Evolution of the UML Interactions M etamode

Marc-Florian Wendlanj Martin Schneidér and @ystein Haugén

IFraunhofer Institut FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
2SINTEF, Norway

{marc-florian.wendland,martin.schneider}@fokus.frau nhofer.de,
Oystein.haugen@sintef.no

Abstract. UML Interactions represent one of the three déferbehavior kinds
of the UML. In general, they specify the exchan§enessages among parts of
a system. Although UML Interactions can reside dfeient level of abstrac-
tions, they seem to be sufficiently elaborated ddnigher-level of abstraction
where they are used for sketching the communicaioong parts. Its meta-
model reveals some fuzziness and imprecision wtefiaitions should be ac-
curate and concise, though.

In this paper, we propose improvements to the UMteractions’ metamodel
for Message arguments and Loop CombinedFragmeatsntake them more
versatile. We will justify the needs for the impemrents by precisely showing
the shortcomings of the related parts of the metiihh&Ve demonstrate the ex-
pressiveness of the improvements by applying tteeexamples that current In-
teractions definition handles awkwardly.

Keywords: UML, Interactions, Sequence Diagram, Messages, Gwdbrag-
ments

1 I ntroduction

UML Interactions are one of the three behavior kind UML 2 [1] and describe in-
formation exchange among parts of a system via agess Graphically, UML Inter-
actions are most commonly depicted as sequenceadiag

UML 1 Interactions originated from a proprietanaldict of sequence charts which
came from Siemens. When UML 2 was initiated in 186fhe of the driving forces
from the telecom industry had already applied segeeliagrams for many years and
were well acquainted with Message Sequence Chei$C] [2]. Ericsson, Motorola
and Alcatel, supplemented also by tool vendor Bejel collaborated to formalize
UML in the direction of MSC and SDL (Specificati@nd Description Language,
recommended in Z.100 by ITU). This resulted inrigyto harmonize the MSC-2000
with UML 2 and still keep most of what had beenUNIL 1 sequence diagrams as
well. While MSC was defined as a stand-alone laggudnteractions of UML 2
should be well harmonized and integrated with #& of UML. However, the tele-

com companies were not satisfied with informal tietes between elements, but
wanted a UML language that was as precise as Wwhgtwere used to from SDL and
MSC. Other stakeholders of UML were not convindeat tUML should be that pre-
cise. A lot of compromises were made, though. Ttvecept ofsemantic variation
pointswas introduced and still remains central to thénden of UML. The overall
metamodel, however, was supposed to tie the diffquarts of UML together and in
some respects it did that, but in other respeasuttification of different concepts
was not done with rigor and the language becameagssary complicated.

Since their advent sequence diagrams were used, &dwever, their use was
mostly of descriptive nature. The communicationsein system parts was sketched
rather than precisely defined. When the UML Testitmgfile (UTP) ([3] and [4])
appeared, there was emphasis on being able toeggerice diagrams for defining
test specifications. Even the data of the messhgdgso be defined more accurately.
In Interactions, exchange of data is expressedasrgents of a message related to a
certain element of the message’s signature. Dube@ompromises made in UML,
several issues appear when message argumentneegrecisely specified.

This paper summarizes the most relevant issuemézsage arguments, explains
how they manifest in the metamodel and suggestsovements to the relevant parts
of the metamodel to overcome those issues. Thisrpdges not question the general
architecture of UML or the rigor of the integratiohits parts (such as Activities and
Interactions), but rather treat Interactions agl&sifficient concept space with re-
spect to its features for describing precise messaghange. The motivation for this
work stems from the development of an UTP-based ftmomodel-based testing,
called Fokus!MBT [20], and from the applicationloferactions for test case specifi-
cation in industrial and research projects. Thus,presented work is not a mere theo-
retical consideration, but has been used for aodqor its applicability to real use
cases.

As typographical convention, all metaclasses ofUML. metamodel are written in
camel-case and start with a capital letter. Assimeiaends and properties of meta-
classes are written in camel-case, start with @taase letter and are set to italic. For
the sake of comprehensibility, the presented figute not mention every aspect of
the UML abstract syntax (e.g., names of non-navegabsociation ends are omitted).
Introduced concepts are set italic the first tileytare mentioned. In case the index
of an ordered association ends is relevant for nataleding, it is surrounded by
square brackets (e.g., [1] indicating the firsteat). This notation is not standardized
for UML object diagrams.

The remainder of this paper is structured as fdalo8ection 2 summarizes previ-
ous work in the area of Interactions. Section Z@ns the relevant parts of the met-
amodel regarding abstract syntax and semanticsioBetrepresents the main part of
our contribution and describes metamodel improverseggestions for Messages and
CombinedFragments. Section 5 proposes two recometiend for the development
of metamodels derived from the improvement suggestipresented in section 4.
Finally, section 6 summarizes our work and providesutlook on future considera-
tions of the Interactions metamodel.

2 Related Work

Haugen compares UML Interactions and Message Sequeharts [5] showing that
Interactions and MSCs are similar down to smalhitet

Haugen, Stolen, Husa, and Runde have written assefipaper on the composi-
tional development of UML Interactions supportirge tspecification of mandatory
and potential behavior, called STAIRS approach, ([8], [8], and [9]). Although the
compositional idea is reflected throughout theesera special interest is dedicated to
a fine-grained differentiation of event receptioonsumption and timing [7] and the
refinement of Interactions with regard to underéfEtion and nondeterminism [9].
Lund and Stolen have presented an operational s&®mdor UML sequence dia-
grams in the context of STAIRS [10].

