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Abstract. Feature modeling is a common way to present and manage variability 

of software and systems. As a prerequisite for effective variability management 

is comprehensible representation, the main aim of this paper is to investigate 

difficulties in understanding feature models. In particular, we focus on the com-

prehensibility of feature models as expressed in Common Variability Language 

(CVL), which was recommended for adoption as a standard by the Architectur-

al Board of the Object Management Group . Using an experimental approach 

with participants familiar and unfamiliar with feature modeling, we analyzed 

comprehensibility in terms of comprehension score, time spent to complete 

tasks, and perceived difficulty of different feature modeling constructs. The re-

sults showed that familiarity with feature modeling did not influence the com-

prehension of mandatory, optional, and alternative features, although unfamiliar 

modelers perceived these elements more difficult than familiar modelers. OR 

relations were perceived as difficult regardless of the familiarity level, while 

constraints were significantly better understood by familiar modelers. The time 

spent to complete tasks was higher for familiar modelers. 

Keywords: Variability analysis, Software Product Line Engineering, Model 

Comprehension 

1 Introduction 

With the proliferation of software systems as an essential part of almost any business , 

their requirements increased and became more complex. Against this background, the 

variety of software artifacts has also heightened and a fundamental challenge is figur-

ing out how to manage this variety. One way to tackle these challenges is analyzing 

and representing variability. Variability is extensively studied in the field of Software 

Product Line Engineering [1, 2] which aims at supporting the development and 

maintenance of families of software products, termed software product lines.  

A systematic review published in 2011 [3] shows that variability management in 

software product lines is primarily done utilizing feature-oriented modeling. A feature 

diagram is a tree or graph that describes the end-user visible characteristics (features) 
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of systems in a software product line and the relationships and constraints (dependen-

cies) between them. Different feature-oriented languages have been proposed over the 

years. However, no standard feature-oriented modeling language has emerged yet. 

Recently, some initiatives in this direction started in the Object Management Group 

(OMG), yielding the submission of the Common Variability Language (CVL) pro-

posal [4]. CVL is a domain-independent language for specifying and resolving varia-

bility. It facilitates the specification and resolution of variability over any instance of 

a Meta-Object Facility (MOF)-based language (such an instance is termed a base 

model). Lately, CVL was recommended for adoption as a standard by the Architec-

tural Board of OMG. 

A prerequisite for effective variability management is comprehensible representa-

tion of variability. However, there are few empirical studies that analyze difficulties 

in understanding variability representations  in general and feature diagrams in par-

ticular. To fill this gap, the main aim of this study was to examine the cognitive diffi-

culty of understanding variability in feature modeling. In order to address this chal-

lenge we conducted an exploratory study using CVL models, perceiving CVL as an 

emerging standard that uses feature-oriented principles for specifying and represent-

ing variability. We concentrate on the variability abstraction part of CVL, which pro-

vides constructs for specifying variability without defining the concrete consequences 

on the base model. We further seek to answer in this study how modeler’s familiarity 

with feature modeling influences comprehension difficulties. Differences between 

novices and experts can point on specific problems in comprehension. In additio n, it 

is of specific interest how the target user group of CVL, modelers who are familiar 

with feature modeling, comprehend CVL and can easily switch from feature models 

to CVL models, as comprehensibility of a new modeling language is an important 

basis for its acceptance in practice.  

The rest of the paper is structured as follows. Section 2 reviews the related work 

and provides the required background on CVL. Section 3 elaborates on the experi-

ment design and procedure, while Section 4 presents the analysis procedure and the 

results. Section 5 discusses the results and the threats to validity. Finally, Section 6 

summarizes and points on future research directions. 

2 Related Work and Background 

2.1 Comparison of Feature Modeling Languages  

Comparison of feature modeling languages is mainly done using classification 

frameworks or according to lists of characteristics. Istoan et al. [5], for example, sug-

gest a metamodel-based classification of variability modeling approaches : methods 

may use a single (unique) model to represent both commonality and variability or 

distinguish and keep separate the variability model from the base model. Methods that 

use a single model may annotate the base model by means of extensions or combine a 

general, reusable variability meta-model with different domain metamodels. Methods 

that use separate models  specify the variability model using notations such as feature 



diagrams, decision models, or CVL [4]. Istoan et al. further compared the artifacts of 

these methods in the metamodel and model levels. 

