
Evolution of the UML Interactions Metamodel

Marc-Florian Wendland1, Martin Schneider1, and Øystein Haugen2

1Fraunhofer Institut FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

2SINTEF, Norway

{marc-florian.wendland,martin.schneider}@fokus.frau nhofer.de,
Oystein.haugen@sintef.no

Abstract. UML Interactions represent one of the three different behavior kinds
of the UML. In general, they specify the exchange of messages among parts of
a system. Although UML Interactions can reside on different level of abstrac-
tions, they seem to be sufficiently elaborated for a higher-level of abstraction
where they are used for sketching the communication among parts. Its meta-
model reveals some fuzziness and imprecision where definitions should be ac-
curate and concise, though.
In this paper, we propose improvements to the UML Interactions’ metamodel
for Message arguments and Loop CombinedFragments that make them more
versatile. We will justify the needs for the improvements by precisely showing
the shortcomings of the related parts of the metamodel. We demonstrate the ex-
pressiveness of the improvements by applying them to examples that current In-
teractions definition handles awkwardly.

Keywords: UML, Interactions, Sequence Diagram, Messages, CombinedFrag-
ments

1 Introduction

UML Interactions are one of the three behavior kinds of UML 2 [1] and describe in-
formation exchange among parts of a system via messages. Graphically, UML Inter-
actions are most commonly depicted as sequence diagrams.

UML 1 Interactions originated from a proprietary dialect of sequence charts which
came from Siemens. When UML 2 was initiated in 1999 some of the driving forces
from the telecom industry had already applied sequence diagrams for many years and
were well acquainted with Message Sequence Charts (MSC) [2]. Ericsson, Motorola
and Alcatel, supplemented also by tool vendor Telelogic, collaborated to formalize
UML in the direction of MSC and SDL (Specification and Description Language,
recommended in Z.100 by ITU). This resulted in trying to harmonize the MSC-2000
with UML 2 and still keep most of what had been in UML 1 sequence diagrams as
well. While MSC was defined as a stand-alone language, Interactions of UML 2
should be well harmonized and integrated with the rest of UML. However, the tele-

com companies were not satisfied with informal relations between elements, but
wanted a UML language that was as precise as what they were used to from SDL and
MSC. Other stakeholders of UML were not convinced that UML should be that pre-
cise. A lot of compromises were made, though. The concept of semantic variation
points was introduced and still remains central to the definition of UML. The overall
metamodel, however, was supposed to tie the different parts of UML together and in
some respects it did that, but in other respects the unification of different concepts
was not done with rigor and the language became unnecessary complicated.

Since their advent sequence diagrams were used a lot, however, their use was
mostly of descriptive nature. The communication between system parts was sketched
rather than precisely defined. When the UML Testing Profile (UTP) ([3] and [4])
appeared, there was emphasis on being able to use sequence diagrams for defining
test specifications. Even the data of the messages had to be defined more accurately.
In Interactions, exchange of data is expressed as arguments of a message related to a
certain element of the message’s signature. Due to the compromises made in UML,
several issues appear when message arguments need to be precisely specified.

This paper summarizes the most relevant issues for message arguments, explains
how they manifest in the metamodel and suggests improvements to the relevant parts
of the metamodel to overcome those issues. This paper does not question the general
architecture of UML or the rigor of the integration of its parts (such as Activities and
Interactions), but rather treat Interactions as a self-sufficient concept space with re-
spect to its features for describing precise message exchange. The motivation for this
work stems from the development of an UTP-based tool for model-based testing,
called Fokus!MBT [20], and from the application of Interactions for test case specifi-
cation in industrial and research projects. Thus, the presented work is not a mere theo-
retical consideration, but has been used for and proven its applicability to real use
cases.

As typographical convention, all metaclasses of the UML metamodel are written in
camel-case and start with a capital letter. Association ends and properties of meta-
classes are written in camel-case, start with a lower case letter and are set to italic. For
the sake of comprehensibility, the presented figures do not mention every aspect of
the UML abstract syntax (e.g., names of non-navigable association ends are omitted).
Introduced concepts are set italic the first time they are mentioned. In case the index
of an ordered association ends is relevant for understanding, it is surrounded by
square brackets (e.g., [1] indicating the first object). This notation is not standardized
for UML object diagrams.

The remainder of this paper is structured as follows: Section 2 summarizes previ-
ous work in the area of Interactions. Section 3 presents the relevant parts of the met-
amodel regarding abstract syntax and semantics. Section 4 represents the main part of
our contribution and describes metamodel improvement suggestions for Messages and
CombinedFragments. Section 5 proposes two recommendations for the development
of metamodels derived from the improvement suggestions presented in section 4.
Finally, section 6 summarizes our work and provides an outlook on future considera-
tions of the Interactions metamodel.