Formal semantics of UML Interactions and sequenagrdms were several times
discussed. Storrle presented a formal specificatfodML Interactions and a com-
parison of UML 2.0 and UML 1.4 Interactions [11]dafl2]). A similar work was
done by Knapp and Cengarle ([13] and [14]), Li &uwhn [15] and Shen et al. [16].
Special attention was set to the semantics of aaedrnegative CombinedFragments
([17] and [18]), though.

An approach to model checking based upon a formagktsemantics of Interac-
tions was described by Knapp and Wuttke [19].

Our paper is different from the work described aoVhese publications were
mostly dedicated to the trace semantics of Mesezggption and consumption within
UML Interactions, but they did not focus on prebisgpecifying data transmitted by
Messages. Furthermore, the complete metamodel df Uitkractions has not been
considered and improved. Our work addresses thasgrepecification of Message
arguments as well as revised parts of the UML &uBons metamodel to make them
more robust and manageable by subsequent tooling.

3 Relevant Parts of the UML |Interactions M etamode

This chapter briefly summarizes those parts ofUMl Interactions metamodel that
are relevant for understanding the focal pointhid paper. A full description of the
semantics can be found in the current UML spedifica[1] our work is based on.
For the sake of comprehensibility, the necessarig jpd the metamodel are shown in
Fig. 1. nevertheless. The left-hand side showsdlevant parts of Messages, the right
hand side those of CombinedFragments.

Interactions describe the communication betweerte(gially loosely coupled)
parts of a system. The most important building kdoof Interactions are Messages
that constitute information exchange between difieiparts, and Lifelines that repre-
sent those communicating parts.

A Messageepresents either the invocation of an Operatioth® sending and re-
ception of a Signal. The first kind representsesitanasynchronou®r synchronous
call, or areply in case of a preceding synchronous call. The skéamd (i.e., the
sending of a Signal) is by definition always asywoclous. Messages commonly con-

vey data in terms of itactual argumentdo the receiver. The actual arguments of
Message have to correspond to the elements deeirbinitssignature Thesesigna-
ture elementgan manifest as Parameters, in case of an Opegoature, or Prop-
erties, in case of a Signal signature. Consistéstyween actual argument and signa-
ture element requires that the actual argumentnfified by its index inMes-
sage.argumetis type compliant with the corresponding signatetement (identi-
fied by the very same index as the actual argumestther in Opera-
tion.ownedParameteor Signal.ownedAttribule The consistency definition implies
that both lists must be of equal size.

metaclass signature [0..1]

metaclass metaclass

NamedElement | Interaction | CombinedFragment | operand| metaclass
i)) '"te’ac“”’ interactionOperator : [*] InteractionOperand |
|AndEvent[0:1] InteractionOperatorKind
metaclass ’l | metaclass | e guard [0..1]
MessageEnd message [0.1] Message | message [*] ‘ 'ﬁ;ﬁ'
i L metaclass InteractionConstraint
receiveEvent [0..1] ¢ | ConsiderignoreFragment | 4 (-
Covers indirectly via sub:r\a‘ss) | argument [*] {ordered]} message [*], maxint [0..1] \ [0..1],|,minint
MessageOccurrenceSpecification ! r * i K S .
Lifelines involved in Message metaclass ‘ metaclass ‘ metaclass
exchange) ValueSpecification Message ValueSpecification

Fig. 1. Relevant parts of the UML Interactions metamodgéarding Messages (left) and
CombinedFragments (right)

CombinedFragmentwere introduced in UML 2 to enable more expreshiverac-
tions. The semantics of a CombinedFragment is ated by its InteractionOpera-
torKind that also implies the number of Interac@perands a CombinedFragment
may possess. Each InteractionOperand may be guémdesh InteractionConstraint
that defines what that must hold to activate therhctionOperand. Some kinds of
CombinedFragments are supplemented with additioriafmation required in their
semantic context. These are Loop-kind CombinedFesgsn (henceforth called
Loops) andConsiderlgnoreFragmentd oops represent repetitions of the events en-
closed in its InteractionOperand. The number oétigpns can be omitted (any num-
ber of repetitions is valid), restricted to a senglumber of repetitions or specified as
an interval for a minimally and maximally intendesgpetition.

4 Improving M essages and CombinedFragments

The following sections represent the main contrdsubf our work, i.e., improvement
suggestions for the UML Interactions metamodel réigg a precise specification of
Message arguments and CombinedFragments. UMLaaguhge of compromises so
there are most likely several opinions why the éssibeing described subsequently,
actually appear and how they ought to be resolwethe first place. Our improve-
ments are strictly defined from an Interactionspoif view. All suggested modifica-

1 The issues we will discuss and mitigate are diygded in the OMG issue database (see

http://www.omg.org/issues/uml2-rtf.open.html): #8788899, #16569 and #16571.

tions are local to the Interactions metamodel tertaem more robust and as expres-
sive regarding the specification of arguments ativiies, for example. Resolving
more fundamental and maybe philosophic or polggues in the essence of UML is
out of scope of this paper, though.

