1(ξ) + α2B2(ξ)) =

∑m
i=1

i 6=1,2,a
γiBi(ξ) +γ1B1(ξ) +γ2B2(ξ) +γaBa(ξ) = 1

(14)

2.3.2 Nested space

A spline spaceSi−1 ⊂ Si is said to be nested, if for anyf ∈ Si−1 there exist an̂f ∈ Si such thatf = f̂ .
For LR splines the functionsf andf̂ can be represented by their control points asf =

∑n
i=1Bici and

f̂ =
∑m

i=1Biĉi. In order to find the relation between an arbitraryf = [c] andf̂ = [ĉ], we need to find
the relationship between their control points defining them.

As the refinement algorithm, is a repeated use of (7), which is a linear relation, we can formulate
the relations between the set of old B-splines and the set of enriched B-splines as a matrixC ∈ R

n×m,
satisfying

Bold = CBnew. (15)

Hence given anyf = [c], we can findf̂ = [ĉ] by ĉ = CT c.
The LR meshesM are as such nested by construction.
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Figure 16: Example of a linearly dependent LR mesh using biquadratic B-splines. The shaded B-spline
B[2356; 1246] is a linear combination of 7 smaller B-splines; their relation given in (16)

2.3.3 Independence of meshline insertion order

LR splines are independent of the ordering at which the meshline extensions are inserted. That means if
L = {Mn,Sn} , L̂ = {M̂m, Ŝm} and the meshes are equalMn = M̂m, thenSn = Ŝm. For this proof,
see Dokkenet al. [6].

2.3.4 Linear dependence

The LR splines are not linearly independent, in general. As an example forlinearly dependent set of LR
B-splines, see Figure 16. Here the linear dependence relation is given as:

720 ·B[2368; 1246] = 108 ·B[5678; 2346] + 135 ·B[2356; 2456] +

108 ·B[3567; 3456] + 268 ·B[3456; 2345] +

324 ·B[4567; 2345] + 360 ·B[2346; 1245] + (16)

384 ·B[3468; 1234].

2.4 Linear independence of LR splines

As shown above, one cannot guarantee that an arbitrary LR-mesh is producing a linearly independent
set of functions, however there are several ways to ensure that the system of functions you get is in fact
linearly independent. We will here briefly describe three methods, but forfull details we reference the
work of Dokken et.al [6].

2.4.1 Hand-in-hand principle

Mourrain [15] presented a formula independent of choice of basis forthe dimensionality of a spline
space over a T-mesh. This result is generalized in [6] to also address general multiplicities and any
dimension. Used in the bivariate setting it provides a topological equation based on the polynomial
degrees, the elements, the edges and their multiplicities and the vertices. By observing the change
of these components, we are able to predict the dimension increase of the spline space for classes of
meshline insertions.

Definition 15. A primitive meshline extensionis a meshline extension which increases the dimension
of the spline space by one.

18



In particular we note that any meshline extension of the following type

• inserting a new meshline spanningp elements,

• elongation of a meshline by one element and

• increasing the multiplicity of a meshline of lengthp

are primitive.

Proposition 1. Let L = {M,S} be a refinement of̂L = {M̂, Ŝ}, whereM = {M̂ ∪ ε}. If ε is a
primitive meshline extension on̂M and Ŝ is linearly independent thenS is linearly independent onM
if and only if

|L| =
∣

∣

∣
L̂
∣

∣

∣
+ 1. (17)

Proof: We know from the dimension formula formula that the dimension of the function space should
be equal to one greater than the dimension of the old space. What is left to show is that the LR Spline
space does in fact increase in size, i.e. the new function is not a linear combination of the existing ones.
This can be seen from a continuity perspective. Any meshline extension willdecrease the continuity of
the basis at the point where the mesh is extended and at least one B-spline will in the splitting scheme
include this new knot within its support. ThuŝS ⊂ S, with strict inclusion and the theorem is proved.

Take note that many meshline extensions can be formulated as a series of primitive meshline ex-
tensions. One such example is the insertion of a new meshline of lengthn which can be formulated
as one new meshline of lengthp andp − n meshline extensions of length one. One can as such care-
fully go hand-in-hand and ensure that the LR spline at all stages of the refinement is coinciding with the
theoretical dimension proved by Mourrain.

2.4.2 Peeling algorithm

Another option is by the peeling algorithm and the notion of local linear independence.

Definition 16. An elementR = (ξ1, ξ2)× (η1, η2) in a box mesh is an open set where no horizontal or
vertical lines cross.

Note that elements on LR splines means that all B-splines areC∞ onR since all reduced continuity
appears across meshlines.

Definition 17. An elementR in an LR spline is said to belocally linearly independent if there exist no
choice of coefficients{ci} such that

∑

i∈SR

ciBi(ξ) = 0, ∀ξ ∈ R (18)

except for the trivial solutionci = 0, ∀i. HereSR denotes the set of all B-splines with support on the
elementR.

Since all B-splines are polynomials when restricted to one particular element, itis clear that an
element is locally linearly independent if and only if the setSR consists of exactly(p + 1)(q + 1)
B-splines, wherep andq is the polynomial degree of the LR spline.

The Peeling algorithm is given in Algorithm 3. Here, we keep track of two things: The set of B-
splines that may appear in a (global) linear dependence relation

∑

i

ciBi(ξ) = 0 (19)

and the set of possible areas where this may occur. Line 2-11 is just initialization where we remove all
locally linearly independent elements and the B-splines with support on these. The next lines comes
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Algorithm 3 Peeling algorithm

1: parameters:

S {Spline space}
Ω {Parametric domain}
SLD {possible linearly dependent B-splines}
ΩLD {areas of possible linear dependence}

2: SLD ← S
3: ΩLD ← Ω
4: for every elementR ∈ Ω do
5: if R is locally linearly independentthen
6: ΩLD ← ΩLD \ R
7: for every B-splineBi with support onR do
8: SLD ← SLD \Bi

9: end for
10: end if
11: end for
12: while ΩLD or SLD changeddo
13: for all elementsR ∈ ΩLD do
14: if R has support of exactly one B-splineBi ∈ SLD then
15: ΩLD ← ΩLD \ R
16: SLD ← SLD \Bi

17: end if
18: end for
19: end while

from the realization that (19) may never contain only one term. There have tobe at least two B-splines
with coefficientsci 6= 0 for a nontrivial relation to exist. We may then in line 14-16 remove this B-spline
and the element from possible linear combinations. The removal ofBi in line 16 will in turn decrease the
number of B-splines with support on several rectangles which may causethe if-statement in line 14 to
trigger more. As such, one may peel away B-spline after B-spline until oneof two things happen: There
are no B-splines left in the setSLD andS is proven linearly independent or all elementsR ∈MLD have
support of two or more B-splines. In the latter case theremayexist a linear combination, and further
investigation is required.

2.4.3 The tensor expansion

From any LR splineL = {M,S} expand the LR meshM to a full tensor mesh. This will create a map
from the LR spline basis to the tensor product basis and can be describedas (15). Since we know that the
tensor product B-splines are linearly independent, the LR spline basisS will also be linearly independent
if and only if the matrixC has full rank [14].

