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Abstract. This paper considers a vessel pickup and delivery problem
that arises in the case of disruptions in the supply vessel logistics in the
offshore oil and gas industry. The problem can be modelled as a multi-
vehicle pickup and delivery problem where delivery orders are trans-
ported by supply vessels from an onshore supply base (depot) to a set
of offshore oil and gas installations, while pickup orders are to be trans-
ported from the installations back to the supply base (i.e. backload). We
present both an arc-flow and a path-flow formulation for the problem.
For the path-flow formulation we also propose an efficient dynamic pro-
gramming algorithm for generating the paths, which represent feasible
vessel voyages. It is shown through a computational study on various re-
alistic test instances provided by a major oil and gas company that the
path-flow model is superior with respect to computational performance.
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1 Introduction

Norway is a major oil and gas producer with a total petroleum production of
about 230 million Sm3 (standard cubic meters) in 2015 ([8]). This production
takes place from offshore installations on the Norwegian continental shelf with
about 60 oil and gas fields. To ensure continuous production, the offshore in-
stallations are supplied with different equipment and material by specialized
offshore supply vessels (OSVs). The OSVs represent one of the largest cost ele-
ments in the upstream supply chain, where the annual costs of one OSV amount
to millions of USDs.

The oil and gas companies operating on the Norwegian continental shelf
usually have a long-term plan for supplying its offshore installations, where a
set of voyages are to be sailed on a weekly basis by a given chartered fleet of
OSVs. A voyage performed by an OSV starts at the onshore supply base, then
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Fig. 1. Illustration of a weekly plan including three OSVs (Star, Symphony and Fore-
sight) and five offshore installations (GRA, BID, DSD, BRA, HAD). Each voyage is
represented by a rectangle, where the shaded area represents the time at the supply
base. ([10])

the OSV visits and services a set of offshore installations in a pre-determined
sequence, before returning to the supply base. In addition to bringing all types
of products that are needed to the offshore installations, the OSVs also carry
backload from the installations to the supply base. Each voyage is scheduled to
take two or three days and each OSV usually completes two or three voyages
each week. Figure 1 illustrates a weekly plan where three OSVs are scheduled
to visit five installations.

The offshore installations are located in a part of the world where weather
conditions can be harsh, especially during the winter season. Sometimes wave
heights may limit both an OSV’s sailing speed and its ability to perform unload-
ing/loading operations at the installations. Another major source of disruptions
to the plan comes from unexpected orders or extra high demand from the off-
shore installations, which especially occurs after periods with bad weather where
the installations have not been serviced for some days. To mitigate the effects of
these disruptions, the planners may have to deviate from the planned voyages
and re-route the OSVs. They also have the possibility to charter an extra OSV
from the spot market to handle the disruptions, though at a very high cost.

In this paper we study the problem of how to determine the OSV voyages
for the next days after a disruption has occurred. The goal is to return to the
long-term plan before the next voyage is planned to start for each OSV. Using
the example from Figure 1, suppose that the planner on Monday morning recieve
reports saying that the weather will be bad for the next two days, resulting in
increased sailing and service times at the offshore installations. The planner then
needs to determine how to adjust the next voyage for the OSVs Star (starting on
Monday) and Symphony (starting on Tuesday) so that they hopefully can start
on their next voyages on Thursday and Friday, respectively. These decisions affect
both the service level perceived by the offshore installations, in case of delays in
their services, and the sailing and chartering costs. Hence, the objective of the
problem is to minimize these costs, while at the same time maintain a sufficient
service level to the offshore installations and avoid delays of the OSVs that cause
knock-on effects to the long-term plan.

Several papers address routing in the upstream supply chain for the offshore
oil and gas industry. [5] study a pickup and delivery problem that arises in the
service of offshore installations in the Norwegian Sea. Unlike the problem studied
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in this paper, they consider the routing of only one OSV. [11] extend the problem
by taking into account demands for multiple commodities and the stowage of
these commodities in dedicated compartments onboard the OSVs. They present
a mathematical model of the problem and a heuristic to provide high quality
solutions in a short amount of time.