4.1 Preciseand Robust Specification of M essage Arguments

A Message’s actual arguments and the signatureegisnthey need to correspond to
are implicitly related via their indices in two tiigct lists. This is not problematic as
long as the signature elements have just a singleoptional multiplicity (i.e., lower
and upper bounds equals 1) or only the last sigaaiement is optional. In any other
case, specifying actual arguments may lead to antleg due to UML'’s inability to
model standalone collections of ValueSpecificati@rmsl the implicit relation of
members of two independent lists based on the céspeindices. A discussion
whether ValueSpecification collections should balenavailable in UML is not in the
scope of this paper.

For better illustration, we consider an Operatiathva single Integer collection
Parameter of an unbound size. Fig. 2 illustratesctirresponding object model for a
scenario where a user specifies an actual arguieenith the valuesi, 2, 3.

pl: Parameter I argument [1] iLiteralinteger
ownedParameter [*] type, I value=1
Integer: .
PrimitiveType argument 2] :Literallnteger
[0..1] @ /operation valize="
R signature [| : -
opLiOperation |<——| ghL.Message - argument [3] :Literallnteger
M

Fig. 2. Object model of ill-formed Message

The Messagepl contains three actual arguments what would imipdy its signa-
ture offers three signature elements as well. &, fid just offers one (see Parameter
pl), so referring to UML [1] the model presented adawv invalid by definition. Ac-
tivities, for example, can handle collections ofuat arguments for a single signature
element with the Pin metaclass and we believe dotEms should also provide a
native concept to be able to handle actual argumentsdbections. We emphasize
the termnative because there are some metamodeling workarobatsnisuse met-
aclasses to ensure syntactical correctness. Tine d&picted in Fig. 2 might be solved
by misusing the metaclass Expression as pseudectiolh of ValueSpecifications.
As long as the metamodel of UML will not be enhahweéth dedicated concepts for
ValueSpecification collections, Expressions arei@ty the most elegant (but seman-
tically disputable) way to specify them. Nevertisslethis is kind of a metamodeling
trick, since Expressions are intended to specifyression trees in a sense of an Ab-
stract Syntax Tree (AST). As an improvement, wegssy introducing a dedicated

concept with clear semantics and syntax for the@se of precise specification of a
Message’s actual arguments, calléedssageArgumentSpecificati(see Fig. 3).

metaclass signature metaclass
Message [0..1]] NamedElement
’ message
argument [*] {ordered} ‘ value [*]
{ordered}
metaclass argumentFor metaclass ‘ g metaclass
ConnectableElement MessageArgumentSpecification -> 4 ValueSpecification

ownedValue [*]
{ordered, subsets value}

Fig. 3. Explicit relation between a Message’s signatueeneint and actual arguments

A MessageArgumentSpecification makes the corresporel of a set of actual ar-
guments to its respective signature element exphicbugh the association eadgu-
mentForthat points to the related signature element (Conneedbiment represents
the closest common metaclass of both possible sighalements Parameter and
Property). The corresponding constraint expressigd tlve Object Constraint Lan-
guage (OCL) for restricting what ConnectableElerseain be addressed as signature
element, is:

cont ext MessageArgumentSpecification

i nv: not self.message.ocllsUndefined() i mplies

i f self.message.signature.oclisTypeOf(Operation) t hen
self.message.signature.oclAsType(Operation).ownedPa ramete
r->exists(self.argumentFor)

el se if self.message.signature.oclisTypeOf(Signal) t hen

self.message.signature.oclAsType(Signal).attributes -
>exists(self.argumentFor)

el se

fal se

end if

end if

Literally, the ConnectableElement referenced by $dgeArgumentSpecification
must either be a Parameter of an Operation or pePyoowned by Signal. Both Op-
eration and Signal are to be associated with theskigeArgumentSpecification’s
owning Message (association emssagethrough the association emignature
The explicit relatiorargumentForbetween an actual argument and signature element
eliminates the need for matching by indices of patalent lists. Thus, there is no
longer the need for collection ValueSpecificatiosisice the actual arguments for a
certain signature element can be easily retrievedgdthering all MessageArgu-
mentSpecifications that point to that signaturanglet viaargumentForassociation
end. This does not only simplify the processingviefssages, but also gives rise for
more robust models in case of changes to the afdsignature elements. As an ex-
ample, we consider an Operation with two Parametensse Types are non-
compatible. If the user decides to alter the omfethe Operation’s Parameters, all
Messages would have to reflect that change to ecoine invalid. If there is a large

number of Messages that have set the Operatiohefrssignature, and that already
have correctly specified actual arguments, refigcthe changes might be a tedious
task for the user. With the solution presented abolianging the order did not affect
the validity of the Message at all due to the eptioupling viaargumentFor Fig. 4
shows the relevant parts of the improved objectehotiFig. 2.

ownedValue [1] :Literallnteger

argumentfor | :MessageArgument
pl : Parameter NG > =
Specification value=1
type - P |
ownedParameter (2] argument oinedvalue [2] :Literalinteger
Integer:
PrimitiveType value=2
operation [0..1 message .
i = 2 opnedvalue(3]| :Literalinteger
opl:0Operation opl:Message
signature value=3