In a computational realization of these methods it is possible to describe the matrixC using rational
numbers under the assumption that the initial tensor product meshM0 consisted of integer or rational
knots. This is due to the fact that all refinements are done by halving each knot interval, and all splitting of
B-splines, results in rational expressions seen in (8). It is then possibleto compute the rank of the matrix
usingexactarithmetics, and this is what is done in the work within this paper. For a more computational
efficient implementation of this method, consider using integers modulus some highMersenne prime, for
instancep = 231 − 1. This gives a faster, more robust method at the cost of the very unlikely event that
one of the matrix entries by chance becomes a multiple ofp and the method produces the wrong result.
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2.4.4 Choice of methodology

The tensor expansion for checking for linear independence does notscale to well with increasing problem
sizes, but it has the advantage of always working for all meshes and continuities. The hand-in-hand
principle has the drawback that it disallows a few refinements and the peelingalgorithm, while necessary,
it is not sufficient for linearly dependent meshes, meaning that it can prove that an LR spline is linearly
independent, but it cannot prove it linearly dependent.

It is of course possible to combine these techniques, where one could forinstance narrow the possible
areas of linear dependence down to only a subset of the mesh using the peeling algorithm and proceeding
with tensor expansions in only these areas for full verification.

For all numerical experiments presented in this paper, we tested for linear independence using the
tensor expansion method, and no linearly dependent cases were discovered when using the full span and
the structured mesh refinement techniques of Section 4 (below).

In fact we conjecture that by virtue of the particular choice of refinementscheme (full span and
structured mesh) you will always be in a subset of the linearly independent LR Splines, similar to the
subclass of T-splines which are the analysis suitable T-splines [14].
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3 Isogeometric analysis

3.1 The Galerkin finite element method

3.1.1 The variational formulation

Many problems in science and engineering can be addressed by solving avariational problem. Given a
Hilbert spaceV , a continuous, coercive bilinear forma(·, ·) and a continuous linear functionall ∈ V∗,
whereV∗ is the dual space toV , the variational formulation is defined by: findu ∈ V such that such that

a(u, v) = l(v) ∀v ∈ V . (20)

The existence and uniqueness of the solution to this continuous problem is guaranteed by the Lax-
Milgram theorem. The Galerkin Finite Element (FE) approximation to this variational problem may
then be given as follow: Given a finite subspaceVh ⊂ V andl ∈ V∗, finduh ∈ Vh such that

a(uh, vh) = l(vh) ∀vh ∈ Vh. (21)

3.1.2 A priori error estimates

For cases when the bilinear forma(·, ·) is selfadjoint the FE-solutionuh is the optimal approximation
to the analytical solutionu as measured in the “a-norm” (often denoted “energy-norm” symbolized with

E):
||u− uh||E =

√

a(u− uh, u− uh). (22)

If the analytical solution (of a variational problem involving first order differentiation) is sufficiently
smooth, i.e.u ∈ Hp+1, and the FE meshM0 is regular and quasi-uniform, the error in the approximate
FE-solution on a family of uniformly refined meshes{Mk}, is bounded by

||u− uh||E ≤ Chp||u||Hp+1 , (23)

whereC is some problem-dependent constant,h is the characteristic size of the finite elements,p denotes
the highest degree of a complete polynomial in the FE basis and||u||Hp+1 denotes the Sobolev norm of
orderp+ 1.

For problems where the solution is not sufficiently smooth,u 6∈ Hp+1, e.g. problems with singulari-
ties within the solution domain or on its boundary, we have the error bound

||u− uh||E ≤ Chα||u||Hα+1 , (24)

where the value of the non-negative real parameterα depends on how the family of meshes{Mk} are
created. Assume thatλ is a real number characterizing the strength of the singularity. For a sequence of
uniformly, or nearly uniformly, refined meshes we then have

α = min{p, λ}. (25)

Thus, whenλ < p the rate of convergence is limited by the strength of the singularity, and not to the
polynomial order.

3.1.3 Adaptive mesh refinement (AMR)

For classical FEM the main method for obtaining an optimal grid for minimizing the global energy
error (a-norm), has been to do adaptive grid refinement with the aim of obtaining an (quasi) uniform
element error distribution. This approach has shown to be effective in order to eliminate any "pollution"
from singularities in the domain or at the boundary as well as achieving optimalconvergence rates for
problems involving rough right hand sides. Thus, by means of adaptive mesh refinement we may achieve

α = p (26)
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An important step in such adaptive refinement processes isa posterirorierror estimation that provides
a reliable element error distribution, see Ainsworth and Oden [1]. To achieve (quasi) uniform element
error distribution we may subdivide those elements that have an element error that is above the average,
or we may restrict ourself to subdivide those with theβ percent elements with largest error contribution.

In classical FEM, the traditional way of refining a quadrilateral element is by subdivision, i.e. insert-
ing a cross to obtain four new elements. If the aspect ratio (width to length ratio) is undesirable large, one
may extend the algorithm to inserts only a single line, splitting the element into two new elements. This
way of adaptive refinement give raise to so-called “hanging nodes” for which there are several techniques
to reestablish the appropriateC0- continuity.

3.2 The isogeometric finite element method

3.2.1 Spline spaces

In isogeometric FE methods we introduce splines as basis functions. The mostcommon spline bases are
tensor, either defined by B-splines or NURBS. Herein we will use tensor-product B-splines as well as
locally refined B-splines denoted LR B-splines. Given the global knot vectorsΞ = [ξ1, ξ2, ..., ξm+p+1]
andH = [η1, η2, ..., ηn+q+1] and anm×n grid of control pointsCi,j , then a tensor 2D B-splines surface
of polynomial orderp in x-direction andq in y-direction may be written as follows:

F(ξ, η) =

m
∑

i=1

n
∑

j=1

Ci,j Bp,Ξi
(ξ) ·Bq,Hj

(η) (27)

Here, the local knot vectorsΞi andHj are defined as a subsequence of the corresponding global knot
vectorsΞ andH, respectively. The function space we use is given by

Sp,q = span{Bp,i(ξ)⊗Bq,j(η)}
m,n
i=1,j=1 (28)

For LR B-splines, these will instead be defined over a single running global index i using the local knot
vectorsΞi andHi by

F(ξ, η) =

ndof
∑

i=1

γiCiBp,Ξi
(ξ) ·Bq,Hi

(η) (29)

where the regularity is given by the local knot vectors andγi is the weighting factors needed to obtained
partition of unity, see the Section 2. Let the function space spanned by LR B-spline basis functions be
denoted by

Lp,q = span
{

BΞi
(ξ, η)

}n

i=1
(30)

A proper function space for the FE trial functionsvh and the FE test functionswh to achieve a
compatible FE space is as follows:

Vh(Ω) =
{

wh ∈ V(Ω) | wh(F
−1(x1, x2)) ∈ Lp,q(ξ, η)

}

(31)

where the coordinate mapping F is assumed to be an onto and invertible mapping between the parameter
domain denoted bŷΩ and the true domainΩ, i.e. for any(x1, x2) ∈ Ω there exist(ξ∗, η∗) ∈ Ω̂ such that
(x1, x2) = F (ξ∗, η∗).