As we can see in Section 2, the problem studied in this paper can be mod-
elled as a multi-vehicle pickup and delivery problem where the delivery orders
are transported from the supply base and the pickup orders (i.e. backload) are
returned to the depot. The offshore installations might be visited once or twice,
either conducting pickup and delivery simultaneously or at different points in
time, possibly by different OSVs. Using the classification proposed by [1], our
problem can be viewed as a special version of the 1-M-1|P-D|m, i.e. a one-to-
many-to-one pickup and delivery problem with multiple vehicles. Problems of
this type have been studied in the literature, though in very different contexts
than ours. [3] studies a problem arising in reverse logistics, and, as this paper,
propose both an arc-flow and path-flow model for the problem. [9] studies the
same problem, but also takes into account time limits on the vehicles. However,
in contrast to our problem neither allow customers to be visited twice and they
do not consider the possibility of chartering an extra vessel/vehicle.

Relatively few studies regarding disruption management in ship routing exist,
and to the authors’ knowledge there exist no publications on disruption man-
agement in offshore supply logistics. However, in container liner shipping there
exist a few studies, such as [2], which consider the vessel schedule recovery prob-
lem. Different recovery actions are proposed in the case of disruptions, such as
increasing speed, canceling deliveries, and swapping port visits. A model consid-
ering sailing costs, delays, and misplaced cargo is presented, and it is run with
data from real life cases. [7] proposes a mathematical model for simultaneous
rescheduling of ships and cargo in a container liner network. Poor weather con-
ditions, port congestion, low port productivity, towage, tidal windows, and sev-
eral other sources of disruptions are mentioned. The model’s suggested recovery
actions include changing the departure or arrival time at ports, transshipment
of cargo between ports, and speed adjustments. The possible measures to handle
disruptions in [2] and [7] are to some extent the same as the ones available in our
problem, such as canceling orders and re-routing. However, increasing speed to
reduce delays will be less effective in our problem due to shorter sailing distances
and is therefore not included, while the possibility of chartering additional OSVs
from the spot market is an additional option available in offshore supply.

The contribution of this paper is to propose and test two mathematical mod-
els of the problem, i.e. an arc-flow and a path-flow model. For the path-flow model
we also propose an efficient dynamic programming algorithm for generating the
paths (feasible OSV voyages). It is shown that the path-flow model is superior
to the arc-flow model with regards to computational performance.

Section 2 provides a formal description of the problem together with an arc-
flow and a path-flow model of the problem. The dynamic programming algorithm
for generating all feasible paths are presented in Section 3, while computational
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experiments are shown in Section 4. Finally, some concluding remarks are given
in Section 5.

2 Problem description and mathematical models

The problem studied in this paper can be formulated on a graph G = (N ,A).
At a given point in time there are n cargoes that must be transported from
the onshore depot to different offshore installations, while at the same time m
cargoes need to be transported from (possibly different) installations and back
to the onshore depot. The set of nodes N = {0, ..., n+m+1} contains two nodes
representing the onshore supply depot (nodes 0 and n+1) and one node for each
cargo to be picked up or delivered. The set N can be divided into the set NP =
{1, ..., n} containing all pickup nodes, and the set ND = {n + 2, ..., n + m + 1}
containing all delivery nodes. We use the term sibling nodes to denote a pickup
and a delivery node that is associated with the same offshore installation. The set
of arcs A consists of arcs between all node pairs, with the following exceptions:
there are no arcs entering node 0, no arcs leaving node n + 1, and for sibling
nodes there are no arcs from the pickup node to the delivery node since it is
always preferable to deliver before picking up at an installation.

Each cargo occupies a given number of square meters on the deck of an OSV,
and for each node i ∈ ND we denote this area Di, while for each node i ∈ NP

we denote it Pi. In addition, a penalty cost CRi is incurred if node i ∈ N cannot
be serviced on the planned upcoming set of voyages and must be postponed.
This penalty can be set differently for each cargo depending on the importance
of its delivery or pickup.

To transport the cargoes, a set of OSVs is available. Let V = {1, ..., k + 1}
denote the set of OSVs, where k+ 1 represents an OSV chartered from the spot
market. Each OSV v has a total deck capacity Qv measured in square meters,
and a cost CSvij and time Tvij associated with sailing from node i to node j, and
servicing node j. Note that both of these parameters are weather dependent,
however, we assume that they are known at the time of planning. Since we are
only planning the next voyage, i.e. the next couple of days, this is a reasonable
assumption. For example, if we know that the weather will be bad in the next
couple of days we adjust CSvij and Tvij accordingly. Further, let TMIN

v be the

time OSV v is available to begin the next voyage, and let TMAX
v be the planned

departure time of the subsequent voyage for OSV v. However, we do allow the
OSV to return back to the depot up to Γ hours after TMAX

v , but at a cost of
CDv per hour. The OSV k + 1 must be chartered for a whole number of time
periods (days), where the length of a time period is denoted by the parameter
H, and the daily time charter rate is represented by CTC .