2 Related Work

Haugen compares UML Interactions and Message Sequence Charts [5] showing that
Interactions and MSCs are similar down to small details.

Haugen, Stolen, Husa, and Runde have written a series of paper on the composi-
tional development of UML Interactions supporting the specification of mandatory
and potential behavior, called STAIRS approach ([6], [7], [8], and [9]). Although the
compositional idea is reflected throughout the series, a special interest is dedicated to
a fine-grained differentiation of event reception, consumption and timing [7] and the
refinement of Interactions with regard to underspecification and nondeterminism [9].
Lund and Stolen have presented an operational semantics for UML sequence dia-
grams in the context of STAIRS [10].

Formal semantics of UML Interactions and sequence diagrams were several times
discussed. Störrle presented a formal specification of UML Interactions and a com-
parison of UML 2.0 and UML 1.4 Interactions [11] and [12]). A similar work was
done by Knapp and Cengarle ([13] and [14]), Li and Ruan [15] and Shen et al. [16].
Special attention was set to the semantics of assert and negative CombinedFragments
([17] and [18]), though.

An approach to model checking based upon a formal trace semantics of Interac-
tions was described by Knapp and Wuttke [19].

Our paper is different from the work described above. These publications were
mostly dedicated to the trace semantics of Message reception and consumption within
UML Interactions, but they did not focus on precisely specifying data transmitted by
Messages. Furthermore, the complete metamodel of UML Interactions has not been
considered and improved. Our work addresses the precise specification of Message
arguments as well as revised parts of the UML Interactions metamodel to make them
more robust and manageable by subsequent tooling.

3 Relevant Parts of the UML Interactions Metamodel

This chapter briefly summarizes those parts of the UML Interactions metamodel that
are relevant for understanding the focal point of this paper. A full description of the
semantics can be found in the current UML specification [1] our work is based on.
For the sake of comprehensibility, the necessary parts of the metamodel are shown in
Fig. 1. nevertheless. The left-hand side shows the relevant parts of Messages, the right
hand side those of CombinedFragments.

Interactions describe the communication between (potentially loosely coupled)
parts of a system. The most important building blocks of Interactions are Messages
that constitute information exchange between different parts, and Lifelines that repre-
sent those communicating parts.

A Message represents either the invocation of an Operation or the sending and re-
ception of a Signal. The first kind represents either an asynchronous or synchronous
call, or a reply in case of a preceding synchronous call. The second kind (i.e., the
sending of a Signal) is by definition always asynchronous. Messages commonly con-

vey data in terms of its actual arguments to the receiver. The actual arguments of
Message have to correspond to the elements determined by its signature. These signa-
ture elements can manifest as Parameters, in case of an Operation signature, or Prop-
erties, in case of a Signal signature. Consistency between actual argument and signa-
ture element requires that the actual argument (identified by its index in Mes-
sage.argument) is type compliant with the corresponding signature element (identi-
fied by the very same index as the actual arguments, either in Opera-
tion.ownedParameter or Signal.ownedAttribute). The consistency definition implies
that both lists must be of equal size.

Fig. 1. Relevant parts of the UML Interactions metamodel regarding Messages (left) and
CombinedFragments (right)

CombinedFragments were introduced in UML 2 to enable more expressive Interac-
tions. The semantics of a CombinedFragment is determined by its InteractionOpera-
torKind that also implies the number of InteractionOperands a CombinedFragment
may possess. Each InteractionOperand may be guarded by an InteractionConstraint
that defines what that must hold to activate the InteractionOperand. Some kinds of
CombinedFragments are supplemented with additional information required in their
semantic context. These are Loop-kind CombinedFragments (henceforth called
Loops) and ConsiderIgnoreFragments. Loops represent repetitions of the events en-
closed in its InteractionOperand. The number of repetitions can be omitted (any num-
ber of repetitions is valid), restricted to a single number of repetitions or specified as
an interval for a minimally and maximally intended repetition.

4 Improving Messages and CombinedFragments

The following sections represent the main contribution of our work, i.e., improvement
suggestions for the UML Interactions metamodel regarding a precise specification of
Message arguments and CombinedFragments. UML is a language of compromises so
there are most likely several opinions why the issues1, being described subsequently,
actually appear and how they ought to be resolved in the first place. Our improve-
ments are strictly defined from an Interactions point of view. All suggested modifica-

1 The issues we will discuss and mitigate are already filed in the OMG issue database (see

http://www.omg.org/issues/uml2-rtf.open.html): #8786, #8899, #16569 and #16571.

tions are local to the Interactions metamodel to make them more robust and as expres-
sive regarding the specification of arguments as Activities, for example. Resolving
more fundamental and maybe philosophic or politic issues in the essence of UML is
out of scope of this paper, though.