Czarnecki et al. [6] compared feature modeling and decision modeling along ten 

dimensions: applications, unit of variability (features vs. decisions), orthogonality, 

data types, hierarchy, dependencies and constraints, mapping to artifacts, binding time 

and mode, modularity, and tool aspects. They further showed how the main properties 

of feature modeling and decision modeling are reflected in three specific methods 

including an initial version of CVL. 

Schobbens et al. [7] surveyed and compared seven feature diagram notations. 

These notations differ in their graph types (trees vs. directed acyclic graphs – DAG), 

the supported node types (e.g., cardinality support), the supported graphical constraint 

types (namely, “requires”, “excludes”, none, or both), and the supported textual con-

straint types (i.e., textual composition rules support). In a later work, Heymans et al. 

[8] evaluated the formal properties of feature diagram languages using Krogstie et 

al.’s semiotic quality framework [9] and Harel and Rumpe’s guidelines for defining 

formal visual languages [10]. The list of evaluation criteria included: (1) expressive-

ness: what can the language express? (2) embeddability: can the structure of a dia-

gram be kept when translated to another language? and (3) succinctness: how big are 

the expressions of one and the same semantic object? 

Djebbi and Salinesi [11] provided a comparative survey on four feature diagram 

languages for requirements variability modeling. The languages are compared accord-

ing to a list of criteria that includes readability, simplicity and expressiveness, type 

distinction, documentation, dependencies, evolution, adaptability, scalability, support, 

unification, and standardizeability. 

Haugen et al. [12] proposed a reference model for comparing feature modeling ap-

proaches. This model makes distinction between the generic sphere, which includes 

feature models and product line models, and the specific sphere, which includes fea-

ture selection and product models. Standard languages, annotations, and special do-

main-specific languages are compared based on this reference model.  

Comparing product line architecture design methods, Matinlassi [13] suggested an 

evaluation framework that is based on Normative Information Model-based Systems 

Analysis and Design (NIMSAD) [14]. According to this framework, there are four 

essential categories of elements for method evaluation: (1) context, including specific 

goals, product line aspects, application domains, and methods inputs/outputs; (2) user, 

including target groups, motivation, needed skills, and guidance; (3) contents, includ-

ing method structure, artifacts, architectural viewpoints, language, variability, and 

tool support; and (4) validation, including method maturity and architecture quality.  

All the above studies concentrate on the expressiveness of the compared languages, 

while usability-related issues follow a “feature comparison” approach. The drawback 

of such an approach is the subjectivity in developing both the comparison checklist 

and its interpretation. In addition, the above studies neglect comprehensibility, which 

is an important issue in modeling, as the abstract goal of modeling is to formally de-

scribe some aspects of the physical and social world around us for the purpose of 

understanding and communication [15].  



Recent research has started to examine comprehensibility aspects of variability 

modeling languages. The work in [8] looks into comprehensibility appropriateness, 

namely whether or not language users understand all possible statements of the lan-

guage. Comprehensibility appropriateness  is, however, handled subjectively through 

embeddability and succinctness. 

Conducting two experiments, Tsoury and Reinhartz-Berger [16, 17] compared the 

comprehensibility of Cardinality-Based Feature Modeling (CBFM) [18] and Applica-

tion-based DOmain Modeling (ADOM) [19]. The comparison is based on compre-

hensibility of commonality- and variability-related concepts, including mandatory and 

optional elements, dependencies, variation points and variants. The experiments were 

conducted with small numbers of participants with similar background and experi-

ence. Accordingly, the conclusions were limited and concentrated on the differences 

between the methods: the feature-oriented CBFM and the UML-based ADOM.  

To summarize, comprehensibility of feature modeling languages still needs to be 

assessed empirically. To fill this gap, we concentrate in this study on identifying diffi-

culties in understanding feature models expressed in CVL. Next, we briefly present 

CVL. 

2.2 Common Variability Lanaguge (CVL) 

As noted, CVL facilitates the specification and resolution of variability over any base 

model defined by a metamodel. Its architecture consists of variability abstraction and 

variability realization. Variability abstraction supports modeling and resolving varia-

bility without referring to the exact nature of the variability with respect to the base 

model. Variability realization, on the other hand, supports modifying the base model 

during the process of transforming the base model into a product model.  