2.1 Arc-flow model

The variable xvij equals 1 if OSV v sails arc (i, j), and 0 otherwise. The auxiliary
variable yvi equals 1 if OSV v visits node i, and 0 otherwise. If the visit to node i
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is postponed (i.e. not serviced on the voyage of any of the OSVs), the variable ui
equals 1, and 0 otherwise. The cargo load variables lvij equal the load measured
in square meters on OSV v when sailing arc (i, j). If the arc is not traversed, the
corresponding load variable is equal to 0. The number of hours OSV v arrives at
the depot after TMAX

v is represented by the variable tDv . The number of whole
days that the OSV k+ 1 from the spot market needs to be chartered is denoted
by tTC . To simplify the notation, the constraints are defined using sets of nodes,
even though some constraints may contain combinations of the indicies v, i, and
j for which the corresponding variable xvij does not exist. In these cases the
missing variable can be assumed to take the value 0. The operational planning
and disruption management problem can be formulated as follows:

Objective

min
∑
v∈V

∑
(i,j)∈A

CSvijxvij + CTCtTC +
∑
i∈N

CRi ui +
∑

v∈V\{k+1}

CDv t
D
v (1)

subject to:∑
i∈N\{0}

xv0i = 1 v ∈ V (2)

∑
i∈N\{n+1}

xvi(n+1) = 1 v ∈ V (3)

∑
j∈N

xvji −
∑
j∈N

xvij = 0 v ∈ V, i ∈ N \ {0, n+ 1} (4)

yvi −
∑

j∈N\{i}

xvij = 0 v ∈ V, i ∈ N (5)

∑
v∈V

yvi + ui = 1 i ∈ N \ {0, n+ 1} (6)

lvij ≤ (Qv − Pj)xvij v ∈ V, i ∈ N , j ∈ NP (7)

lvij ≤ Qvxvij v ∈ V, i ∈ N , j ∈ ND (8)

lvij ≥ Pixvij v ∈ V, i ∈ N , j ∈ NP (9)

lvij ≥ Djxvij v ∈ V, i ∈ ND, j ∈ ND (10)

lvij ≥ (Pi +Dj)xvij v ∈ V, i ∈ NP , j ∈ ND (11)∑
i∈N

lvij + Pjxvjh − lvjh +Qvxvjh ≤ Qv v ∈ V, j ∈ NP , h ∈ N (12)∑
i∈N

lvij −Djxvjh − lvjh +Qvxvjh ≤ Qv v ∈ V, j ∈ ND, h ∈ N (13)∑
j∈ND

Djyvj − lv0i +Qvxv0i ≤ Qv v ∈ V, i ∈ N (14)

lvi(n+1) −
∑
j∈NP

Pjyvj +Qvxvi(n+1) ≤ Qv v ∈ V, i ∈ N (15)
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tTC ≥

 ∑
(i,j)∈A

T(k+1)ijx(k+1)ij

 1

H
(16)

TMIN
v +

∑
(i,j)∈A

Tvijxvij − TMAX
v ≤ tDv v ∈ V \ {k + 1} (17)

tDv ≤ Γ v ∈ V \ {k + 1} (18)∑
i∈S

∑
j∈S

xvij ≤ |S| − 1 v ∈ V,S ⊂ N , |S| ≥ 2 (19)

xvij ∈ {0, 1} v ∈ V, (i, j) ∈ A, (20)

yvi ∈ {0, 1} v ∈ V, i ∈ N (21)

ui ∈ {0, 1} i ∈ N (22)

tDv ≥ 0 v ∈ V \ {k + 1} (23)

tTC ∈ Z+ (24)