4.1 Precise and Robust Specification of Message Arguments

A Message’s actual arguments and the signature elements they need to correspond to
are implicitly related via their indices in two distinct lists. This is not problematic as
long as the signature elements have just a single, non-optional multiplicity (i.e., lower
and upper bounds equals 1) or only the last signature element is optional. In any other
case, specifying actual arguments may lead to ambiguities due to UML’s inability to
model standalone collections of ValueSpecifications and the implicit relation of
members of two independent lists based on the respective indices. A discussion
whether ValueSpecification collections should be made available in UML is not in the
scope of this paper.

For better illustration, we consider an Operation with a single Integer collection
Parameter of an unbound size. Fig. 2 illustrates the corresponding object model for a
scenario where a user specifies an actual argument list with the values (1, 2, 3).

Fig. 2. Object model of ill-formed Message

The Message op1 contains three actual arguments what would imply that its signa-
ture offers three signature elements as well. In fact, it just offers one (see Parameter
p1), so referring to UML [1] the model presented above is invalid by definition. Ac-
tivities, for example, can handle collections of actual arguments for a single signature
element with the Pin metaclass and we believe Interactions should also provide a
native concept to be able to handle actual arguments for collections. We emphasize
the term native, because there are some metamodeling workarounds that misuse met-
aclasses to ensure syntactical correctness. The issue depicted in Fig. 2 might be solved
by misusing the metaclass Expression as pseudo-collection of ValueSpecifications.
As long as the metamodel of UML will not be enhanced with dedicated concepts for
ValueSpecification collections, Expressions are actually the most elegant (but seman-
tically disputable) way to specify them. Nevertheless, this is kind of a metamodeling
trick, since Expressions are intended to specify expression trees in a sense of an Ab-
stract Syntax Tree (AST). As an improvement, we suggest introducing a dedicated

concept with clear semantics and syntax for the purpose of precise specification of a
Message’s actual arguments, called MessageArgumentSpecification (see Fig. 3).

Fig. 3. Explicit relation between a Message’s signature element and actual arguments

A MessageArgumentSpecification makes the correspondence of a set of actual ar-
guments to its respective signature element explicit through the association end argu-
mentFor that points to the related signature element (ConnectableElement represents
the closest common metaclass of both possible signature elements Parameter and
Property). The corresponding constraint expressed with the Object Constraint Lan-
guage (OCL) for restricting what ConnectableElements can be addressed as signature
element, is:

context MessageArgumentSpecification
inv: not self.message.oclIsUndefined() implies
if self.message.signature.oclIsTypeOf(Operation) then
self.message.signature.oclAsType(Operation).ownedPa ramete
r->exists(self.argumentFor)
else if self.message.signature.oclIsTypeOf(Signal) then
self.message.signature.oclAsType(Signal).attributes -
>exists(self.argumentFor)
else
false
end if
end if

Literally, the ConnectableElement referenced by MessageArgumentSpecification
must either be a Parameter of an Operation or a Property owned by Signal. Both Op-
eration and Signal are to be associated with the MessageArgumentSpecification’s
owning Message (association end message) through the association end signature.
The explicit relation argumentFor between an actual argument and signature element
eliminates the need for matching by indices of independent lists. Thus, there is no
longer the need for collection ValueSpecifications, since the actual arguments for a
certain signature element can be easily retrieved by gathering all MessageArgu-
mentSpecifications that point to that signature element via argumentFor association
end. This does not only simplify the processing of Messages, but also gives rise for
more robust models in case of changes to the order of signature elements. As an ex-
ample, we consider an Operation with two Parameters whose Types are non-
compatible. If the user decides to alter the order of the Operation’s Parameters, all
Messages would have to reflect that change to not become invalid. If there is a large

number of Messages that have set the Operation as their signature, and that already
have correctly specified actual arguments, reflecting the changes might be a tedious
task for the user. With the solution presented above, changing the order did not affect
the validity of the Message at all due to the explicit coupling via argumentFor. Fig. 4
shows the relevant parts of the improved object model of Fig. 2.