3.2.2 Convergence rates for splines

Our model problem herein is the Poisson problem for which we have that:

||u− uh||E =
√

a(u− uh, u− uh) = (∇(u− uh),∇(u− uh)) = |u− uh|H1 . (32)

Thus, for our model problem the a-norm is equal to theH1 semi-norm. The a priori convergence estimate
given in Equation (23) is proven to hold for tensor B-splines (or NURBS), see Bazilevset al. [3]. We
conjecture that it also holds for the LR B-splines that we are using herein.Note that we are not actively
using the a priori convergence rates in our adaptive refinement strategies. However, we will in the
numerical studies compare the obtained convergence rates towards the ones given by Equation (23).
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3.2.3 Adaptive refinement of isogeometric finite elements

As shown in Section 3.1.3 by proper adaptive mesh refinement (AMR) we mayutilize the full power of
higher order methods and that is highly relevant for Isogeometric FE-methods. One important application
of LR B-splines is to use them as an enabling technology for achieving optimalconvergence order, i.e.
accurate and efficient FE-models. Herein, our aim is to demonstrate and test the performance obtain by
adaptive refinement using LR B-splines. Thus, we have chosen to investigate this by solving benchmark
problems with known analytical solution — the exact error is thus computable.

The refinement algorithm chosen herein is based on increasing our solution space byβ · ndof new
degrees of freedom for each iteration, whereβ is a prescribed growth parameter. This is achieved by
continued refinement of the elements having the greatest elemental error contribution,ρe, to the global
relative error,ρ

ρe =
||u− uh||E(Ωe)

||u||E(Ωe)
and ρ =

||u− uh||E(Ω)

||u||E(Ω)
=

√

√

√

√

nel
∑

e

ρ2e (33)

Typical we choose5% ≤ β ≤ 20%. Small values forβ gives more accurate refinement process,
whereas larger values result in fewer refinement steps.

Regarding adaptive refinement of isogeometric finite elements there have been some recent attempts
using T-splines and hierarchical B-splines, see [5, 7, 21, 22]. It is common to mark those elements (knot-
span) with highest energy error and subdivide into into four new elementsby inserting a cross (ignoring
large aspect ratio elements for now) through the element center.

As discussed in the previous section, the length of the crossing LR meshlineswill have to be of a
certain length in order to actually split a basis function properly. The actuallength is depending on the
surrounding topology of the mesh, and may split some neighboring elements intotwo new elements.
In order to do a splitting we will need to compute the length of the new knot lines to ensure a proper
meshline extension. This can be extracted by the element to basis function correspondence, which lists
all basis functions which have support on each particular element. This is already available as it is needed
in the assembly of the stiffness matrix, so no extra computations are required.Moreover, this eliminates
the need for expensive topological searches.
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4 Adaptive mesh refinement using LR B-splines

4.1 LR spline refinements

Although Dokkenet al. [6] describe how to manipulate the LR B-splines when inserting knot lines, it is
still up to the implementer to choose exactly which knot lines to use for refinementpurposes. The inserted
knot lines must at least entirely split an existing B-spline, which puts a minimum length requirement on
it. This is to ensure a proper meshline extension which causes a B-spline in a state of having not minimal
support, according to Definition 12. We have several options available when doing the refinement. Not
only the length and the position of the knot lines, but also their multiplicity as splinesin general open for
duplicate knots. We will in the numerical examples investigate how much impact these choices made in
the refinement process have on the properties of the resulting LR B-splines space.

As a starting point for the refinement algorithm we have a list of element error contributionsρe, see
(33). This may be an estimated error based on some a posterior error estimator, or exact error in case
of a known exact solution. For all results presented here, we are usingthe latter. A straightforward
implementation would be to refine theβ percent elements with largest error contribution. However, this
will not suffice for our purposes, since we will be comparing differentrefinement schemes. To ensure
a proper growth of the solution spaceS we propose to continuously insert new knot lines according
to some algorithm until we haveβ percent more B-splines in our spline space. This will ensure that
different refinement schemes are comparable.

To see an example of the converse, consider inserting a new knot in a 1D univariate set of B-splines.
Using multiplicity 1, this will increase your spline space by 1, while using multiplicityp will causep
new B-splines, even though the number of elements refined is the same in both cases.

Definition 18. Therefinement parameterβ of an iterative scheme is defined such that two LR splines
Li andLi−1 satisfy

Li−1 ⊂ Li

(1 + β) |Li−1| ≤ |Li|

Which simply states thatLi should be a refinement ofLi−1 and the number of B-splines (not elements)
should grow by at leastβ percent each iteration.

Assume we have a LR-mesh as given in Figure 17 and we want to refine the elementTe = [2, 4] ×
[1, 2]. To find out what are appropriate LR meshline extensions, we list all B-splines with support on this
element and these are shown in Figure 18 and tabulated in Table 3. An obvious choice when choosing
the refinement line, is to make sure that it is refiningeveryB-spline over that element. This can simply be
done by making it run from the smallestξ-knot value to the largest, and likewise in the other parametric
direction. In this particular case one would then have aξ-line going fromξ = 0 to ξ = 6 with constant
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3

2

1

0

Figure 17: LR-mesh with an element marked for refinement
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Table 3: B-splines with support on[2, 4]× [1, 2] in Figure 17 - 18.

i Ξi × Hi

1 [0024] × [0002]
2 [0245] × [0002]
3 [2456] × [0012]
4 [0024] × [0023]
5 [0245] × [0023]
6 [2456] × [0123]
7 [0024] × [0234]
8 [0246] × [0235]
9 [2466] × [1235]

η = 1.5 such that it passes through the center of the element. For the other parametric line, this would
then have to run fromη = 0 to η = 5 throughξ = 3. This is the "safe" way of refining, as one will have
little reason to prioritize refining some B-splines over others given the limited information available.

However another obvious option also comes to mind. Since we are doinglocal refinement, it is
natural to want the refinement lines to be as local as possible. One might argue that we should insert
the smallest possible line, while still being long enough that it actually splits an entire B-spline. This
information can directly be computed from the local B-spline list in Table 3 as one can iterate through the
list and choose the smallest knot vector and choose this. Note that this comeswith the loss of uniqueness,
since bothΞ1 andΞ3 has parametricξ-length 4 in the above example. We now must decide on whether
to useΞ1 and insert[0, 4] or to useΞ3 and insert[2, 6]. Of course this will have implications on the
resulting spline space, but without more knowledge of the underlying problem, it is not possible to say
which one is advantageous over the other. We thus propose to pick arandomfunction of all the available
with smallest parametric support. Notice again we don’t need any topologicalinformation about the
surrounding mesh topology to insert the knot lines. We are simply extracting every information we need
locally, and the resulting refinement will not yield any more than what is extracted here.

As all generalizations of B-spline spaces, LR B-splines do also allow for duplicate knots. Duplicate
knots work just in the same way as they do for regular tensor product B-splines, in which the B-splines
all have continuityCp−m wherep is the spline polynomial degree andm is the knot multiplicity. We
may choose to insert not regular knot lines, but also knot lines of highermultiplicity. This is obviously a
good idea if we actuallywantthe lower continuity for instance if we either are doing geometry modelling
or if we know something about the underlying problem. However this is not theonly reason to include
the double knot lines. As will become apparent later, this will help us keep therefinement more localized
and reduce the propagation effects.