The objective function (1) consists of four parts. The first term summarizes
the costs related to sailing and servicing nodes for all OSVs, while the second
term expresses the cost related to chartering an OSV from the spot market.
The third and fourth terms are artificial costs that penalize orders that are
postponed and OSVs that return to the onshore supply depot later than planned.
Constraints (2) and (3) ensure that all voyages begin and end at the depot,
while constraints (4) conserve the flow through the problem defining network.
The auxiliary variables are set by constraints (5), and constraints (6) ensure
that all nodes are either serviced by an OSV or the visit is postponed until a
later voyage. Further, constraints (7) – (11) ensure that the capacity of each
OSV is not violated on any arc along its route, while constraints (12) and (13)
are the cargo flow conservation constraints. Since the model does not distinguish
between cargo that is to be delivered to an installation and backload, constraints
(14) ensure that the total amount of cargo to be delivered to installations on
a voyage equals the load on-board when the OSV leaves the depot. Similarly,
constraints (15), together with constraints (7) and (8), ensure that the load on-
board, when the OSV arrives at the depot, equals the total amount of picked
up cargo on a voyage. If an OSV is chartered from the spot market, constraint
(16) calculates the time it is used, and rounds up to the nearest whole day.
Constraints (17) calculate the delay of each OSV when returning to the depot,
while constraints (18) assure that the delay is not more than Γ hours for each
OSV in the long-term fleet. Finally, constraints (19) are the subtour eliminating
constraints, and constraints (20) - (24) define the domain of each set of variables.

2.2 Path-flow model

Arc-flow models are well suited to describe a problem, however, they often per-
form inferior to path-flow models due to the large number of constraints and a
relatively weak linear programming bound. In this section we describe a path-
flow model obtained by applying Dantzig-Wolfe decomposition to the Arc-flow
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model presented above. A path through the graph G for vessel v is considered
feasible if it satisfies constraints (2)– (5), (7)–(21), and (23) and (24).

Let the set Rv contain all feasible paths for OSV v, and let the parameter Ari
be equal to 1 f node i is included on path r, and 0 otherwise. The cost associated
with sailing and servicing all nodes on path r for OSV v is denoted by CSvr. This
includes the sailing costs (CSvij) and any penalty costs from returning to the

depot late (CDv ). In addition, let CS(k+1)r for all paths r associated with the OSV

chartered from the spot market include the time charter costs CTC , in addition
to the fixed charter costs. Further, let variable λvr equal 1 if OSV v use path r,
and 0 otherwise. As for the arc-flow model, if the visit to node i is postponed, the
variable ui equals 1, and 0 otherwise. Using this notation the path-flow model
can be formulated as follows:

min
∑
v∈V

∑
r∈Rv

CSvrλvr +
∑
i∈N

CRi ui (25)

subject to:∑
v∈V

∑
r∈Rv

Ariλvr + ui = 1 i ∈ N \ {0, n+ 1} (26)

∑
r∈Rv

λvr ≤ 1 v ∈ V (27)

λvr ∈ {0, 1} v ∈ V, r ∈ Rv (28)

ui ∈ {0, 1} i ∈ N (29)

The objective function (25) corresponds to (1) for the arc-flow model, and
sums the costs related to the voyages for all OSVs and the costs associated
with nodes that are postponed until a later voyage. Constraints (26) ensure
that all nodes are either serviced by an OSV or postponed until a later voyage,
while constraints (27) ensure that each OSV sails at most one voyage. Finally,
constraints (28) and (29) put binary restrictions on the variables.

3 Path generation using dynamic programming

In this section we describe how we generate all feasible paths through graph G
which are needed to solve the path-flow model described in Section 2.2. All paths
are generated for each OSV v through |N | stages, where |N | is the number of
nodes in the network. The chosen approach applies full enumeration of possible
paths with removal of infeasible and dominated paths.

Algorithm 1 shows the pseudocode for the generation of paths, and is based
on the labeling algorithm described in [6]. In this approach all partial paths are
encoded using labels which stores each (partial) path and the accumulation of
resources along the path. Let Mp be the set of all labels representing paths of
length p. The algorithm begins by creating an initial label representing a path
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starting at the depot node, and an empty set of labels representing complete
feasible paths R. Then, while p is less than or equal to the number of nodes
in G, we create new labels L′ by extending all labels L representing a path of
length p to all nodes i ∈ N . If the label L′ is feasible it is added to the set Mp+1,
unless it is extended to the depot node, in which case it is added to the set R.
Once all labels in Mp have been extended to labels in Mp+1 we check all pairs
of labels in Mp+1 to see whether we can remove some labels due to dominance,
and the counter p is updated. Finally, all labels in R are returned, and their
corresponding paths are added to the path-flow model.