Fig. 4. Object model of well-formed model through improvements

4.2 Using References as Message Arguments

The sole use of ValueSpecifications as actual arguments is sufficient for expressing
literal arguments or references to InstanceSpecifications. ValueSpecifications are,
however, not capable to reference ConnectableElements (as superclass of Parameter
and Property) directly. As a downside, it is not possible to reference values contained
in data sources such as formal Parameters of the Interaction (or the corresponding
BehavioralFeature the Interactions represents an implementation of) or Properties
accessible to the sending Lifeline (such as local attributes of the Type the Lifeline
represents, global attributes of the Classifier the Interaction is embedded in or local
attributes of the Interaction itself). For the remainder of this paper, we call these val-
ues reference arguments. To motivate the improvement to the metamodel, the follow-
ing Java code snippet shows a fundamental concept of using formal parameters of a
surrounding Operation as actual parameter for a subsequent procedure call.

public class S { //context classifier of Interaction
 private C c; //offers op3(int i, String s)
 public void op2(int p1){
 c.op3(p1, “That works”); //realized as Interactio n
 }
}

A realization of this snippet with the concepts offered by Interactions is only pos-
sible by either using an OCL navigation expression or again misusing other meta-
classes like, e.g., OpaqueExpression (a subclass of ValueSpecification) as reference
argument. Even though these workarounds would do the job, they are not satisfying
because they impose additional parsing and execution facilities (e.g., in terms of OCL
engine or any proprietary engine that evaluates the provided reference argument)
being available. In Activities, there is a dedicated means to express data flow among
actions (i.e., ObjectFlow and ObjectNode), for example. A native concept of Interac-

tions is lacking, though. In preparation for this paper, we also checked the tools Ra-
tional Software Architect (RSA), MagicDraw and Enterprise Architect (EA). Except
for the OCL variant, there is no mechanism offered to conveniently allow the user to
specify reference arguments. OCL, however, is another language that needs to be
learned by a user. Although OCL is highly recommend in the context of UML, for
such fundamental concepts like referencing values in an accessible data source, we
believe no additional language should be needed.

Unfortunately, the solution we presented in Fig. 3 suffers from the same deficiency
as the current metamodel. A MessageArgumentSpecification still refers to Val-
ueSpecifications solely, so consequently, we have to further elaborate our improve-
ment to cope with the needs described above. Fig. 5 depicts our suggestion for such
an improvement.

Fig. 5. Extended metamodel to cope with referenced arguments

The improved abstract syntax shown above introduces three new metaclasses. The
abstract metaclass ValueSpecificationDescriptor replaces ValueSpecification as direct
actual argument of a Message. ValueSpecificationDescriptor acts as a placeholder for
the actual arguments, and knows two concrete subclasses ValueArgumentSpecifica-
tion and ReferenceArgumentSpecification. The first one keeps the ability to use Val-
ueSpecifications as actual arguments. The second one introduces the required facility
to access reference arguments.

The extended metamodel now provides the required concepts to select reference
arguments accessible from the sending Lifeline as actual arguments. The rules of what
is actually accessible by a sending Lifeline are already defined in the current UML
specification (see clause 5 of subsection Constraint of section 14.3.18) [1]. Further-
more, both ValueSpecificationDescriptor subclasses can be mixed with each other in
a MessageArgumentSpecification. The Java snippet mentioned above stressed the
need for mixing value and reference arguments.

A reference argument (MessageArgument.valueDescriptor.refValue) and its corre-
sponding signature element (MessageArgumentSpecification.argumentFor) are inter-
related by the fact that the reference argument needs to be type-compliant with and a
subset of the multiplicity of the signature element. A multiplicity subset is defined as
follows: Let � be the set of all MessageArgumentSpecifications in an Interaction.
Furthermore, let � be a signature element, ���� its lower bound and ��� its upper
bound. Let � be the reference argument corresponding to the signature element �, ����
the lower bound and ��� the upper bound of the reference argument, and 	
��, �	the

relation of a concrete reference argument and signature element in the context of �
(i.e., the concrete arguments are identified by the navigation expressions
m.valueDescriptor.refValue and m.argumentFor). Then the following must hold dur-
ing runtime:

 ∀� ∈ � ∶ 	
��, � → ���� ≥ ���� 	⋀	��� ≤ ��� (1)

In Fig. 6, the object model according to the Java code snippet is shown. The grey-
shaded objects represent the parts of the specification of the Interaction. The bold-
faced object is related to the reference argument concept. The association between
MessageArgumentSpecification ma1 and Parameter i as well as the association be-
tween ReferenceArgumentSpecification vd1 and Parameter p1 (marked by thick ar-
rows) visualize how signature elements and reference elements belong together.