Fig. 4. Object model of well-formed model through improets

4.2 Using References as M essage Arguments

The sole use of ValueSpecifications as actual aegusnis sufficient for expressing
literal arguments or references to InstanceSpeatifins. ValueSpecifications are,
however, not capable to reference ConnectableElsn{ans superclass of Parameter
and Property) directly. As a downside, it is nosgible to reference values contained
in data sources such as formal Parameters of tieeatrtion (or the corresponding
BehavioralFeature the Interactions represents giemmentation of) or Properties
accessible to the sending Lifeline (such as lotimibates of the Type the Lifeline
represents, global attributes of the Classifier Ititeraction is embedded in or local
attributes of the Interaction itself). For the rémaker of this paper, we call these val-
uesreference argument3 o motivate the improvement to the metamodel follew-

ing Java code snippet shows a fundamental condaging formal parameters of a
surrounding Operation as actual parameter for aesyent procedure call.

public cl ass S{//context classifier of Interaction

privat e C c; //offers op3(int i, String s)

public void op2(int p1){

c.op3(pl, “That works”); //realized as Interactio n
}

}

A realization of this snippet with the conceptseoffd by Interactions is only pos-
sible by either using an OCL navigation expressoragain misusing other meta-
classes like, e.g., OpaqueExpression (a subclas@lokSpecification) as reference
argument. Even though these workarounds would dgdb, they are not satisfying
because they impose additional parsing and exectailities (e.g., in terms of OCL
engine or any proprietary engine that evaluatespifuwided reference argument)
being available. In Activities, there is a dedichteeans to express data flow among
actions (i.e., ObjectFlow and ObjectNode), for eglamA native concept of Interac-

tions is lacking, though. In preparation for thippr, we also checked the tools Ra-
tional Software Architect (RSA), MagicDraw and Emtgse Architect (EA). Except
for the OCL variant, there is no mechanism offei@donveniently allow the user to
specify reference arguments. OCL, however, is arothnguage that needs to be
learned by a user. Although OCL is highly recomméndhe context of UML, for
such fundamental concepts like referencing valnean accessible data source, we
believe no additional language should be needed.

Unfortunately, the solution we presented in Figuffers from the same deficiency
as the current metamodel. A MessageArgumentSpatidit still refers to Val-
ueSpecifications solely, so consequently, we haviutther elaborate our improve-
ment to cope with the needs described above. Fippicts our suggestion for such
an improvement.

metaclass valueDescriptor [*]{ordered} metaclass
Message ValueSpecificationDescriptor
messaged /\/\F—\
argument [*] {ordered}
metaclass metaclass metaclass
MessageArgumentSpecification - ValueArgumentSpecification ReferenceArgumentSpecification
valueror
value [*] ownedValue [*]
argumentFor {ordered} {ordered, subsets value} refValue [*]{ordered}
metaclass metaclass metaclass
ConnectableElement ValueSpecification ConnectableElement

Fig. 5. Extended metamodel to cope with referenced argtsmen

The improved abstract syntax shown above introdtlte® new metaclasses. The
abstract metacladglueSpecificationDescriptaeplaces ValueSpecification as direct
actual argument of a Message. ValueSpecificationfyaer acts as a placeholder for
the actual arguments, and knows two concrete ssEsd/alueArgumentSpecifica-
tion and ReferenceArgumentSpecificatiofhe first one keeps the ability to use Val-
ueSpecifications as actual arguments. The secoadntroduces the required facility
to access reference arguments.

The extended metamodel now provides the requiredeqis to select reference
arguments accessible from the sending Lifelinecagaharguments. The rules of what
is actually accessible by a sending Lifeline aready defined in the current UML
specification (see clause 5 of subsection Constddisection 14.3.18) [1]. Further-
more, both ValueSpecificationDescriptor subclagsesbe mixed with each other in
a MessageArgumentSpecification. The Java snippettiomed above stressed the
need for mixing value and reference arguments.

A reference argumenMessageArgument.valueDescriptefValug and its corre-
sponding signature elemenfiéssageArgumentSpecification.argumenjFame inter-
related by the fact that the reference argumendshé®zbe type-compliant with and a
subset of the multiplicity of the signature elemekxtmultiplicity subset is defined as
follows: LetM be the set of all MessageArgumentSpecificationanninteraction.
Furthermore, les be a signature elemeny,,, its lower bound and,, its upper
bound. Letr be the reference argument corresponding to thegige elemery, ry,,,
the lower bound ang,, the upper bound of the reference argument,Ran, s) the

relation of a concrete reference argument and gsigai@&lement in the context of
(i,e., the concrete arguments are identified by thavigation expressions
m.valueDescriptor.refValuandm.argumentFor) Then the following must hold dur-
ing runtime:

Vm €M : Ry (1,5) = Tiow = Siow N Typ < Syp Q)

In Fig. 6, the object model according to the Javdecsnippet is shown. The grey-
shaded objects represent the parts of the spdificaf the Interaction. The bold-
faced object is related to the reference argumentept. The association between
MessageArgumentSpecificational and Parameter as well as the association be-
tween ReferenceArgumentSpecificatiotl and Parametepl (marked by thick ar-
rows) visualize how signature elements and referehements belong together.