In this study, which concentrates on the variability abstraction part of CVL, the 

main examined concepts are VSpecs (variability specifications), their relationships, 

and constraints. VSpecs are technically similar to features  in feature modeling and can 

be divided into four subclasses: (1) choices – require yes/no decisions, (2) variables – 

require providing values of specified types, (3) VClassifier (variability classifiers) – 

require creating instances and resolving their variability, and (4) CVSpec – composite 

VSpecs. The VSpecs are organized in trees that represent logical constraints on their 

resolutions (configurations). VSpec children are related to their parents higher in the 

tree in two different ways: (1) Mandatory or optional: The positive resolution of a 

child may be determined by the resolution of the parent (mandatory) or can be ind e-

pendently determined (optional).  (2) Group multiplicity: A range is given to specify 

how many total positive resolutions must be found among the children: 

XOR/alternative – exactly one, OR – at least one.  

Finally, constraints express dependencies between elements of the variability 

model that go beyond what is  captured in the tree structure. Two types of constraints 

are primarily supported in CVL: (1) A implies B – if A is selected, then B should be 

selected too (this constraint is known as “requires” in feature modeling), and (2) Not 

(A and B) – if A is selected, then B should not be selected and vice versa (this con-

straint is known as “excludes” in feature modeling). 



As an example, consider Fig. 4(a) in the appendix. This figure describes the al-

lowed variability in Skoda Yeti cars , a sport utility vehicle model of Skoda: the fuel 

of these cars is either diesel or benzin; the gear is either manual or automatic; the 

drive is either 2-weel-drive or 4x4; and the gadget level is either active or adventure. 

These configurations are further restricted by the constraints, e.g., a Skoda Yeti car 

whose gadget level is active and its fuel is diesel must have a manual gear (i.e., it 

cannot have an automatic gear). Fig. 4(b) further elaborates on the possible configura-

tions of extra features in Skoda Yeti cars: such a car may have heated front pane, 

sunset, or panorama roof; it may have parking heater; and it may have styling package 

(and if so it may also have offroad styling).  

3 Experiment Design and Procedure  

3.1 Research Goal 

Following Wohlin et al.’s guidelines [20], the goal of our exploratory study was to: 

Analyze the effect of feature modeling familiarity on the comprehension difficulties 

of CVL, an emerging common variability language;  

For the purpose of evaluation; 

With respect to comprehension score in terms of percentage of correct solution, time 

spent to complete tasks , and participants’ perception of difficulty; 

From the point of view of modelers;  

In the context of students of information systems, informatics and business. 

3.2 Research Planning and Design 

We derived from the above goal the following research questions and settings:  

RQ1: Are there differences in the difficulty to comprehend CVL models for modelers 

who are familiar with feature modeling in general, in comparison to those who are 

unfamiliar with it? 

To answer this research question we followed a quasi-experimental between-

subject design. We classified participants into two distinct groups: participants famil-

iar/unfamiliar with feature modeling. The exact classification procedure is explained 

in Section 3.6. The independent variable in this case was familiarity with feature 

modeling, while the dependent variables were comprehension scores (measured using 

the percentage of correct solution), time spent to complete tasks, and difficulty per-

ception using self-rated difficulty of specific element types. 

There is a long tradition of researching domain familiarity in terms of expert-

novice differences in the area of system development. Petre [21] has argued that “ex-

perts ‘see’ differently and use different strategies than novice graphical program-

mers”. Prior research has revealed that experts develop language-independent, ab-

stract problem representations , so-called schemas, which make similar tasks for them 

easier. In light of these theoretical considerations  we conjecture that comprehending 



CVL models should be easier for modelers who are familiar with feature modeling. 

We hypothesize that as follows: 

H1a. Familiarity with feature modeling will be positively associated with the com-

prehension score. 

H1b.  Familiarity with feature modeling will be positively associated with the time 

spent to complete tasks. 

H1c. Familiarity with feature modeling will be negatively associated with the per-

ceived difficulty of specific feature modeling constructs . 

The second research question is divided into the following two parts: 

RQ2a: Which feature modeling constructs  are difficult to understand?  

RQ2b: Are there specific difficulties in comprehending CVL models for modelers 

who are familiar with feature modeling, in comparison to those who are unfamiliar 

with it? 

To answer the second research question we used a within-subjects design. The se-

lected independent variable was element type, namely mandatory, optional, and alter-

native (XOR) features, as well as OR relations and feature constraints (dependencies). 