So to sum up: we have several design parameters when choosing a refinement scheme. We may
choose

• which B-splines with support on the element to refine
• the location of the element split
• the multiplicity of the inserted knot lines

the second point refers to the fact that one doesn’t necessary needto create a cross through the element
centeras described in the example above. There is nothing preventing us from inserting two lines in both
directions through each element, placing them one third from the edge each,effectively splitting the ele-
ment into 9. For this discussion, we will restrict ourself to inserting crossesthrough the element centers.
These are all illustrated in Figure 19 where we refine a shaded element using different techniques.
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(a) B[0024; 0002]
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(b) B[0245; 0002]
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(c) B[2456; 0012]
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(d) B[0024; 0023]

0            1              2              3              4               5            6

5

4

3

2

1

0

(e) B[0245; 0023]
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(f) B[2456; 0123]
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(g) B[0024; 0234]
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(h) B[0246; 0235]
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(i) B[2466; 1235]

Figure 18: All B-splines with support on the element[2, 4]× [1, 2].
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(a) Minimal span refinement - refining B-spline in
Figure 18a
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(b) Minimal span refinement - refining B-spline in
Figure 18c
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(c) Refining all B-splines with support (see Fig-
ure 18)
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(d) Off center line insertion splitting same as in (a)
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(e) Duplicate knot line insertion, splitting the same
as in (a)

Figure 19: Different choices for refining the shaded element.
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4.2 Local refinement strategies for LR B-splines

We will here present three different local refinement strategies that willbe used in our numerical exam-
ples. The starting point for all of these is the assumption that we have identified a set of elements which
needs refinement and proceed to refine these using one of three strategies. The goal is to split the marked
element (knot span) into four new elements by inserting a cross. However, as already discussed, this
cross cannot be limited to only spanning the marked element.

4.2.1 Full span

Our strategy here is to refineeveryB-spline with support on the marked element. The inserted meshline
in theξ-direction will then have to span from the minimumξ-knot to the maximumξ-knot of all functions
with support on the marked element. Likewise for the meshline in theη-direction. The exact length of
the two inserted meshlines are extracted by using the list of element to B-splinescorrespondence.

This strategy will make sure that all B-splines with support on the marked element (knot span) are
treated equally and all of them will be split by the refinement. However, the drawback of this strategy is
that one get a somewhat large footprint. Moreover, the neighbouring elements will be split by a single
line which will in essence double their aspect ratio. This is depicted in Figure 20a where one can clearly
see the rectangular shaped neighbouring elements arising from this strategy.

4.2.2 Minimum span

This refinement strategy inserts a cross through the marked element centerwith the aim of making
the refinement footprint as small as possible. Thus, we want the inserted meshlines to be as short as
possible, but still splitting at least one B-spline. From the list of element to B-spline correspondence we
may deduct which B-splines having the smallestξ- andη-support. Note that this comes with the loss of
uniqueness as there may be several B-splines with the same length of theξ-span, but with different local
origin, i.e. for the B-splinei andj we may haveξip+1−ξ

i
0 = ξjp+1−ξ

j
0 butξi0 6= ξj0 (see Figure 18a - 18c).

This local refinement strategy is depicted in Figure 20b where we have chosen to split only one of the
several available B-splines. Due to the (in general) lack of uniqueness of which B-splines to split, we
will herein propose to do arandomchoice of which B-spline to refine. This will cause properties such
as symmetry to be lost.

4.2.3 Structured mesh

The idea of refining elements is a legacy from the finite element method where every inserted vertex
would correspond to an additional degree of freedom. With LR B-splines this is not the case and as seen
from the two previous schemes the required length of the inserted meshlines may vary from element to
element. Another way of refining LR B-splines is identifyingB-splineswhich needs to be refined as
opposed to whichelements. In the case of the synthetic diagonal refinement problem presented later,
these are easily extracted as all functions along the diagonal that satisfyξi = ηi for i = 0, ..., p + 1.
However, for general isogeometric finite element computations we need a criteria to identify which B-
spline to be refined. We propose the following definition

Definition 19. TheB-spline error is the sum of element error over all supported elements, i.e.

‖e‖2M(Ni)
=

∑

K∈M(Ni)

‖e‖2K (34)

whereM(Ni) is the set of elements on which the B-splineNi is nonzero, and‖e‖K is the usual element
error measured in energy norm,

‖e‖2K = a(u− uh, u− uh)ΩK
(35)

Once the B-splines which are subject to refinement are identified, we proceed to refine these by
inserting a net of knot lines halving the largest supported knot intervals as shown in Figure 21.
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(a) Full span - split all functions on
one element, here only two of all the
nine functions with support on this el-
ement is depicted

000            1               2               3               4             5                6             777

666

5

4

3

2

1

000

(b) Min span - split one random func-
tions on one element, note that for odd
order splines (or by a poor random
pick), the symmetry would be lost
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(c) Structured Mesh - split all knot
spans on one B-spline, notice that no
bad aspect ratio elements are created

Figure 20: The ideas behind the different refinement strategies, here illustrated on a quadratic tensor
product mesh. Notice the fundamental difference in that 20a - 20b is refining an element, while 20c is
refining a B-spline.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 21: Three iterations of an example structured mesh refinement. Noticethat we at each iteration
halve the largest supported elements. A selection of LR B-splines over the mesh from iteration 3 is
depicted in Figure 22

4.2.4 Regularity

We note that just like tensor product B-splines, LR B-splines also allow forduplicate knots. The effects
of duplicate knots is twofold. Firstly it reduces the regularity, such that a knot of multiplicity m will give
rise to aCp−m function across that knot, wherep is the polynomial degree. In addition to the decreased
regularity, one also decreases the support of the function. This will in turn diminish the propagation
effects of the refinement. We will investigate refinement using different regularities.

4.3 Hanging nodes in FEM versus LR B-splines

Adaptive refinement of classical quadrilateral (Lagrange) FE has been achieved by means of many dif-
ferent approaches, e.g: Subdivision of marked

• patch of elements into smaller elements with transition zones to containC0 continuity
• elements into four new elements using multipoint constraints to containC0 continuity
• elements into four new elements using transition elements to containC0 continuity

To give some insight into the developed local refinement strategy using LR B-splines we will below il-
lustrate how it forp = 1 compares to the the concept of using transition elements for adaptive refinement
of FE grid. The comparison is chosen for a basic refinement case and wewould like to emphasize that
adaptive refinement using LR B-splines is in general more versatile than theconcept of using transition
elements.
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(a) (b)

Figure 22: Some example quadratic LR B-splines over the LR mesh from Figure 21c
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Figure 23: The transition element concept: Horizontal split of the centre element into two new elements.

4.3.1 Refinement forp = 1

Assume that we want to divide the centre FE element in the grid shown in Figure23 in two elements by a
horizontal split1. The concept of using transition elements then implies that we to the left and right of the
centre element introduce 5-noded transition elements, see Hughes [10]. In Figure 24 we have displayed
the element nodal shape functions for three of the five nodes. For node1 and 4 the nodal shape functions
for the 5-noded transition element are identical to those for node 1 and 4 for the standard bilinear 4-noded
quadrilateral. However, for node 2 and 3 we have to modify the element nodal shape functions compared
to the 4-noded in order to achieve that the shape function in nodei evaluated at nodej is either equal
to 1 if i = j or equal to0 if i 6= j. Finally the element shape function for the new inserted node 5
is as displayed in Figure 24c. It is easy to verify thatC0-continuity is attained for the refined FE grid
displayed in Figure 24.
To achieve the same refinement using LR B-splines we would insert a horizontal meshline as displayed
in Figure 25. The nodal basis functions corresponding to those in Figure24a–24c are displayed in the
Figures 26–28, respectively. The leftmost column is showing an alternative way of plotting LR B-splines
and is to be understood in the following way. Each continuity reduction line i.e. the LR meshlines, is
plotted. For each B-spline we plot an ellipse with center at the Greville point (average value of the
local knot vector) and with a size corresponding to the size of the support of that particular B-spline.