vd1: refValue type Integer:
e . > pl:Parameter 7*{ T
ReferenceArgumentSpecification aramete PrimitiveType

valueDescriptor /\ ownedParameter

. argumentFor mal:MessageArgument ‘
i : Parameter 1) :
—_— Specification op2:Operation
ownedParameter [1]
argument e
specification
message‘ method
. interaction z
op3:0Operation = opl:Message 0| :Interaction
type \/ | signature message
v message
n er:
) 7] argument
rlmlthET ownedParameter [2] I
| ma2:

s : Parameter | MessageArgumentSpecification

¢

argumentFor

typell/ \|[/valueDescriptor
String: :LiteralString vd2:
L _— -
PrimitiveType value = , That works” |ownedValue ValueArgumentSpecification

Fig. 6. Corresponding object model of improved Interactioretamodel

Still a problem appears in the solution, if theerehce argument is a collection and
has wider bounds than the corresponding signatiemest. There is currently no
concept for extracting a subset of values fromfaremce argument collection. What
is required is a facility for specifying such a sebof values that can be used by a
reference argument. Therefore, the solution needsetenhanced with a new meta-
classReferenceValueSelectok ReferenceValueSelector is in charge of specifying
that subset, if needed (see Fig. 7).

The subset of values for an actual argument isricé@ted by one or more indices
(expressed as Intervals) of the collection idesdifby ReferenceArgumentSpecifica-
tion. An Interval allows specifying a minimal andakimal value. Since the associa-
tion endindexis unbound, it is possible to specify any numifesubsets of elements,
identified by their respective indices that shall éxtracted from the reference argu-
ment collection. The flagsindexSetComplemerst a convenient way to specify what

indices must not be taken over into the actual megt subset, whereas all indices
which are not specified shall be actually consideRuntime compliance of the index
descriptions used in a ReferenceValueSelector ¢drmensured, of course.

metaclass

o metaclass
ReferenceArgumentSpecification Interval
selectorFor index []
?selection ¥
metaclass
ReferenceValueSelector metaclass

refvalie| ConnectableElement

isindexSetComplement : Boolean = false

Fig. 7. Metamodel extended with ReferenceValueSelectorcizetn

4.3 Assigning Values of a M essage to Assignment Targets

Storing return values or parameters of a methddrcalppropriate assignment targets
is rather natural in programming languages. A noomaplex (probably not meaning-
ful) Java code snippet is presented below. Thepsiifs solely used for demonstra-
tion purposes of thArgumentAssignmentSpecificatioretaclass we will introduce in
this section. The code is supposed to represetd phan operation body of the class
S, which was already introduced in Section £2wns two Integer-typed lists (i.e.,
piListl andpiList2) which are initialized. The actual content of tls are not rele-
vant for the example. The code simply selects aetubif a list retrieved by calling of
c2’s operationop4 and adds this subsetpd.istl andpiList2 of instances of
classS. In this section, we discuss the actual shortcgmif the current UML speci-
fication for such constructs and propose a solution

List<Integer> list = c2.0p4(); //actual size of lis t:999
List<Integer> tempList = new

List<Integer>(list.sublist(3,14)); //tempList size: 12
tempList.add(list.get(15)); //tempList size: 13
tempList.add(list.sublist(92,654)); //templList size 576

s.piListl.clear():
s.piListl.addAll(tempList);
s.piList2.addAll(tempList);

In a model, actual arguments of a Message shatitdred in assignment targets,
which manifest in Properties or out-kind Parame{ees, Parameter with a Parame-
terDirectionKindout, inoutor reply) of the surrounding Interaction accessible by the
receiving Lifeline. Henceforth, we refer to an gssnent target as data sink.

Even though argument assignment is reflected indgkieial syntax of Messages in
the current UML specification [1], there is no iodiion how this should be done with
respect to the metamodel. The only statement imthtation subsection of Messages
(see section 14.3.18) about assignment is thabAstare foreseen to describe the
assignment. No further explanations or object meaeaimples are given for clarifica-
tion of how the connection between such an Actind an actual argument shall be

established, nor what concrete Action to ultimatedg. Furthermore, an Action needs
to be integrated via aActionExecutionSpecificatiocovering the receiving Lifeline,
but it is neither clear from the metamodel noriiled in the textual specification how
Message receptions and a set of conceptually celattionExecutionSpecifications
are linked with each other. In preparation for freper, we investigated EA, RSA and
MagicDraw. None of these most popular tools offetgtttionality for target assign-
ment, though. Only the EA does have at least eondidr marking arguments for
assignment, from the study of the resulting XMIwewer, it was not clear to the
authors how the assignment specification actuadpifests.

Another rather conceptual shortcoming is that amunassignment is limited to
the return Parameter of a Message solely, so thkind signature elements (i.e.,
either a Parameter with ParameterDirectionKimdnout, or an attribute of a Signal)
cannot be stored by a receiving Lifeline in a daté. This ought to be possible, since
in-kind signature elements represent informatioteigeined by the sending Lifeline
and accessible by a receiving Lifeline. Therefatyal arguments for in-kind signa-
ture elements should be further usable throughwiekecution of the receiving Life-
line’s behavior. This holds also true for out-kisignhature elements of reply Messag-
es, consequently, for sending Lifelines.