The dependent variables were comprehension score, time spent, and self-rated diffi-

culty of the specific feature modeling elements. As it is not possible to construct com-

prehension tasks that only demand the understanding of “basic” elements, namely, 

mandatory, optional, and alternative features, we could only assess their subjective, 

but not their objective, difficulty. However, it was possible to objectively determine 

comprehension score and time to complete tasks related to OR relations and con-

straints. 

We refrain from hypothesis development for the second research question, as it 

would not be helpful in such an exploratory setting [22]. While a considerable amount 

of literature has been published on expert-novice difference in general (RQ1), no 

research has been conducted on the comprehension of specific feature modeling con-

structs (RQ2) up to now. To our knowledge this is the first study evaluating compre-

hension of CVL, thus there is neither an adequate empirical nor a theoretical basis 

available to formulate a priori hypotheses. 

3.3 Experimental Material  

The objects of the experiment were two CVL models describing different sets of fea-

tures of Skoda Yeti cars. The CVL models for the experiment were built by Prof. 

Haugen, who is the founder of CVL and is familiar with the possible Skoda Yeti con-

figurations from the Norwegian Skoda public web pages . The first model (see Fig. 4a 

in the appendix), named “basic”, describes basic features of Skoda Yeti. It includes 

mandatory and alternative features (using XOR relations), as well as four “implies” 

(“requires”) constraints . The number of valid configurations is 6. The second model 

(see Fig. 4b in the appendix), named “expanded”, describes advanced (extra) features. 

It includes optional features and an OR relationship, as well as two “excludes” con-

straints (phrased as “not (A and B)”). The number of valid configurations in this case 

is much higher. 



3.4 Tasks  

The tasks were embedded within an online questionnaire. On each model ten ques-

tions were asked, examining whether specific configurations of Skoda Yeti are al-

lowed according to the model. These questions can be described as surface-level tasks 

which measure comprehension of models more directly than deep-level tasks, which 

require participants to work with the models in a usage context [23]. For our research 

goal of checking the comprehensibility of a relatively new language, surface-level 

model comprehension tasks are most appropriate.  

The participants were presented with the model and one question at a time. They 

had to choose between the following answers: Correct , Wrong, Cannot be answered 

from model, I don’t know. After answering a question, the participant proceeded to 

the next question, but could not return to previous questions. This way we could 

measure the time needed to answer an individual question . The questions used in the 

experiment appear in the appendix. 

3.5 Procedure  

The participants were requested to open the online questionnaire. There, they had to 

fill first a pre-questionnaire that was composed of two parts. The purpose of the first 

part of the pre-questionnaire was to obtain general information about the participants 

and their background, including age, gender, degree and subject of studies , and famil-

iarity with feature modeling. To measure self-rated familiarity with feature modeling, 

which was one of the independent variables, we adopted the three-item modeling 

grammar familiarity scale of Recker [24]: (1) Overall, I am very familiar with feature 

diagrams; (2) I feel very confident in understanding feature diagrams; (3) I feel very 

competent in modeling feature diagrams.  

The second part of the pre-questionnaire aimed to objectively examine the prior 

knowledge of the participants in modeling. This part included three models in three 

languages: ER, BPMN, and feature diagrams. The participants had to state in which 

language each model was specified and answer three comprehension questions about 

the models. Each question presented a statement and four possible answers: Correct, 

Wrong, Cannot be answered from model, I don’t know.  

After filling the pre-questionnaire, the participants were presented with slides ex-

plaining and exemplifying the variability abstraction part of CVL (the participants 

also got hard-copies of these slides which they could consult while answering the 

questions). The participants had to study CVL variability abstraction part on their own 

from the slides and proceed to the main questionnaire. The main questionnaire includ-

ed two CVL models of Skoda Yeti cars and two sets of questions , each of which re-

ferred to a different model (basic vs. expanded). To avoid any order effects due to 

fading attention, we used two different samplings  of the main questionnaire, in which 

models were arranged in a different sequence. As noted, the models and questions of 

the main questionnaire appear in the appendix.  

The time spent on each question was recorded by the online questionnaire. No rigid 

time constraints were imposed on the participants. 



After completing the questions on each model, the participants had to fill a post-

part questionnaire that collected feedback on the tasks and the difficulty to understand 

different model elements  (mandatory and optional features, XOR and OR relations). 

The answering options ranged from 1=very easy to 7=very difficult. In addition, the 

participants could report on difficulties they experienced in open text fields.  