In the following we explain what data is stored in a label, how a label is
extended, what constitutes a feasible extension of a label, and under what cir-
cumstances we can say that one label dominates another.

Algorithm 1 Pseudocode for dynamic voyage generation

1: procedure voyageGenerator
2: Create initial label
3: Add initial label to initial stage M1

4: R = ∅
5: p = 1
6: while p ≤ |N | do
7: for all labels L in stage Mp do
8: for all nodes i in N do
9: Create new label L′ by extending label L to node i

10: if L′ is feasible then
11: if i = n + 1 then
12: Add L′ to R
13: else
14: Add L′ to Mp+1

15: end if
16: end if
17: end for
18: end for
19: Remove all dominated states from Mp+1

20: p = p + 1
21: end while
22: Return R
23: end procedure

3.1 Label data

In each stage, new labels are created containing the following data:

– i - The current node
– R - The predecessor label
– V - The set of nodes visited
– C - The sailing and service cost
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– T - The sailing and service time
– πD - The maximum deck capacity occupied at any point along the path
– πP - The deck capacity needed for backload

In the following we use i(L) to denote the current node i for label L and
similarly use R(L), V (L), C(L), T (L), πD(L) and πP (L) for the rest of the label
data.

The initial label represents an OSV starting at the depot pickup node. The
initial state has no predecessor, which is denoted by null.

L0 = {0, null, ∅, 0, 0, 0, 0},

3.2 Label extension

When extending a label along an arc (i(L), j), a new state L′ is created at node
j. The label data are updated as follows:

i(L′) = j (30)

R(L′) = L (31)

V (L′) = V (L)
⋃
{j} (32)

T (L′) = T (L) + TSvi(L)j (33)

C(L′) = C(L) + CSvi(L)j +

{
max{CDv ∗ (T (L′) + TMIN

v − TMAX
v ), 0}, if j = n+ 1

0, otherwise

(34)

πD(L′) =

{
max{πD(L) +Dj , π

P (L)}, if j ∈ ND

max{πD(L), πP (L) + Pj}, if j ∈ NP
(35)

πP (L′) =

{
πP (L), if j ∈ ND

πP (L) + Pj , if j ∈ NP
(36)

Equations (30) and (31) update the current node and the predecessor for L′.
The new current node is marked as visited in equation (32). The time and cost
data are updated in equations (33) and (34). The capacity data are updated in
equations (35) and (36) according to whether node j is a delivery or a pickup
node. Figure 2 illustrates how the capacity data are updated along a path.

Proposition 1.
Let Lf be the final label associated with a path r. Then πD(Lf ) equals the max-
imum load onboard the OSV on path r.

Proof.
Let the maximum load on path r be carried on arc (i∗, j∗). Then the maximum
load on r is

li∗j∗ =
∑
j∈ΩP

Pj +
∑
j∈ΘD

Dj ,
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Fig. 2. Illustration showing how capacity data are updated during label extension.
Requested delivery and backload size is given for each delivery and pickup node, re-
spectively. The current amount of cargo carried on deck of the OSV is given for each
arc.

where ΩP ⊆ NP is the set of pickup nodes already visited and ΘD ⊆ ND is the
set of delivery nodes not yet visited.

Consider the labels L1 and L2 with current nodes i1 and i2, respectively.
L1 is the predecessor of L2, and both labels are predecessors of Lf . Let ND

f

denote the set of delivery nodes in the path of Lf . Assume, without the loss of
generality, that the nodes visited on path r are numbered in the sequence they
are visited. Then, the load on deck after visiting node i1 and i2, denoted by li1
and li2 , respectively, is

li1 =
∑
j∈ND

f

Dj −
∑

0≤j≤i1

Dj +
∑

0≤j≤i1

Pj , and (37)

li2 =
∑
j∈ND

f

Dj −
∑

0≤j≤i2

Dj +
∑

0≤j≤i2

Pj . (38)