1A horizonal split is chosen for simplicity instead of a cross, but the this comparison apply for a cross as well.
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(a) Element nodal shape function for
element node 4 is unchanged
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(b) Element nodal shape function for
node 3 is modified
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(c) Element nodal shape function for
the inserted node 5

Figure 24: The transition element concept: The 5-noded transition element and its element nodal shape
functions.
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Figure 25: LR B-spline refinement: Inserting a horizontal meshline in orderto to split the centre element
into two new elements.

Furthermore, we have shaded the ellipse for the particular B-spline which isshown, as well as the support
of that function.

The discrete function space after refinement is identical for the FE and LRB-spline case. The only
difference is that we in the LR B-spline case get three more elements, whereas for the FE case we only
get one new element. However, notice that we in Figure 23 have stipulated thetransition elements to
indicate that one should treat them as two elements when performing numericalintegration. The reason
being that the element nodal shape functions 2, 3, and 5, are not infinitelysmooth across the stipulated
line (they are onlyC0). Thus, in practice we need to do the same amount of work related to numerical
integration for both the FE and LR B-spline case.
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(c) Perspective view

Figure 26: B-splineB[135; 579].
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(c) Perspective view

Figure 27: B-splineB[357; 679].
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(c) Perspective view

Figure 28: B-splineB[357; 567].
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4.3.2 C0-Refinement forp = 2

To make a comparison between classical Lagrange functions and LR splineswith p = 2, we must
considerC0 elements. This is perfectly possible by using double knot lines, which is donehere. The
example mesh is taken from the diagonal refinement case forp = 2 andm = 2 which is going to
be discussed in the Section 5.2. We see that the Greville points forp = 2 do in fact line up with the
traditional way of drawing Lagrangian biquadratic finite element nodes. Wehave the usual 9 nodes for
each element, provided that there are no hanging nodes nearby. Note however that the basis functions
themselves are different. LR B-splines are non-negative, while Lagrange functions do take negative
values. Nevertheless, they have the same support, and we see that around the hanging nodes, the basis
functions vanish. This is equivalent to setting multipoint-constraints on these nodes, effectively removing
them as a degree of freedom. This is can be seen in Figure 29 - 33, whereseveral of the B-splines are
shown. Also note that there is no upper bound on the number of hanging nodes on a single element, as
several elements have 2 hanging nodes in this example.

It is interesting to see that one might recreate the Lagrangian function space, also with hanging nodes.
However it is important to note that this is something that we in general will not tryto do. Doing this
causes us to loose the smoothness which is characteristic of all spline spaces, and this is a property which
we would like to preserve.
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Figure 29: B-splineB[0448; 0448]
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Figure 30: B-splineB[4488; 0004]
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Figure 31: B-splineB[4488; 0044]
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Figure 32: B-splineB[0224; 2448]
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Figure 33: B-splineB[2448; 0044]

36



5 Numerical Results

5.1 Preliminaries

To demonstrate the performance of adaptive refinement using LR B-splines, we study one synthetic case
and two Poisson type problems with known analytic solutions. The synthetic case denotedDiagonal Re-
finementis chosen as it illustrates very well the spreading effect of the refinementschemes and has been
addressed by other researchers in the isogeometric community ([5, 7, 13]). The first Poisson example
denotedL-shapeis chosen as it has a point singularity at the boundary that causes reduced convergence
rate when performing uniform refinement. Whereas the next Poisson problemInterior Layerhas a rough
right hand side that impose a sharp layer along a circular arc in the interior of the domain. The asymptotic
convergence rate is here suboptimal for uniform refinement until the uniform element sizeh becomes
smaller than a threshold given by the width of the interior layer.

The aim of the numerical experiments herein is to investigate whether adaptiverefinement using LR
B-splines achieves optimal convergence rate for non-smooth problems such that it gives better accuracy
per dof compared to uniform refinement. Thus, the adaptive strategy is based on refining a prescribed
portion of the the elements, i.e.β ·nel having the greatest elemental contribution,ρe to the global error,ρ
in order to achieve uniform element error distribution. Furthermore, we want to investigate the sensitivity
in accuracy and convergence rates towards relevant parameters e.g.polynomial orderp, regularityCr and
local refinement strategies.

All the cases are analysed with LR B-splines of polynomial orderp = 2, 3, 4. We have performed
the tests with different regularity,Cr, were0 ≤ r ≤ p − 1, obtained by using multiple knot lines. The
multiplicity m = 1 corresponds to maximum regularityr = p−m = p− 1 whereasm = p corresponds
to minimum regularityr = p −m = 0. We have used two different local refinement strategies denoted
full spanandstructured mesh.

For the synthetic caseDiagonal Refinementwe present the following results:

• Refined grids: Representative examples of refined grids
• Tables showing the number of dofs and elements for each refinement step
• Graphs showing the relation between number of elements and number of dofs

For the two Poisson cases (L-shapeandInterior Layer) we present the following results:

• Convergence plot: Log of relative error vs log of number of degrees of freedoms (ndof)
• Refined grids: Representative examples of refined grids
• Error distribution: Elemental contribution,ρe, to the total errorρ
• Root mean square error of the element error distribution

The exact errore = u−uh is measured in the energy norm (a-norm)||e||E as given in Equation (22).
Let ||e||E(Ω) and||e||E(Ωe) be the global and element error, respectively. Then we define the rootmean
square of exact element error:

||e||RMS =

(

1

nel

nel
∑

e=1

(||e||E(Ωe) − ||e||avg)
2

)1/2

/||e||avg (36)

where the average exact element error is defined as

||e||avg =
1

nel

nel
∑

e=1

||e||E(Ωe) (37)

The quantity root mean square of exact element error given in Equation (36) measures the deviation
from an uniform element error distribution. For uniform element error distribution we have||e||RMS = 0.
Thus, we refer toasymptotically optimal mesh refinement(see Kvamsdal and Okstad [12]) as a sequence
of meshes satisfying

lim
h→0
||e||RMS = 0 (38)
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 34: The Diagonal Refinement problem:Full spanandstructured meshrefinement strategy using
single knot lines and bicubic B-splines. Note that in the special case of diagonal refinement, these
strategies coincide completely

5.2 Diagonal refinement

As an introductory example we look at the diagonal refinement. This example highlights some of the
problems that local refinement strategies face since the request for refinement is in conflict with the
parametrization direction. With the parametrization being parallel to the coordinate axes, and the diago-
nal 45 degrees on this, one will have to refine both parametric directions equally. Dörfelet al. [7] showed
that under T-spline refinement this could provoke a worst-case scenario where the mesh lines propagate
through the entire domain.

We will here present three different refinement strategies for this particular problem and analyse the
resulting spline space resulting from these. The starting point for all of these is the assumption that we
have identified a set of elements which needs refinement (here: the diagonal elements) and proceed to
refine these using one of three strategies.