To cope with the needs for assigning actual argisnendata sinks accessible by
Lifelines, we suggest introducing a similar concaptWriteStructuralFeatureAction
from Activities (see clause 11.3.55 of UML [1]) fointeractions, called
ArgumentAssignmentSpecificati(see Fig. 8).

assignment [*] metaclass
ArgumentAssignmentSpecification

assignmentKind : ValueAssignmentKind = replaceAll

———— \b \I/mdex] Enurl:lel?til)n)
metacdass metaclass ValueAssignmentKind
ConnectableElement Interval append
assignmentSource insertAtBegin
metaclass metaclass replaceAll

MessageArgumentSpecification argumentFor| ConnectableElement

Fig. 8. Adding target assignment facilities to the metaetod

A MessageArgumentSpecification may contain a numiiieArgumentAssign-
mentSpecifications, which, in turn, may specifylaner ofassignment targetsAn
assignment target represents a data sink thateedad to incorporate the actual ar-
guments. In case the same actual arguments shafidigned to several data sinks at
the same time, the association essignmentTargeis specified to be unbounded.
Similar to ReferenceValueSelector, a number ofriratis can be used to specify what
actual values at runtime shall be assigned to fisggament targets with respect to
their indices, if the corresponding signature eletmepresents a collection. However,
the semantics in ArgumentAssignmentSpecificatiorcagverse, since it specifies
what actual arguments shall be assigned to a dtdtais contrast to what reference
arguments shall be taken from a data source aslamtgument. However, as with
ReferenceValueSelector, runtime compliance cana@risured at that point in time.

A ValueAssignmentKindpecifies the treatment of already existing datéhé as-
signment target in case the data sink represeoatdlection. Values of the actual ar-
gument at runtime will be either

- Added to existing contents of the data siaggend,

- Inserted at index O of data sirikgertAtBegif), or

- Replace all existing contents in the data gnelplaceAl).

Fig. 9 shows object model of the improved Inte@tdi metamodel corresponding
to the code snippet at the beginning of this sactio

:ArgumentAssignment
assignment Specification :
— assignmentKind = replaceAll Target
y kind = reply pilist1:
dOperati
ownedOperation ’ P Property
op4:Operation =) . owned
| signature assignment index[1]\/ index[2} Index[3]: Attribute
¢ argument Source dInterval dInterval Interval !
ownedParameter | :MessageArgument . .
: Parameter Specification =g Mig=13 | k=32 [:ﬂass
. ~ _ 2:Llass
‘max=14 | | max=15 max = 654 ‘
kind = return %‘ assignment index[1] /| z il Index[3] /
Source index[2] L owned
lower =0 argumentfor Attribute
-k —
upper = piList2:
Property
_type :ArgumentAssignment assignment /)
Integer: assignment Specification Target
PrimitiveType .)
assignmentKind = append

Fig. 9. Complex target assignment statements using cioliettdices

4.4 Improving Loop CombinedFragments

The semantics for CombinedFragments determinedhbly tespective Interaction-
OperatorKind, but there are only two actual mets#a for CombinedFragments in
the Interaction’s metamodel: CombinedFragment amshst@erlgnoreFragment, a
specialization of CombinedFragment. The reason dospecialization of Com-
binedFragment by ConsiderlgnoreFragment is thetiaddi information necessary to
specify the messages to be considered or ignordditinal information is also re-
quired for Loops to define the number of repetiiaf the loop, however, in contrast
to ConsiderlgnoreFragment, the repetition boundge teimply been added to the
general CombinedFragment via ttteractionConstraintmetaclass. It has two asso-
ciations for specifying the bounds of a logpirfint andmaxin). Anyway, it would be
possible to specify meaningless combinations of KkinedFragments and repetition
bounds, like Alternative CombinedFragment with e&iptepetition bounds. To avoid
these meaningless constructs, informal constraiate defined that disallow specify-
ing repetition bounds in a different context thaoops. In the case of Con-
siderlgnoreFragment the additional information ¢tually located in the metaclass
that requires the information (i.e., Considerlgfmegment), for Loops, the infor-
mation is located in the InteractionConstraint@ast This seems to be inconsistent
when comparing Loop and ConsiderlgnoreFragment.

Our proposal treats Loops similar to Considerlghoagment by introducing a
new subclass of CombinedFragment calledpFragmentsee Fig. 10). This allows
supplementing LoopFragment with the informationuieed to specify the repetition
bounds of the loop. Furthermore, the metaclassdatienConstraint becomes obso-
lete, since the LoopFragment itself is now in ckagfj specifying the repetition
bounds. By doing so, the only need for Interactiom&raint has vanished.

metaclass combinedFragment
-
CombinedFragment

Q operand([*]

metaclass metaclass metaclass
ConsiderlgnoreFragment LoopFragment InteractionOperand
message [*] minint [0..1|I Imaxim [0..1]
metaclass metaclass
Message ValueSpecification

Fig. 10. Improved metamodel fdoop Combined Fragments

Further considerations regarding CombinedFragniedtto the conviction that the
different kind of CombinedFragments, determinedtiy InteractionOperatorKind,
should be resolved into concrete subclasses coestiguThe reason for this lies in
the too strong syntactical influence the InteratiperatorKind impose on the struc-
ture of CombinedFragments. Applying a differenehattionOperatorKind to a Com-
binedFragment may enforce the removal of all bu¢ brieractionOperand. For ex-
ample, a CombinedFragment with two InteractionOpésaand InteractionOpera-
torKind alt was defined and has been subsequently alteregttone of the Interac-
tionOperands would have to be removed from the Goedb-ragment. Therefore, we
further refine the CombinedFragments metamodeign FL. Due to page limitations
the figure does not show all specialized Combinagfrents that would ultimately
result. The ...Fragment metaclasses are placeholder for all remaining Com-
binedFragments with one or multiple Interaction@peis.