Fig. 6. Corresponding object model of improved Interactions metamodel

Still a problem appears in the solution, if the reference argument is a collection and
has wider bounds than the corresponding signature element. There is currently no
concept for extracting a subset of values from a reference argument collection. What
is required is a facility for specifying such a subset of values that can be used by a
reference argument. Therefore, the solution needs to be enhanced with a new meta-
class ReferenceValueSelector. A ReferenceValueSelector is in charge of specifying
that subset, if needed (see Fig. 7).

The subset of values for an actual argument is determined by one or more indices
(expressed as Intervals) of the collection identified by ReferenceArgumentSpecifica-
tion. An Interval allows specifying a minimal and maximal value. Since the associa-
tion end index is unbound, it is possible to specify any number of subsets of elements,
identified by their respective indices that shall be extracted from the reference argu-
ment collection. The flag isIndexSetComplement is a convenient way to specify what

indices must not be taken over into the actual argument subset, whereas all indices
which are not specified shall be actually considered. Runtime compliance of the index
descriptions used in a ReferenceValueSelector cannot be ensured, of course.

Fig. 7. Metamodel extended with ReferenceValueSelector metaclass

4.3 Assigning Values of a Message to Assignment Targets

Storing return values or parameters of a method call in appropriate assignment targets
is rather natural in programming languages. A more complex (probably not meaning-
ful) Java code snippet is presented below. The snippet is solely used for demonstra-
tion purposes of the ArgumentAssignmentSpecification metaclass we will introduce in
this section. The code is supposed to represent parts of an operation body of the class
S, which was already introduced in Section 4.2. S owns two Integer-typed lists (i.e.,
piList1 and piList2) which are initialized. The actual content of the lists are not rele-
vant for the example. The code simply selects a subset of a list retrieved by calling of
c2 ’s operation op4 and adds this subset to piList1 and piList2 of instance s of
class S. In this section, we discuss the actual shortcomings of the current UML speci-
fication for such constructs and propose a solution.

List<Integer> list = c2.op4(); //actual size of lis t:999
List<Integer> tempList = new
List<Integer>(list.sublist(3,14)); //tempList size: 12
tempList.add(list.get(15)); //tempList size: 13
tempList.add(list.sublist(92,654)); //tempList size : 576
s.piList1.clear():
s.piList1.addAll(tempList);
s.piList2.addAll(tempList);

In a model, actual arguments of a Message shall be stored in assignment targets,
which manifest in Properties or out-kind Parameters (i.e., Parameter with a Parame-
terDirectionKind out, inout or reply) of the surrounding Interaction accessible by the
receiving Lifeline. Henceforth, we refer to an assignment target as data sink.

Even though argument assignment is reflected in the textual syntax of Messages in
the current UML specification [1], there is no indication how this should be done with
respect to the metamodel. The only statement in the notation subsection of Messages
(see section 14.3.18) about assignment is that Actions are foreseen to describe the
assignment. No further explanations or object model examples are given for clarifica-
tion of how the connection between such an Action and an actual argument shall be

established, nor what concrete Action to ultimately use. Furthermore, an Action needs
to be integrated via an ActionExecutionSpecification covering the receiving Lifeline,
but it is neither clear from the metamodel nor clarified in the textual specification how
Message receptions and a set of conceptually related ActionExecutionSpecifications
are linked with each other. In preparation for this paper, we investigated EA, RSA and
MagicDraw. None of these most popular tools offered functionality for target assign-
ment, though. Only the EA does have at least a notion for marking arguments for
assignment, from the study of the resulting XMI, however, it was not clear to the
authors how the assignment specification actually manifests.

Another rather conceptual shortcoming is that argument assignment is limited to
the return Parameter of a Message solely, so that in-kind signature elements (i.e.,
either a Parameter with ParameterDirectionKind in, inout, or an attribute of a Signal)
cannot be stored by a receiving Lifeline in a data sink. This ought to be possible, since
in-kind signature elements represent information determined by the sending Lifeline
and accessible by a receiving Lifeline. Therefore, actual arguments for in-kind signa-
ture elements should be further usable throughout the execution of the receiving Life-
line’s behavior. This holds also true for out-kind signature elements of reply Messag-
es, consequently, for sending Lifelines.

To cope with the needs for assigning actual arguments to data sinks accessible by
Lifelines, we suggest introducing a similar concept as WriteStructuralFeatureAction
from Activities (see clause 11.3.55 of UML [1]) for Interactions, called
ArgumentAssignmentSpecification (see Fig. 8).