As discussed already, every inserted mesh line must at least span the support of at least one basis
function. Thus it is in general not possible to only insert a single cross through one element when
refining. If the inserted knot lines are limited to that element, then they will in general not be long
enough to traverse the entire support of a basis function.

5.2.1 Results

Several refinement strategies was tested to see their performance on this benchmark test for local refine-
ment. The setup was usingp = 3 in each parametric direction and trying to refine the elements along the
diagonal. No a priori knowledge on the problem was used as the input wasjust a given set of elements
to be refined on a general LR B-spline. The first strategy that we tested was thefull spanstrategy which
for all tagged elements, chooses to refine all B-splines with support on that element. To accomplish this,
we need a rather long mesh line in bothξ- andη-direction. Thus the characteristic propagation effect is
rather large as can be seen in Figure 34 where several steps of the refinement process have been illus-
trated. Even if the propagation is clearly apparent, the refinement is still very much contained in a band
along the diagonal and global refinement is avoided.

The diagonal test case is very exceptional in the sense that bad aspectratio elements that are char-
acteristic of thefull span refinement are all canceled out by the next level on the diagonal. Thus the
full spanstrategy produces identical meshes as thestructured meshstrategy. However, the differences
between these two strategies become apparent when they are used in an adaptive refinement process as
shown in the next two subsections.

The final option is theminimum spanrefinement. Due to the fact that this picks a random function we
introduce stochastic effects in our refinement strategy and things such assymmetry is in general lost. It
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 35: The Diagonal Refinement problem:Minimum spanrefinement strategy using single knot
lines.

(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 36: The Diagonal Refinement problem:Minimum spanrefinement using double knot lines.

does however turn out to be more local than in the previous two cases. Theresults of a series of iterations
using this refinement strategy is plotted in Figure 35. Note that after the first refinement, not a single
line is added to the top left and bottom right portion of the mesh. This is due to the interpolatory basis
functions at the edge which only span one element. Since the algorithm compares meshline lengths, it
will always favor crossing zero-span elements such as the ones locatedat the edges.

Although the latter refinement strategy does indeed reduce the effect of propagation, it is still appar-
ent. Inspired by similar results for T-splines [5], we now test duplicate knot lines. The effect of splitting
the elements using both double and triple knot lines is here shown in Figure 36 and 37. The results are
quite promising as the triple knot line insertion removesall propagation into neighbouring elements. It
is kept perfectly local and results in a very good mesh. One thing to keep in mind though when inserting
duplicate knots is that each B-spline is splitted into more than two new B-splines. This results in a larger
growth of the total number of B-splines than when using single knot lines. Soeven if the mesh seems
tighter, or more compact, Figure 37 contains more B-splines than the mesh in Figure 35.

The correspondingindexmesh to Figure 36-37 is given in Figure 38-39. Notice the high aspect ratio
of some of the elements in Figure 35 and to a lesser degree in 36. This is a side effect which happens
when inserted knot lines are traversing neighbouring elements and is not restricted to the element being
refined. Of course, it is possible to combat this effect by recursively inserting more lines to compensate
for this aspect ratio, but that would be in contrast with what we are trying toachieve here, which is to
keep the refinement as local as possible.
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 37: The Diagonal Refinement problem:Minimum spanrefinement using triple knot lines.

(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 38: The Diagonal Refinement problem: Index domain forminimum refinementusing double knot
lines.

5.2.2 Degrees of freedom versus elements

From the numerical experiments we observe that the number of basis functions (i.e. dofs) versus number
of elements varies significantly with the regularity. If we compare the mesh usingsingle knot line refine-
ment (C2-refinement) in Figure 35 with the mesh using triple knot lines refinement (orC0-refinement) in
Figure 37 we get the numbers displayed in the Table 5. The most refinedC0-mesh is containing approx-
imately 5 times as many degrees of freedom andlessthan half the number of elements when compared
with the most refinedC2-mesh.

We may take a deeper look into exactly how much this effect is apparent by plotting the number of
basis functions and elements for our diagonal refinement case. We compare the minimum span refine-
ment using single, double and triple knot lines. The results are given in Table 5. We see a clear tendency
that theC0 refinement keeps above 7:1 ratio between the number of degrees of freedom and the number
of elements, whereas for the C2-refinement the ratio is dropping below 1:1 for the most refined grid.

For any univariateCr-regular B-spline basis we note thatnel elements gives

ndof = nel(p− r) + r − 1 (39)

wherep is the polynomial order and the knot multiplicity ism = p− r. For a tensor product spline with
n2
el elements it is clear that this givesn2

dof = ((p− r)nel)
2 +O(nel). For our particular (minimum span)

case we havep = 3 andr = 0, 1, 2 and it seems reasonable thatndof is approximately8 times larger than
nel for C0 and a factor0.6 for C2 at the most refined grid. We see that LR B-splines shows a somewhat
similar growth of basis function to elements as regular tensor product B-splines does. This is shown in
Figure 40 where the tabulated values are plotted.
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(a) 1st refinement (b) 3rd refinement (c) 5th refinement

Figure 39: The Diagonal Refinement problem: Index domain forminimum refinementusing triple knot
lines.

Table 4: The Diagonal Refinement problem: Number of elements vs degreesof freedom using thefull
spanstrategy.

refinement count C2-elements C2-DOFs C1-elements C1-DOFs C0-elements C0-DOFs
1 4 25 4 36 4 49
2 16 49 16 100 16 169
3 64 121 46 220 46 439
4 196 253 112 452 112 1009
5 496 505 250 908 250 2179
6 1132 997 532 1812 532 4549
7 2440 1969 1102 3612 1102 9319

For the solution of stationary problems such as the ones considered in this paper this doesn’t have too
many implications. However, for the solution of a time-dependent non-linear elasticity problem, where
the global coefficient (stiffness) matrix must be assembled for each iteration, this might be a drawback.
The cost of numerical integration (by Gaussian quadrature) is dominated by the number of Gaussian
integration points and hence the number of elements. Due to this huge discrepancy between the number
of dofs and the number of elements, one might argue that measuring convergence rates and running time
should no longer be plotted as a function of dofs, but rather as a functionof elements. For our purposes
however we note that the bottleneck is still the solution of the linear system of equations, and hence we
keep the convergence plots with dof along the x-axis.
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Table 5: The Diagonal Refinement problem: Number of elements vs degreesof freedom using the
minimum spanstrategy.

refinement count C2-elements C2-DOFs C1-elements C1-DOFs C0-elements C0-DOFs
1 4 25 4 36 4 49
2 10 31 10 60 10 103
3 26 47 26 124 22 199
4 66 87 66 248 46 379
5 198 191 150 484 94 727
6 506 364 325 956 190 1411
7 1215 747 682 1904 382 2767

1 2 3 4 5 6 7
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Degrees of freedom vs Elements ratio

 

 
m=1      
m=2      
m=3      
m=1      
m=2      
m=3      

Figure 40: The Diagonal Refinement problem: Ratio of degrees of freedom versus elements using
both full span(squares) andminimum span(stars) local refinement strategy. For tensor product bicubic
splines, we have the asymptotic limit of 9 form = 3, 4 form = 2 and1 for m = 1, see Equation (39).
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5.3 L-shape

5.3.1 Problem definition

The problem consist of solving the stationary heat equation, or Laplace equation∇2u = 0 on a L-shaped
domainΩ = [−1, 1]2 \ [0, 1]2 with appropriate boundary conditions, see Figure 41.