3.6 Participants  

Participants were recruited from three different classes from information systems, 

informatics and business curricula with prior training in modeling. Indeed, it can be 

argued that using students to evaluate a language that aimed at software professionals  

is problematic, but it has been shown in [25] that students have a good understanding 

of the way industry behaves, and may work well as subjects in  empirical studies in 

specific areas, such as requirements engineering. Additionally, students are a relative-

ly homogenous group concerning knowledge about and experience with conceptual 

modeling [26].  

The executions of the experiment took place in the spring semester of 2013 in 

three courses that deal with modeling in the University of Haifa, the Vienna Univers i-

ty of Economics and Business, and the University of Oslo. To assure sufficient mot i-

vation, the experiment was defined as an obligatory exercise or participants received 

approximately 5% course credit for participating. A total of 38 students participated in 

the study.  

We now turn to the categorization of participants  as familiar/unfamiliar with fea-

ture modeling. Since CVL is a relatively new language there are so far no “experts”, 

however familiarity with feature modeling can serve as an adequate proxy. We use an 

extreme group selection approach to define two clearly distinct groups on the contin-

uous variable familiarity in order to heighten power of statistical tests [27]. 15 partici-

pants were categorized as not familiar with feature modeling. They had answered the 

question “are you familiar with feature diagrams?” negatively. Regarding those who 

had answered this question affirmatively, we crosschecked the mean score of the scale 

familiarity with feature diagrams (3 items). We also assessed the reliability of this 

scale, which was adequate (Cronbach’s alpha = 0.96). According to Nunnally and 

Bernstein [28] Cronbach’s alpha should be higher than 0.8 to combine items in a 

mean value. The answering options for this scale ranged from 1=strongly disagree to 

7=strongly agree. We concluded that only participants with a mean threshold value of 

3.5 for this scale could be regarded as “familiar”. Based on this criterion, 6 partici-

pants were excluded. In addition we checked whether all of these “familiar” partici-

pants also had correctly identified the figure of the feature diagram in the pre-

questionnaire. This objective test led to further exclusion of one participant. Overall 7 

participants were excluded as they were neither unfamiliar nor sufficiently familiar 

with feature modeling, resulting in 16 participants who were categorized as familiar 

with feature modeling. The final sample consisted of 31 participants: 22 males (58%) 

and 16 females (42%) with a mean age of 28 years. 



Table 1. Differences in participants’ skills 

 Unfamiliar with  

feature modeling (n=15) 

Familiar with  

feature modeling (n=16) 

Statistical  

Test 

 Mean SD Mean SD  

Feature modeling test 

score (3 points possible) 

1.20 0.77 2.13 0.89 Tdf=29=-3.09 

p=0.00 

Modeling score test (8 

points possible) 

4.00  1.25  4.19  0.91 Tdf=29=-0.48 

p=0.64 

 

We performed t-tests to demonstrate differences between the groups (see Table 1 

for detailed results). As expected, participants of the familiar group scored better in 

the feature modeling test, while no significant differences in the modeling pre-test 

were found. This means that the students in the unfamiliar group were familiar with 

modeling in general, but unfamiliar with feature modeling and these differences may 

affect their difficulties in comprehending CVL models. 

4 Analysis Procedure and Experiment Results 

Data analysis was performed using SPSS 19. We first present the effects of familiarity 

with feature modeling on comprehension. We then refer to difficulties to comprehend 

specific model elements . Finally, we present results on comprehension difficulties as 

perceived and reported by the participants . 

4.1 Comprehension and Familiarity with Feature Modeling   

To answer the first research question (RQ1: Are there differences in the difficulty to 

comprehend CVL models for modelers who are familiar with feature modeling in 

general, in comparison to those who are unfamiliar with it?), we performed an 

analysis of covariance (ANCOVA) for repeated measures (basic and expanded 

models) for each dependent variable (comprehension score and time spent). The 

independent variable was familiarity with feature modeling (familiar vs. unfamiliar). 

Familiarity had a significant influence on the comprehension score (F=2.60, p=0.01). 

Participants familiar with feature modeling achieved a comprehension score of 85% 

on average, while unfamiliar participants achieved only 69%, lending support to H1a, 

which had predicted a positive association between familiarity and comprehension 

score. In addition, the interaction effect of familiarity and model (basic vs. expanded) 

was significant (F=9.68, p=0.00). As can be seen in Fig. 1 there was almost no 

performance difference between familiar and unfamiliar modelers in the expanded 

model, but a clear difference in the basic model. As noted, the basic model included 

only XOR relations and mandatory features, as well as “implies” (“requires”) con-

straints, while the expanded model included an OR relation and “excludes” con-

straints. H1a can only be partially supported in case of the basic model.  