Fig. 8. Adding target assignment facilities to the metamodel

A MessageArgumentSpecification may contain a number of ArgumentAssign-
mentSpecifications, which, in turn, may specify a number of assignment targets. An
assignment target represents a data sink that is intended to incorporate the actual ar-
guments. In case the same actual arguments shall be assigned to several data sinks at
the same time, the association end assignmentTarget is specified to be unbounded.
Similar to ReferenceValueSelector, a number of Intervals can be used to specify what
actual values at runtime shall be assigned to the assignment targets with respect to
their indices, if the corresponding signature element represents a collection. However,
the semantics in ArgumentAssignmentSpecification is converse, since it specifies
what actual arguments shall be assigned to a data sink, in contrast to what reference
arguments shall be taken from a data source as actual argument. However, as with
ReferenceValueSelector, runtime compliance cannot be ensured at that point in time.

A ValueAssignmentKind specifies the treatment of already existing data in the as-
signment target in case the data sink represents a collection. Values of the actual ar-
gument at runtime will be either

- Added to existing contents of the data sink (append),
- Inserted at index 0 of data sink (insertAtBegin), or
- Replace all existing contents in the data sink (replaceAll).
Fig. 9 shows object model of the improved Interactions metamodel corresponding

to the code snippet at the beginning of this section.

Fig. 9. Complex target assignment statements using collection indices

4.4 Improving Loop CombinedFragments

The semantics for CombinedFragments determined by their respective Interaction-
OperatorKind, but there are only two actual metaclasses for CombinedFragments in
the Interaction’s metamodel: CombinedFragment and ConsiderIgnoreFragment, a
specialization of CombinedFragment. The reason for a specialization of Com-
binedFragment by ConsiderIgnoreFragment is the additional information necessary to
specify the messages to be considered or ignored. Additional information is also re-
quired for Loops to define the number of repetitions of the loop, however, in contrast
to ConsiderIgnoreFragment, the repetition bounds have simply been added to the
general CombinedFragment via the InteractionConstraint metaclass. It has two asso-
ciations for specifying the bounds of a loop (minint and maxint). Anyway, it would be
possible to specify meaningless combinations of CombinedFragments and repetition
bounds, like Alternative CombinedFragment with explicit repetition bounds. To avoid
these meaningless constructs, informal constraints were defined that disallow specify-
ing repetition bounds in a different context than Loops. In the case of Con-
siderIgnoreFragment the additional information is actually located in the metaclass
that requires the information (i.e., ConsiderIgnoreFragment), for Loops, the infor-
mation is located in the InteractionConstraint instead. This seems to be inconsistent
when comparing Loop and ConsiderIgnoreFragment.

Our proposal treats Loops similar to ConsiderIgnoreFragment by introducing a
new subclass of CombinedFragment called LoopFragment (see Fig. 10). This allows
supplementing LoopFragment with the information required to specify the repetition
bounds of the loop. Furthermore, the metaclass InteractionConstraint becomes obso-
lete, since the LoopFragment itself is now in charge of specifying the repetition
bounds. By doing so, the only need for InteractionConstraint has vanished.

Fig. 10. Improved metamodel for loop Combined Fragments

Further considerations regarding CombinedFragments led to the conviction that the
different kind of CombinedFragments, determined by the InteractionOperatorKind,
should be resolved into concrete subclasses consequently. The reason for this lies in
the too strong syntactical influence the InteractionOperatorKind impose on the struc-
ture of CombinedFragments. Applying a different InteractionOperatorKind to a Com-
binedFragment may enforce the removal of all but one InteractionOperand. For ex-
ample, a CombinedFragment with two InteractionOperands and InteractionOpera-
torKind alt was defined and has been subsequently altered to opt, one of the Interac-
tionOperands would have to be removed from the CombinedFragment. Therefore, we
further refine the CombinedFragments metamodel in Fig. 11. Due to page limitations
the figure does not show all specialized CombinedFragments that would ultimately
result. The …Fragment metaclasses are placeholder for all remaining Com-
binedFragments with one or multiple InteractionOperands.

Fig. 11. Further refined CombinedFragment metamodel

5 Lessons Learned

The work presented led to two guidelines infor metamodel development activities.
The first one refers to avoiding implicitly related elements; the second one provides
an indicator when to use enumerations and when to use multiple metaclasses instead.