Assume that either li1 or li2 is the maximum load on r. The difference in load is

li1 − li2 =
∑

i1<j≤i2

Pj −
∑

i1≤j≤i2

Dj (39)

If li1 > li2 , then

πD(L2) = max{πD(L1) +
∑

i1≤j≤i2

Dj , π
P (L1) +

∑
i1<j≤i2

Pj}
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= πD(L1) +
∑

i1≤j≤i2

Dj , and

li∗j∗ =
∑
j∈ND

f

Dj −
∑

0≤j≤i1

Dj +
∑

0≤j≤i1

Pj

If li2 > li1 , then

πD(L2) = max{πD(L1) +
∑

i1≤j≤i2

Dj , π
P (L1) +

∑
i1<j≤i2

Pj}

= πP (L1) +
∑

i1<j≤i2

Pj , and

li∗j∗ =
∑
j∈ND

f

Dj −
∑

0≤j≤i2

Dj +
∑

0≤j≤i2

Pj

Not depending on which of li1 and li2 is greatest, the maximum load can be

expressed as

li∗j∗ =
∑
j∈ΩP

Pj +
∑
j∈ΘD

Dj = πD(Lf ).

Thus, Proposition 1 is correct.

Additional remark: if node i∗ were a delivery node, then the load on board
before visiting i∗ would be greater than li∗j∗ . Thus, i∗ is a pickup node. Similar,
if j∗ were a pickup node, then the load on board after visiting j∗ would be
greater than li∗j∗ . Thus, j∗ is a delivery node.

3.3 Feasible extension

An extension of state L to state L′ along an arc (i(L), j) is feasible if the
following hold:

j /∈ V (L) (40)

k /∈ V (L), if j ∈ ND and j and k are siblings. (41)

T (L) + TSvi(L)j ≤ T
MAX
v + Γ − TMIN

v , if j = n+ 1 (42)

T (L) + TSvi(L)j + TSvj(n+1) ≤ T
MAX
v + Γ − TMIN

v , if j 6= n+ 1 (43)

max{πD(L) +Dj , π
P (L)} ≤ Qv, if j ∈ ND (44)

max{πD(L), πP (L) + Pj} ≤ Qv, if j ∈ NP (45)

If the inequality (40) holds, node j is not already visited in the path in state S.
Inequality (41) assures that the pickup node should never be visited before the
delivery node for the same installation. A sibling of a delivery node is defined
as the corresponding pickup node of the installation, if one exists. Likewise, the
sibling of a pickup node is the delivery node of the installation. As stated in
inequality (42), the time needed to service the nodes in a path sailed by OSV
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v should not exceed the time available to v, where τ is the maximum allowed
delay on a voyage. If node j is not the depot delivery node, there should also be
enough time available to sail back to the onshore supply depot. This is assured
by inequality (43). The inequalities (44) - (45) hold if the load on deck at any
point of the path does not exceed the available deck capacity of the OSV.

3.4 Label domination

At each stage, all states dominated by another state are identified and removed.
The label dominance criteria are:

Proposition 2. The label L1 dominates L2 if

V (L1) = V (L2), (46)

i(L1) = i(L2), (47)

C(L1) ≤ C(L2), (48)

T (L1) ≤ T (L2). (49)

Note that V (L1) = V (L2) also implies that πP (L1) = πP (L2) and πD(L1) =
πD(L2). Because the cost and time and non-drecreasing and separable resources,
it can easily be shown that Proposition 2 is a valid dominance criterion.

4 Computational study

In this section we present a comparison of the computational performance of the
two models. In Section 4.1 we describe the test instances used, while in Section
4.2 we present the computational results.

4.1 Test instances

The test instances are based on data supplied by Statoil, the major Norwegian
oil and gas company, and consist of an onshore supply depot and a set of offshore
installations. As of today, each onshore supply depot services up to 13 offshore
installations (28 nodes). However, when looking at recovery planning, it is rare
that all the installations are to be visited within the short planning horizon. We
have thus created instances with 4 to 8 installations (10 to 18 nodes). These
instances are summarized in Table 1, which gives the id of each instance (ID),
the name of the associated depot (Depot), the number of nodes (# Nodes), and
the number of OSVs (# OSVs).