There was also a significant influence of familiarity on time (F=5.39, p=0.03). 

Contrary to our expectations, however, participants familiar with feature modeling 



took more time to complete tasks (418 seconds vs. 298 seconds). Thus, H1b could not 

be supported, i.e., familiarity is negatively associated with time spent.  

To control for possible order effects , we had included a second independent 

variable in the analyses – model order – which represents the order in which models 

were presented to the participants. Model order had two values: ‘basic first’ – the 

basic model was presented first and ‘basic later’ – the expanded model was presented 

first. We found that the model order did not have any significant effect on the 

comprehension score, but it influenced the time spent; there was a significant 

interaction effect of model (basic vs. expanded) and model order (F=9.00, p=0.01). 

Participants spent more time on answering questions on the first model they were 

presented with than for the second model. 

 

  

Fig. 1. Familiarity and Comprehension of Basic and Expanded Models 

4.2 Difficulties to Comprehend Specific Model Elements 

In order to answer the second research question (Which feature modeling constructs 

are difficult to understand? Are there specific difficulties in comprehending CVL for 

modelers who are familiar with feature modeling, in comparison to those who are 

unfamiliar with it?), we identified two model elements which could be addressed in 

seperation from other elements via comprehension tasks and whose comprehension 

deserve special attention: constraints and OR relations. 

To check whether comprehension tasks which demand understanding of con-

straints in general are more difficult to understand than tasks without constraints , we 

performed again ANCOVAS. Overall, there was no difference between the compre-

hension of questions which involved constraints (79% correctness) and questions 

which did not involve constraints (81%). However, participants spent more time to 

solve questions without constraints (43 seconds) than with constraints (25 seconds; 

F=26.20, p=0.00). Familiarity has a significant influence on comprehension score 

(F=5.29, p=0.03) and time spent (F=4.74, p=0.04) as already reported in the prior 

analysis. We further observed that there is a significant interaction effect of familiari-

ty and the existence of constraints (F=4.76, p=0.04) on comprehension score. As can 

be seen in Fig. 2 below, there is a larger performance difference of comprehension for 

questions involving constraints. While participants familiar with feature modeling 

achieved an average comprehension score of 90% on questions involving constraints, 
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unfamiliar participants achieved only 67%. The difference in questions not involving 

constraints is smaller (84% vs. 78%, respectively). These results strengthen support 

for H1a (familiarity is positively associated with the comprehension score) in case 

constraints are involved. 

 

 

Fig. 2. Familiarity and Comprehension of Constraints 

Another worth-mentioning result refers to OR relations, which were only included 

in the expanded model. We grouped questions according to the semantics of the OR 

relation: none – no option appears in the question, one – exactly one option appears , 

and many – two or more options appear. Comparisons between the three groups were 

analyzed with ANCOVAS. We found significant main effects of OR relations on 

comprehension score (F=3.18, p=0.05) and time spent (F=8.53, p=0.00). As can be 

seen in Fig. 3, questions including no option (‘none’) were the easiest for both groups. 

Questions including no option (‘none’) took on average most time (40 seconds), fo l-

lowed by one option selection (‘one’, 48 seconds) and multiple selections (‘many’, 26 

seconds). The analysis further showed that for those tasks from the expanded model 

familiarity had no effect on the comprehension score, but on time, as discussed in the 

previous section. There were no significant interaction effects with familiarity. 

 

 

Fig. 3. Familiarity and Comprehension of OR Relations 

4.3 Perceived Comprehension Difficulties 

To find out whether familiarity with feature modeling changed the difficulties partic i-

pants experienced, we performed a series of t-tests. Table 2 gives descriptive statistics 

and the details of the analyses. Note, we used 7-point scale for these items, with 
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1=very easy and 7=very difficult. Basic elements, namely, mandatory, optional, and 

alternative (XOR) features, were rated significantly more difficult by participants 

having no prior experience with feature models. There was no difference between the 

groups for the difficulty rating of OR relations, which were only included in the ex-

panded model. As familiarity was associated negatively with perceived difficulty of 

specific feature modeling constructs  in 4 of 5 cases (the gray rows in the table), the 

results lend support to H1c. 

Regarding constraints, participants mentioned difficulties in the open text fields. 