5.1 Avoid Implicitly Related Elements

This recommendation is accompanied by Einstein’s famous simplicity principle:
“Everything should be made as simple as possible, but not simpler.” The UML Inter-
actions metamodel counteracted this principle by simply reusing ValueSpecifications
for a Message’s arguments, instead of introducing a new metaclass that should have
actually established a unidirectional link to the signature element. This gave rise to a
situation where the list members of two semantically related lists were just implicitly
related with each other via their respective indices. A new metaclass MessageArgu-
mentSpecification, as we have suggested it, would have made the relation explicit and,
the metamodel itself more robust regarding changes done by the user. The problem of
implicitly related elements holds also true for other parts of the UML metamodel,
though. InvocationAction, for example, exhibits the same issue as Messages in the
relation of actual arguments and signature elements.

Our guideline for the creation of more robust metamodels is: Avoid implicitly re-
lated elements. The assumed benefits of saving the metaclass that formalizes the rela-
tion are paid off by increased efforts for future maintenance, comprehension and met-
amodel processing.

5.2 Enumeration vs. Metaclass

A question that is still not sufficiently answered, at least to the knowledge of the au-
thors, is when to use enumerations and when to use several specialized metaclasses?
Doubtlessly, the underlying semantics will not be influenced either way. Enumera-
tions allow reducing the actual number of metaclasses in a metamodel. For example,
every NamedElement defines a visibility within the Namespace it is contained in. The
possible visibilities a NamedElement can declare are defined in the enumeration Visi-
bilityKind as public, private, protected and package. Each subclass of NamedElement
inherits the visibility feature and its semantics, thus, the design of visibility through-
out the entire inheritance hierarchy of NamedElement was well chosen. Specialized
metaclasses instead (e.g., NamedElementPublic, NamedElementPrivate etc.) would
have resulted in an unnecessarily complex metamodel.

So, using enumerations seems to be adequate and accurate if the EnumerationLit-
erals merely affect the semantics of the metaclass they are referenced from. Further-
more, enumerations can keep the inheritance hierarchy of the metaclass concise.

With respect to the CombinedFragment’s interactionOperator (and in few other
metaclasses in UML such as Pseudostate), the situation is different. The various liter-
als of InteractionOperatorKind do affect not only the semantics, but the syntactical
structure of CombinedFragments as well. In this case, changing the enumeration may

require changing the instance of the metaclass as well. The problem of varying syntax
due to enumerations is that the understanding of the metamodel becomes unnecessari-
ly complicated and its maintenance prone to errors. Even though the solution we pre-
sented in Fig. 11 results in a larger number of similar metaclasses, the metamodel
becomes more comprehensible and the actual syntactical differences of the special-
ized metaclasses become obvious.

Our guideline for metamodels regarding enumerations or specialized subclasses is:
If different literals of an Enumeration may turn the model into a syntactically ill-
formed model, one should use specialized metaclasses instead.

6 Conclusion and Outlook

In this paper, we have presented improvement suggestions for parts of the UML In-
teractions metamodel regarding Message arguments and CombinedFragments. We
stressed that the current metamodel of Message arguments reveals some issues of
precise specification of actual arguments, usage of reference arguments as actual ar-
guments and assignment of actual arguments to data sinks accessible by the receiving
Lifeline. Whether these issues originate from the UML Interactions metamodel or
ought to be solved by general concepts of the UML metamodel is not in scope of this
paper. We assumed the view of a user of UML who is wondering that actual argument
handling is possible in UML Activities, but only inconveniently (if ever) supported by
Interactions. From that perspective, we suggested improvements limited to the Inter-
actions’ Message metamodel to overcome these issues. The improved metamodel was
the result of the development of a tool for test modeling, called Fokus!MBT that relies
on the UML Testing Profile and leverages UML Interactions as test case behavior
[20]. In the scope of Fokus!MBT, a minimalistic profile was created that realizes the
metamodel improvements we described with stereotypes. So, the metamodel im-
provements have been applied to real situations and are not just theoretical considera-
tions.

Finally, we extracted two guidelines to metamodeling for more robust metamodels.
The fact that UML Activities and Interactions do provide different approaches for

the very same logical concept gives rise to the considerations that these behavior
kinds should be more tightly integrated with each other in future. There is actually an
issue submitted for this2 need. We support that need, which would result in a more
concise and comprehensible metamodel for UML. As a result, it might turn out that
the issues discussed in the paper rather belong to the fundamental parts of the UML
metamodel. However, as long as Activities and Interactions are treated as separate
parts, the improvements we presented are most minimalistic, since they do not affect
any other part of the UML metamodel. An integration of both behavior kinds is not a
trivial task, though, and not in scope of this paper.

2 http://www.omg.org/issues/uml2-rtf.open.html#Issue6441

Acknowledgements. This work was partially funded by the EU FP 7 projects
REMICS (no. 257793) and MIDAS (no. 318786) and ARTEMIS project VARIES.