combinedFragment
metaclass
CombinedFragment operand[*]
A metaclass
[‘ ‘ InteractionOperand
metaclass metaclass metaclass DPZ”{’?‘“U‘-” .
...Fragment AlternativeFragment SingleCombinedFragment - redeiines opezand)
4 combinedFragment
[I L maxint [0..1]
metaclass metaclass metaclass > 3 metaclass
...Fragment OptionalFragment LoopFragment . ValueSpecification
inint [0..1]
minint [0..

Fig. 11. Further refined CombinedFragment metamodel

5 L essons Learned

The work presented led to two guidelines infor nmatdel development activities.
The first one refers to avoiding implicitly relatetements; the second one provides
an indicator when to use enumerations and whesdanultiple metaclasses instead.

5.1 Avoid Implicitly Related Elements

This recommendation is accompanied by Einsteintmoias simplicity principle:
“Everything should be made as simple as possihienbt simpler.” The UML Inter-
actions metamodel counteracted this principle bypst reusing ValueSpecifications
for a Message’s arguments, instead of introducimg\& metaclass that should have
actually established a unidirectional link to thgnature element. This gave rise to a
situation where the list members of two semantjcadlated lists were just implicitly
related with each other via their respective inslick new metaclasklessageArgu-
mentSpecificatioras we have suggested it, would have made théorekatplicit and,
the metamodel itself more robust regarding chadges by the user. The problem of
implicitly related elements holds also true for estlparts of the UML metamodel,
though. InvocationAction, for example, exhibits theme issue as Messages in the
relation of actual arguments and signature elements

Our guideline for the creation of more robust meddets is: Avoid implicitly re-
lated elements. The assumed benefits of savingiftiaclass that formalizes the rela-
tion are paid off by increased efforts for futuraimenance, comprehension and met-
amodel processing.

5.2 Enumeration vs. M etaclass

A question that is still not sufficiently answered,least to the knowledge of the au-
thors, is when to use enumerations and when teegeral specialized metaclasses?
Doubtlessly, the underlying semantics will not béuenced either way. Enumera-
tions allow reducing the actual number of metaelasas a metamodel. For example,
every NamedElement defines a visibility within tiamespace it is contained in. The
possible visibilities a NamedElement can declaeed&fined in the enumeration Visi-
bilityKind as public, private protectedandpackage Each subclass of NamedElement
inherits the visibility feature and its semantittays, the design of visibility through-
out the entire inheritance hierarchy of NamedElenvesss well chosen. Specialized
metaclasses instead (e.g., NamedElementPublic, dlementPrivate etc.) would
have resulted in an unnecessarily complex metamodel

So, using enumerations seems to be adequate anchtecd the EnumerationLit-
erals merely affect the semantics of the metadleesg are referenced from. Further-
more, enumerations can keep the inheritance higyatthe metaclass concise.

With respect to the CombinedFragmerititeractionOperator(and in few other
metaclasses in UML such as Pseudostate), theisituatdifferent. The various liter-
als of InteractionOperatorKind do affect not onhe tsemantics, but the syntactical
structure of CombinedFragments as well. In thi®cabanging the enumeration may

require changing the instance of the metaclasseis The problem of varying syntax
due to enumerations is that the understandingeofrtetamodel becomes unnecessari-
ly complicated and its maintenance prone to erfeven though the solution we pre-
sented in Fig. 11 results in a larger number ofilalmmetaclasses, the metamodel
becomes more comprehensible and the actual sys#hdiiferences of the special-
ized metaclasses become obvious.

Our guideline for metamodels regarding enumerat@rspecialized subclasses is:
If different literals of an Enumeration may turretimodel into a syntactically ill-
formed model, one should use specialized metadasstad.

6 Conclusion and Outlook

In this paper, we have presented improvement stiggesfor parts of the UML In-
teractions metamodel regarding Message argumeintsCambinedFragments. We
stressed that the current metamodel of Messagemamfs reveals some issues of
precise specification of actual arguments, usagefefence arguments as actual ar-
guments and assignment of actual arguments tosttéta accessible by the receiving
Lifeline. Whether these issues originate from thigllUInteractions metamodel or
ought to be solved by general concepts of the UMdtamodel is not in scope of this
paper. We assumed the view of a user of UML whaededering that actual argument
handling is possible in UML Activities, but onlydanveniently (if ever) supported by
Interactions. From that perspective, we suggestgmtavements limited to the Inter-
actions’ Message metamodel to overcome these isshesmproved metamodel was
the result of the development of a tool for testlglimg, called Fokus!MBT that relies
on the UML Testing Profile and leverages UML Intdians as test case behavior
[20]. In the scope of Fokus!MBT, a minimalistic fite was created that realizes the
metamodel improvements we described with steresty®®, the metamodel im-
provements have been applied to real situationsaamahot just theoretical considera-
tions.

Finally, we extracted two guidelines to metamodgfior more robust metamodels.