Participants of the unfamiliar group mentioned that “learning and mapping constraints 

were a little [bit] difficult”. Participants of the familiar group mentioned that “the 

‘implies’ relationships were fairly difficult to understand” and “the NOT (A and B) 

[constraint] was difficult without [an] example” (although an example of such a con-

straint was included in the CVL slides). One participant of the familiar group also 

stated that “the constraints helped understand the model's intent very clearly”. The 

participants further mentioned difficulties that we had not explicitly asked for, includ-

ing the unclear meaning of parent-child relations in the feature tree (“It’s hard to un-

derstand if feature can be used without his parent”) and the lack of explicitness of all 

feature combinations (“Many combinations were not specified directly in the model“).  

Table 2. Comprehension difficulties as reported by the participants 

  Unfamiliar with 

feature modeling 

Familiar with 

feature modeling 

Total t  p 

 

M SD M SD M SD 

mandatory features 

(basic model) 

3.40 1.55 2.13 0.72 2.74 1.34 2.91 0.01 

optional features 

(basic model) 

3.67 1.63 2.19 0.83 2.90 1.47 3.14 0.00 

optional features 

(expanded model) 

3.33 1.35 2.31 1.01 2.81 1.28 2.40 0.02 

XOR relations 

(basic model) 

3.27 1.67 2.13 0.72 2.68 1.38 2.45 0.02 

OR relations 

(expanded model) 

3.07 1.39 2.56 1.09 2.81 1.25 1.13 0.27 

5 Discussion and Threats to Validity 

This study set out with the aim of assessing the comprehensibility of feature models 

expressed in CVL and identifying differences in comprehension difficulty for model-

ers familiar or unfamiliar with feature modeling principles. It was hypothesized that 

participants familiar with feature modeling would comprehend CVL models better 

and faster and experience less difficulties. And indeed, the results showed that com-

prehension score was higher and perceived difficulty lower for familiar modelers. 

This result is in line with findings of [29] who showed that familiarity with models in 

a specific domain also enables modelers to understand a new modeling language in 

that domain faster and with less effort. 



It is interesting to note that the performance difference for familiar modelers was 

higher for the model which mainly included XOR relations than the second CVL 

model which included an OR relation. A possible explanation for this result is that OR 

relations in general are difficult to understand and that familiarity with feature model-

ing not necessarily trains modelers in understanding OR relations nor enables a cogni-

tive advantage for understanding this construct. Further findings support this interpre-

tation, because familiar and unfamiliar modelers subjectively rated the difficulty of 

OR relations similarly and while multiple selections (‘many’) were more difficult than 

‘one’ or ‘none’ OR selections, familiarity did not interact with the comprehension of 

OR relations. Research findings on deductive reasoning with natural language con-

nectives provide a theoretical explanation for the high cognitive difficulty of inclusive 

ORs . “OR” is likely to be misinterpreted in its exclusive form, not as an inclusive OR-

operator [30]. Based on empirically detected comprehension difficulties, other model 

domains as process modeling have advised in modeling guidelines to avoid inclusive 

OR gateways altogether [31]. While this option is not feasibility for the area of feature 

modeling, still our results can be used to adopt training material and to inform model-

ing practitioners to be cautious in case of OR relations. 

In addition, familiar modelers had a clear advantage in understanding textual con-

straints in CVL models in comparison to unfamiliar modelers. The observed differ-

ence could be attributed to the familiarity of the modelers with feature modeling. An 

implication of this result for modeling practice includes the need to put a specific 

emphasis on making constraints easier to understand for novice modelers. A possibil-

ity to achieve this goal might be to place textual constraints spatially close to respec-

tive features in the model, thus following the spatial contiguity rule [32]  if possible. 

Indeed, the currently developed CVL tool supports associating constraints closely to 

the relevant features. 

Unexpectedly, familiarity with feature modeling was negatively related to time. 

This result might sound counterintuitive at first sight, however there are possible in-

terpretations. Knowing the notation may increase the doubts, requiring  more time and 

not necessarily improving the performance. Participants might also be more motivated 

to solve the comprehension tasks correctly and work harder and longer to solve them 

if they already have prior experience in that modeling domain. Furthermore, unfamil-

iar modelers have lower comprehension of OR relations and constraints than familiar 

modelers, but familiar modelers spent long time to achieve their better comprehen-

sion. This may be due to the perception of familiar modelers that OR relations and 

constraints are more difficult – a perception that made them spend more time on those 

questions. This is similar to experienced drivers who slow down properly in curves . 