∇2u = 0 in Ω
u = 0 on ∂ΩD

∂u
∂n = g on ∂ΩN

(40)

with g(x, y) given by the exact solution at the Neumann edge andn being an outward unit normal. It
can be shown that

uex(r, θ) = r2/3 sin

(

2θ + π

3

)

(41)

is a solution to the Laplace equation∇2u = 0, and this is what we will be using as our analytical
solution. The generation ofg is straightforward fromuex but is not given as a simple expression and the
details are omitted here. The homogeneous Dirichlet boundary condition is given aty = 0, x ∈ [0, 1]
andx = 0, y ∈ [0, 1], while all other edges are given with Neumann conditions (see Figure 41a). Note
that the exact solution, which is pictured in Figure 41b exhibit a singularity atthe origin. The function
has a sharp edge at that point, and the derivative is not well defined there.

In Figure 42 we see that the convergence for uniform mesh refinement islimited by the strength of
the singularity, i.e. the convergence rate is equal to−q/2 = −1/3. For problems where the solution
is not sufficiently smooth,u /∈ Hp+1, as the L-shape with a singular point on its boundary, we do not
obtain optimal convergence. In particular, the use of high order polynomials is then inefficient.

5.3.2 Results

In Figure 42 we show the results obtained by adaptive refinement using LRB-splines. The results are
displayed using different polynomial orderp = {2, 3, 4}, portion of refinementβ = {5, 20}, multiplici-
ty/regularitym = {0, p− 1} and local refinement scheme.

The main observation is that we achieve optimal asymptotic convergence rate (valid for (quasi) uni-
form element error distribution), i.e.−q/2 = −p/2 = {−1,−3/2,−2} for p = {2, 3, 4}, respectively.

We clearly see that high regularity (i.e. low multiplicity) is efficient when we compare relative error
versus number of degrees of freedom. At first glance this seems odd, as the L-shape is one of the bench-
marks for demonstrating the need for local refinement. Moreover, in the above example we concluded
that the "perfect" local refinement was the one which introducedp − 1 multiple knot lines as this did
not propagate at all. However, introducing double knot lines will split each basis function intothreenew
functions, as opposed to inserting a single knot line for splitting it into two. Fortriple knot lines this will
of course split each function into four new ones. This means that the multiple knot line insertion actually
gives a faster growth of the degrees of freedom. Furthermore, we seethat the convergence results are
more sensitive to the tested variation of local refinement strategies for higher polynomial orderp and
higher percentage of elements added in each refinementβ. Notice that for(p,m) = (4, 1) thestructured
meshrefinement gives a higher error than for thefull spanrefinement strategy. Furthermore, from our
experiments we saw that forβ = 50 we did not always obtain optimal convergence rate, i.e. the value of
β should not be chosen too large.

The resulting grids are different for the different local refinement strategies. This is illustrated in the
Figures 43–45 where we have displayed the effect on the refined grid using different local refinement
strategies. As can be seen in the two Figures 43 and 44 thefull spanmethod have more elements with
high aspect ratios than thestructured meshmethod, but the latter one give a more widespread stepwise
uniform refinement towards the singularity point. However, when terminatingat 3300 dofs, the two
methods produce quite similar global energy error. In general, the two different refinement strategies are
both able to refine sharply around the origin where the singularity appears.
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(0,1)

(1,0)

(-1,-1) (1,-1)
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Ω∂ΩN

∂ΩN

∂ΩN

∂ΩN

∂ΩD

∂ΩD

(a) The domainΩ and the boundary conditions (b) The exact solution, see Equation (41)

Figure 41: The L-shape problem: A Poisson problem with a singularity pointon the boundary.

In Figure 46 we have displayed the root-mean square of the exact elementerror (in % measuring the
deviation from uniform error distribution) versusndof obtained for uniform refinement using B-splines
and adaptive refinement using LR B-splines. We see immediately that for the uniform refinement using
B-splines the root mean square for the error distribution increases with number of uniform refinements.
This is as expected as the error in the vicinity of the singularity point will be moreand more dominant
with uniform refinement. The highly non-uniform error distribution is consistent with the observed
reduced convergence order in Figure 42. For the adaptive refined grids we see that forp = 2 therms
of the error distribution reduces in the first refinement steps and than becomes more or less constant
rms = 5 − 8 · 10−1. As discussed in the paragraph above the lack of sufficient refinementaround the
singularity point prevent therms to approach to zero. However, the values obtained may be classified as
quasi-uniform, i.e. therms is bounded when increasingndof. Forp = 3 we see that therms-values are a
bit higher (around 1) and more differences between the different local refinement strategies. The results
for p = 4 is even more spread and in particular forβ = 20 we observe that therms-values are slightly
non-decreasing. This is consistent with the observation made above, i.e. that forp = 4 we get noticeable
higher error forβ = 20 than forβ = 5, see Figure 42 f). Notice that the local refinement strategyfull
spanhave the lowestrms-value in all cases! Furthermore, that low multiplicity (i.e.m = 1) gives lower
rms-values forfull spanthan for high multiplicity, but this is not always the case for thestructured mesh
method.
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(a) p = 2, β = 5
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(b) p = 2, β = 20
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(c) p = 3, β = 5
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(d) p = 3, β = 20
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(e) p = 4, β = 5
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(f) p = 4, β = 20

Figure 42: The L-shape problem: Relative global errors (in %) (measured in the a-norm) versusndof

obtained for uniform refinement using B-splines and adaptive refinements using LR B-splines. The
dotted lines are the suboptimal convergence rateO(n−1/3

dof ) valid for (quasi) uniform refinement and
the optimal asymptotic convergence rates (valid for (quasi) uniform elementerror distribution)O(n−1

dof),

O(n
−3/2
dof ),O(n−2

dof) for p = {2, 3, 4}, respectively.
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 43: The L-shape problem: The 3rd adaptively refined gridM3 obtained by using LR B-splines
with different polynomial degreesp = {2, 3, 4} and local refinement strategies, but same multiplicity
m = 1 andβ = 5 (notice thatβ is denotedb in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 44: The L-shape problem: The 12th adaptively refined gridM12 obtained by using LR B-splines
with different polynomial degreesp = {2, 3, 4} and local refinement strategies, but same multiplicity
m = 1 andβ = 5 (notice thatβ is denotedb in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 45: The L-shape problem: The final adaptively refined gridMn obtained by using LR B-splines
with different polynomial degreesp = {2, 3, 4} and local refinement strategies, but same multiplicity
m = 1 andβ = 5 (notice thatβ is denotedb in the subfigure captions).
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(a) p = 2, β = 5
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(b) p = 2, β = 20
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(c) p = 3, β = 5
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(d) p = 3, β = 20
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(e) p = 4, β = 5
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(f) p = 4, β = 20

Figure 46: The L-shape problem: Root-mean square of exact element error (in %) (measuring the devi-
ation from uniform error distribution) versusndof obtained for uniform refinement using B-splines and
adaptive refinement using LR B-splines. Results displayed forp = {2, 3, 4} (from top to bottom) and
β = {5, 20} (left to right).
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5.4 Interior layer

5.4.1 Problem definition

The next test problem is a Poisson problem on a unit square with a sharp interior layer due to a highly
varying right hand side (volumetric forcing). The problem is given as

∇2u = f(x, y) in Ω
u = uD(x, y) on ∂ΩD

∂u
∂n = g(x, y) on ∂ΩN

(42)

and has an exact solution given by

u(x, y) = arctan
(

S(
√

(x− 1.25)2 + (y + 0.25)2 −
π

3
)
)

. (43)

Note that the right hand sidef(x, y) is generated by taking the Laplacian (∇2) of the analytical solution
given in Equation (43) and similarlyg(x, y) is found by taking normal derivative, i.e.∂u∂n , of the analytical
solution. The analytical solution depicted in Figure 47b displays a "front"-type of behavior where the
solution is rapidly changing across a circular band through the domain. Thisproblem is mathematically
smooth i.e.u ∈ Hp+1(Ω) for any finite p. However, due to the highly varying right hand side we
may only expect optimal convergence order when the element sizeh is less than a given threshold that
depends on the sharpness/bandwith of the interior layer. Hence, we may expect suboptimal convergence
rate for uniform mesh refinement when the mesh is not fine enough.