The fact that UML Activities and Interactions doopide different approaches for
the very same logical concept gives rise to thesiclmations that these behavior
kinds should be more tightly integrated with eattreoin future. There is actually an
issue submitted for tHimeed. We support that need, which would resul imore
concise and comprehensible metamodel for UML. Assalt, it might turn out that
the issues discussed in the paper rather belotigettundamental parts of the UML
metamodel. However, as long as Activities and hitBons are treated as separate
parts, the improvements we presented are most miisiic, since they do not affect
any other part of the UML metamodel. An integratafrboth behavior kinds is not a
trivial task, though, and not in scope of this pape

2 http://www.omg.org/issues/uml2-rtf.open.html#isgd41

Acknowledgements. This work was partially funded by the EU FP 7 puotg
REMICS (no. 257793) and MIDAS (no. 318786) and ARIE project VARIES.

References

10.

11.

12.

13.

14.

15.

16.

17.

. OMG UML: OMGT Unified Modeling Language (OMG UMLJuperstructure, Version

2.4.1, #formal/2011-08-06, http://www.omg.org/spédl /2.4.1/, 2011.

Grabowski, J., and Rudolph, E.: Message Sequencd MWSC) - A Survey of the new
CCITT Language for the Description of Traces withian@nunication Systems. CCITT
SDL Newsletter, No 16, pp. 30-48, 1993.

OMG UTP: OMG UML Testing Profile (UTP), Version 1.2#ptc/2012-09-13,
http://www.omg.org/spec/UTP, 2012.

. Baker, P., Dai, Z.R., Grabowski, J., Haugen, d., &ehilecker, I. Williams, C.: Model-

driven testing — using the UML testing profile. Biger (2007)

Haugen, @: Comparing UML 2.0 Interactions and MSO04th International SDL and
MSC Workshop, pp. 65-79, SAM 2004, Ottawa, Canadé4 20

Haugen, @. and Stglen, K.: STAIRS — Steps to analyegactions with refinement se-
mantics. In Proc. International Conference on UMblume 2863 of LNCS. Springer, pp.
388-402, 2003.

. Haugen, @., Husa, K. E., Runde, R. K., and Stglen\\ay timed sequence diagrams re-

quire three-event semantics. In Scenarios: Modeansformations and Tools, Volume
3466 of LNCS. Springer, pp. 1-25, 2005.

. Haugen, @., Husa, K.E., Runde, R.K., and StglenSKAIRS towards formal design with

sequence diagrams. Journal of Software and Sydtkrdsling, pp. 349-458, 2005.
Runde, R. K., Haugen, @., Stglen, K.: Refining UMLenattions with underspecification
and nondeterminism. In: Nordic Journal of Computiglume 12, Issue 2, pp. 157-188,
2005.

Lund, M. S., and Stalen, K.: A fully general op@aal semantics for UML 2.0 sequence
diagrams with potential and mandatory choice. IrmcBedings of the 14th international
conference on Formal Methods (FM'06), Pages 380-3936.

Storrle, H.: Semantics of interactions in UML 2. Proceedings of IEEE Symposium on
Human Centric Computing Languages and Environmef063.2

Storrle, H.: Trace Semantics of UML 2.0 Interactiofiechnical report, University of Mu-
nich, 2004.

Knapp, A.: A Formal Semantics for UML Interactiohs. R. France and B. Rumpe (eds.):
Proc. 2% Int. Conf. Unified Modeling Language (UML'99), LNC®Ilume 1723, pp. 116—
130. Springer, Berlin, 1999.

Cengarle, M., Knapp, A.: UML 2.0 Interactions: Setizmand Refinement. In: J. Jlrjens,
E. B. Fernandez, R. France, B. Rumpe (ed§)in® Workshop on Critical Systems De-
velopment with UML (CSDUML’'04), pp.85-99, 2004.

Li, M., and Ruan Y.: Approach to Formalizing UML $mmce Diagrams. In: Proc?3n-
ternational Workshop on Intelligent Systems and lisations (ISA), 2011 pp. 28-29,
2011.

Shen, H., Virani, A.; Niu, J.: Formalize UML 2 Semnce Diagrams. In: Proc. % 1EEE
High Assurance Systems Engineering Symposium (HASBB, pp. 437-440, 2008.
Storrle, H.: Assert, Negate and Refinement in UML{Bg&ractions. In: J. Jirjens, B.
Rumpe, R. France, and E. B. Fernandez, Proc. WshcalCi8ystems Development with
UML (CSDUML’03), San Francisco, 2003.

18. Harel, D., and Maoz, S.: Assert and negate redsiteodal semantics for UML sequence
diagrams. In: Proc. International workshop on Sdesand state machines: models, algo-
rithms, and tools (SCESM '06), 2006.

19. Knapp, A., and Wuttke, J.: Model Checking of UML M@eractions. In; Proc. of the 2006
International conference on Models in Software Bagiing (MoDELS'06), pp. 42-51,
Springer, Heidelberg, 2006.

20. Wendland, M.-F., Hoffmann, A., and Schieferdecker, FokusMBT — A Multi-
Paradigmatic Test Modeling Environment. To appeasroceedings of: Academics Tool-
ing with Eclipse Workshop (ACME) 2013, in conjunctiavith the joint conferences
ECMFA/ECSA/ECOOP, Montpellier, France, ISBN 978-1-45036-8, 2013