As with all studies, the reader should bear in mind that a number of limitations as-

sociated with laboratory experiments need to be acknowledged [20]. One source of 

weakness regarding external validity includes the use of student subjects. However, 

the participants had received training in modeling and, therefore, we do believe that 

they serve as an adequate proxy for future modelers of CVL. In addition, we assured 

that random influences to the experimental setting were low to improve conclusion 

validity. First, participants were committed to the experiment by making the experi-

ment an obligatory exercise or giving course credit (of about 5%) for participation. 



Second, the students self-studied CVL, so no influence of the lecturers’ capabilities, 

knowledge, and opinions were introduced to the CVL training.  

Despite the clear support for the hypothesized associations, the generalizability of 

findings reported here should be undertaken with caution, because we could only 

include two different CVL models in the study and we selected a specific feature 

modeling language – the variability abstraction part of CVL. As the two models in-

cluded in the questionnaire were typical representatives we argue that they provided a 

reasonable test of comprehensibility, thus, assuring construct validity. The selection 

of the language was done perceiving CVL as an emerging standard which systemati-

cally includes the main feature modeling concepts. However, only further experi-

ments with other feature modeling languages and models can confirm or disconfirm 

the generalizability of our results. 

6 Conclusions and Future Work  

The purpose of the current study was to determine comprehensibility  of feature mod-

els as expressed in CVL and possible difficulties for different user groups. We found 

that familiarity with feature modeling did not influence the comprehension of basic 

elements, namely mandatory, optional, and alternative features, although unfamiliar 

modelers perceived these elements more difficult than familiar modelers. OR relations 

were perceived as difficult regardless of the familiarity level, while constraints were 

significantly better understood by familiar modelers. The time spent to complete tasks 

was higher for familiar modelers. The findings from this study add to the current body 

of knowledge on feature modeling by investigating comprehension and have relevant 

implications for practice and research. The results further add to a growing body of 

literature on novice-expert differences in modeling research. Our results also offer 

important suggestions for training in feature modeling. While understanding of man-

datory and optional features, constraints and XOR relations is important in the train-

ing of users new to feature modeling, understanding of OR relations remains difficult 

even for experienced modelers. In addition, results can be used to guide feature mod-

eling language developers in their design efforts and help in ongoing revision of CVL. 

Our initial results provide evidence that CVL is comprehensible for novice and expert 

modelers and that they can read such models after a short training.  

Several opportunities for future research emerge from our study. For instance, fur-

ther experimental investigations with a larger variety of models would be required to 

estimate comprehension difficulty of specific modeling elements. Future studies could 

also extend this work and examine difficulties in modeling (and not just understand-

ing) variability using CVL. Finally, comprehension difficulties can be researched in 

additional feature modeling languages , as well as in the variability realization part of 

CVL. 
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Appendix: Experiment’s Models and Questions  

(a)  

(b)      

 

Legend: 

 Feature (VSpec) 

 Mandatory 

 Optional 

          1..1 XOR 

          1..*  OR 

Fig. 4. The CVL models used in the experiment: (a) the basic model and (b) the expanded 

model 

 Basic Model Questions Expanded Model Questions 

A Skoda Yeti car can have the following combination of features: 

1. Manual and Diesel 1. Parking-Heater and Styling-Package 

2. Adventure and Benzin 2. Panorama-Roof and Offroad-Styling 

3. Automatic and 4x4 3. Parking-Heater and Offroad-Styling 

4. Adventure and 2-wheel-drive 4. Parking-Heater and Heated-Front-Pane 

5. Active and Diesel and Automatic 5. Parking-Heater and Styling-Package and Offroad-

Styling 

6. Diesel and Automatic and 4x4 6. Sunset and Parking-Heater and Styling-Package 

7. Active and Benzin and 4x4 7. Heated-Front-Pane and Sunset and Panorama-Roof 

8. Adventure and Manual and 4x4 8. Sunset and Panorama-Roof and Parking-Heater and 

Offroad-Styling 

9. Active and Benzin and Manual 

and 2-wheel-drive 

9. Heated-Front-Pane and Sunset and Styling-Package 

and Offroad-Styling 

10. Automatic and Adventure and 

Benzin and 2-wheel-drive 

10. Heated-Front-Pane and Sunset and Panorama-Roof 

and Styling-Package 

 