Three versions of each instance are tested:

– No disruptions All vessels have normal sailing speeds and all cargoes are
of (roughly) normal size. These instances are denoted using the standard IDs
from Table 1.
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ID Depot # Nodes # OSVs

M10 Mongstad 10 2
M12 Mongstad 12 2
Å14 Ågotnes 14 2
F16 Florø 16 2
Å18 Ågotnes 18 3

Table 1. Test instances used to compare the arc-flow and the path-flow models. #OSVs
includes one spot vessel.

– Reduced sailing speed due to adverse weather conditions. This is done by
reducing the speed of each vessel from ten to five knots, and thus, increasing
the sailing time. The increase in sailing time will also affect the sailing costs.
The ID for these instances have a superscript ”S” for speed, e.g. MS

12.

– Large cargo sizes, which often is the case after periods where adverse
weather conditions have made supplying the offshore installations impossible
or too costly. This is done by setting the demand and backload amount to the
triple of the size used in the non-disrupted case to ensure that deck capacity
becomes a binding constraint. The ID for these instances have a superscript
”L” for load, e.g. ML

12.

The reason for these choices of disruptions is that both speed reductions and
more cargo to transport are the most common consequences of bad weather
conditions. Either the speed of each vessel is reduced for a period of time, or the
cargo has piled up both at the depot and at the installations because the OSVs
have been prevented from sailing for a few days.

4.2 Test results

The arc-flow and path-flow models have been tested on a computer running
Windows 7 with an Intel i7-3770 3.40 GHz CPU and 16 GB of RAM. The
dynamic programming algorithm for the apriori generation of paths for the path-
flow model is implemented in Java, while the the arc-flow and path-flow models
are implemented in Xpress-IVE 1.24.04 with Xpress-Mosel 3.6.0 and solved with
Xpress-Optimizer 21.01.04 [4]. For both models we set an upper time limit of
one hour (3,600 seconds).

The results of the computational tests can be seen in Table 2. For the arc-
flow model the optimality gap (Opt. gap) and the computational time (Time)
are given, while for the path-flow model we only give the computing time (Time).
The reason for this, is that in the instances where the path-flow model exceeds
the time limit it does so while generating paths, and thus we do not have any
optimality gap in those instances. As can be seen from the results, except for
the two instances Å14 and F16, the path-flow model finds the optimal solution
in less time than the arc-flow model. The path-flow model is also able to find
the optimal solution in six instances where the arc-flow model cannot within the
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given time limit. This shows that the path-flow model is superior to the arc-flow
model with respect to the computational performance for this problem.

arc-flow path-flow
ID Opt. gap Time[s] Time[s]

M10 0.0% 0.1 0.13
MS

10 0.0% 7.2 0.06
ML

10 0.0% 3.0 0.03
M12 0.0% 0.4 0.51
MS

12 68.9% >3 600 0.38
ML

12 0.0% 709 0.04
Å14 0.0% 0.6 13.1

Å
S
14 63.3% >3 600 13.0

Å
L
14 38.7% >3 600 0.56

F16 0.0% 0.4 529.3
FS
16 77.0% >3 600 553.4

FL
16 46.4% >3 600 101.3

Å18 69.6% >3 600 >3 600

Å
S
18 94.8% >3 600 >3 600

Å
L
18 68.6% >3 600 1 222

Table 2. Comparison of the arc-flow and path-flow solution methods. For the arc-flow
model the optimality gap (Opt. gap) and the solution time is presented and for the
path-flow model the total solution time, including the time it takes to generate all
paths, is presented.

5 Concluding remarks

In this paper we have studied a vessel pickup and delivery problem that arises
in the case of disruptions in the supply vessel logistics in the offshore oil and
gas industry. We have shown that the problem can be modelled as a multi-
vehicle pickup and delivery problem and proposed two alternative formulations
for the problem, i.e. an arc-flow and a path-flow formulation. For the path-flow
formulation we have also proposed an efficient dynamic programming algorithm
for generating the paths, which represent feasible vessel voyages. It was shown
through a computational study on various realistic test instances provided by a
major oil and gas company that the path-flow model was superior with respect
to computational performance.

Even though the path-flow model presented in this paper can solve many
instances to optimality, there is a need for methods that can provide high qual-
ity solution to even larger instances in a short amount of time. An interesting
extension of this work would therefore be to look either at more advanced ex-
act solution methods, such as branch-and-price, or to develop heuristic solution
methods for the problem.
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