In Figure 48 we see that the convergence for uniform mesh refinement islimited by the low regularity
of the right hand side, i.e. the convergence rate is equal to−q/2 = −1/2. However, we see that for
refined grids with small enough element sizeh . 1/40 (i.e.ndof & 1600) we obtain optimal convergence
order. Thus, our refinement goal is here to resolve the interior layer asadequately as possible in order to
obtain optimal convergence order, in an adaptive grid refinement process towards a global solution of a
certain accuracy measured in the a-norm.

5.4.2 Results

In Figure 48 we show the results obtained by adaptive refinement using LRB-splines. The results
are displayed using different polynomial orderp = {2, 3, 4}, portion of refinementβ = {5, 10, 20},
multiplicity m = {0, p− 1} and local refinement strategy.

The main observation is that we achieve optimal convergence rate, after some refinements, i.e.
−q/2 = −p/2 = {−1,−3/2,−2} for p = {2, 3, 4}, respectively. However, we see that for high
polynomial order (p = {3, 4}) we need more refinements than for low order to obtain optimal conver-
gence rate. Furthermore, forp = 4 we observe some “extra” refinement along the Dirichlet boundary
due to the fact thatu /∈ Sh. Compared to uniform refinement the errors for adaptive refined meshes using
LR B-splines are about 10 times lower. The sharper the interior layer, the more pronounced this error
difference will become.

We clearly see that high regularity (i.e. low multiplicity) is efficient when we compare relative error
versus number of degrees of freedom. Furthermore, we see that the convergence results are not sensitive
to variation ofβ, whereas local refinement strategies have some influence for high polynomial order.

The resulting grids are different for the different local refinement strategies. This is illustrated in the
Figures 49–51 where we have displayed the effect on the refined grid using different local refinement
strategies. As seen, the LR B-splines makes it possible to refine sharply in the vicinity of the interior
layer. Furthermore, we may see from the two Figures 49 and 50 that thefull spanmethod have more
elements with high aspect ratios than thestructured meshmethod, whereas the latter one gives a more
widespread uniform refinement on subdomains along the interior layer. Inparticular, the differences are
pronounced at theM3 grid. However, at aboutndof = 3000 the two methods produce quite similar
global energy error. Notice, that the final grid forp = 4 shows extra refinement along the Dirichlet part
of the boundary due to the fact that the inhomogeneous Dirichlet boundary conditions are approximated.
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(a) The domainΩ and the boundary conditions (b) The exact solution, see Equation (43)

Figure 47: The Interior Layer problem: A Poisson problem with rough right hand side.
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(a) p = 2, β = 5

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

n

‖e
‖

Energy norm vs degree of freedom

p=2, β=20%

 

 

Mult=1,Full span
Mult=2,Full span
Mult=1,Structured
Mult=2,Structured
Mult=1,Uniform
Mult=2,Uniform

(b) p = 2, β = 20

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

n

‖e
‖

Energy norm vs degree of freedom

p=3, β=5%

 

 

Mult=1,Full span
Mult=3,Full span
Mult=1,Structured
Mult=3,Structured
Mult=1,Uniform
Mult=3,Uniform

(c) p = 3, β = 5
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(d) p = 3, β = 20
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(e) p = 4, β = 5
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(f) p = 4, β = 20

Figure 48: The Interior Layer problem: Relative global errors (in %) (measured in the a-norm) ver-
susndof obtained for uniform refinement using B-splines and adaptive refinements using LR B-splines.
The dotted lines are the optimal asymptotic convergence rates (valid for (quasi) uniform element error
distribution)O(n−1

dof),O(n
−3/2
dof ),O(n−2

dof) for p = {2, 3, 4}, respectively.
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 49: The Interior Layer problem: The 3rd adaptively refined gridM3 obtained by using LR
B-splines with different polynomial degreesp = {2, 3, , 4} and local refinement strategies, but same
multiplicity m = 1 andβ = 5 (β is denotedb in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 50: The Interior Layer problem: The 12th adaptively refined gridM12 obtained by using LR
B-splines with different polynomial degreesp = {2, 3, 4} and local refinement strategies, but same
multiplicity m = 1 andβ = 5 (β is denotedb in the subfigure captions).
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(a) (pmsb) = (2,1,0,5) (b) (pmsb) = (2,1,2,5)

(c) (pmsb) = (3,1,0,5) (d) (pmsb) = (3,1,2,5)

(e) (pmsb) = (4,1,0,5) (f) (pmsb) = (4,1,2,5)

Figure 51: The Interior Layer problem: The final adaptively refined grid Mn obtained by using LR
B-splines with different polynomial degreesp = {2, 3, 4} and local refinement strategies, but same
multiplicity m = 1 andβ = 5 (β is denotedb in the subfigure captions).

55



6 Conclusions

In this paper we have investigated adaptive refinement in isogeometric analysis using LR B-splines. Tra-
ditional tensor product B-splines lack the ability of local refinement which isneeded in order to achieve
optimal convergence order in real world applications. In particular, higher order isogeometric meth-
ods based on tensor product B-splines are not able to exploit the full potential offered by isogeometric
analysis when applied to problems involving singularities or rough right handsides.

Herein, the newly developed LR B-splines have been applied as adaptiverefinement in isogeometric
analysis. Different local refinement strategies has been proposed and implemented in the object oriented
codeIFEM.

We have performed an extensive set of numerical tests to investigate the performance of using LR
B-splines to achieve accurate results measured in energy norm (a-norm)and optimal convergence rates
for the classical benchmark tests L-shape and Interior Layer. The results are very good and we achieved
optimal convergence rates for both test cases, and the sensitivity towards different choices of local refine-
ment strategies and prescribed portion of refinement was moderate. Furthermore, high regularity gives
less error versus degrees of freedoms compared to low regularity (fora given polynomial order) in all
cases.

We conjecture that the application of the full span and structured mesh refinement strategies, both
generates a subclass of LR B-splines that are linearly independent, omittingthe need for linear indepen-
dence testing. No linearly dependent mesh has been discovered while using these strategies. The proof
for this is left as a topic for future investigation.

We think the LR B-splines may serve well as a framework for adaptive isogeometric methods as
they are both versatile and manageable with regards to development of general purpose finite element
software. The framework open new vistas for interoperable CAD and FEA systems, and more research
and developments should be pursued to fully exploit these possibilities.
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