References

1. OMG UML: OMGT Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1, #formal/2011-08-06, http://www.omg.org/spec/UML/2.4.1/, 2011.

2. Grabowski, J., and Rudolph, E.: Message Sequence Chart (MSC) - A Survey of the new
CCITT Language for the Description of Traces within Communication Systems. CCITT
SDL Newsletter, No 16, pp. 30–48, 1993.

3. OMG UTP: OMG UML Testing Profile (UTP), Version 1.2, #ptc/2012-09-13,
http://www.omg.org/spec/UTP, 2012.

4. Baker, P., Dai, Z.R., Grabowski, J., Haugen, Ø., Schieferdecker, I. Williams, C.: Model-
driven testing – using the UML testing profile. Springer (2007)

5. Haugen, Ø: Comparing UML 2.0 Interactions and MSC-2000. 4th International SDL and
MSC Workshop, pp. 65–79, SAM 2004, Ottawa, Canada, 2004.

6. Haugen, Ø. and Stølen, K.: STAIRS — Steps to analyze interactions with refinement se-
mantics. In Proc. International Conference on UML, Volume 2863 of LNCS. Springer, pp.
388–402, 2003.

7. Haugen, Ø., Husa, K. E., Runde, R. K., and Stølen, K.: Why timed sequence diagrams re-
quire three-event semantics. In Scenarios: Models, Transformations and Tools, Volume
3466 of LNCS. Springer, pp. 1–25, 2005.

8. Haugen, Ø., Husa, K.E., Runde, R.K., and Stølen, K.: STAIRS towards formal design with
sequence diagrams. Journal of Software and Systems Modeling, pp. 349–458, 2005.

9. Runde, R. K., Haugen, Ø., Stølen, K.: Refining UML interactions with underspecification
and nondeterminism. In: Nordic Journal of Computing, Volume 12, Issue 2, pp. 157–188,
2005.

10. Lund, M. S., and Stølen, K.: A fully general operational semantics for UML 2.0 sequence
diagrams with potential and mandatory choice. In: Proceedings of the 14th international
conference on Formal Methods (FM'06), Pages 380-395, 2006.

11. Störrle, H.: Semantics of interactions in UML 2.0. In: Proceedings of IEEE Symposium on
Human Centric Computing Languages and Environments, 2003.

12. Störrle, H.: Trace Semantics of UML 2.0 Interactions. Technical report, University of Mu-
nich, 2004.

13. Knapp, A.: A Formal Semantics for UML Interactions. In: R. France and B. Rumpe (eds.):
Proc. 2nd Int. Conf. Unified Modeling Language (UML’99), LNCS volume 1723, pp. 116–
130. Springer, Berlin, 1999.

14. Cengarle, M., Knapp, A.: UML 2.0 Interactions: Semantics and Refinement. In: J. Jürjens,
E. B. Fernàndez, R. France, B. Rumpe (eds.): 3rd Int. Workshop on Critical Systems De-
velopment with UML (CSDUML’04), pp.85–99, 2004.

15. Li, M., and Ruan Y.: Approach to Formalizing UML Sequence Diagrams. In: Proc. 3rd In-
ternational Workshop on Intelligent Systems and Applications (ISA), 2011, pp. 28–29,
2011.

16. Shen, H., Virani, A.; Niu, J.: Formalize UML 2 Sequence Diagrams. In: Proc. 11th IEEE
High Assurance Systems Engineering Symposium (HASE) 2008, pp. 437–440, 2008.

17. Störrle, H.: Assert, Negate and Refinement in UML-22 Interactions. In: J. Jürjens, B.
Rumpe, R. France, and E. B. Fernandez, Proc. Wsh. Critical Systems Development with
UML (CSDUML’03), San Francisco, 2003.

18. Harel, D., and Maoz, S.: Assert and negate revisited: modal semantics for UML sequence
diagrams. In: Proc. International workshop on Scenarios and state machines: models, algo-
rithms, and tools (SCESM '06), 2006.

19. Knapp, A., and Wuttke, J.: Model Checking of UML 2.0 Interactions. In; Proc. of the 2006
International conference on Models in Software Engineering (MoDELS'06), pp. 42–51,
Springer, Heidelberg, 2006.

20. Wendland, M.-F., Hoffmann, A., and Schieferdecker, I.: Fokus!MBT – A Multi-
Paradigmatic Test Modeling Environment. To appear in proceedings of: Academics Tool-
ing with Eclipse Workshop (ACME) 2013, in conjunction with the joint conferences
ECMFA/ECSA/ECOOP, Montpellier, France, ISBN 978-1-4503-2036-8, 2013

