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Abstract. The Common Variability Language (CVL) allows deriving
new products in a software product line by substituting fragments (place-
ment) in the base model. Relations between elements of different place-
ment fragments are an issue. Substitutions involving interfering place-
ments may give unexpected and unintended results. However, there is a
pragmatic need to define and execute fragments with interference. The
need emerges when several diagrams are views of a single model, such as a
placement in one diagram and a placement in another diagram reference
the same model elements. We handle the issue by 1) classifying inter-
fering fragments, 2) finding criteria to detect them, and 3) suggesting
solutions via transformations. We implement our findings in the tooling
available for downloading.

Keywords: graph transformations, software product lines, fragment sub-
stitutions, adjacent, interference, cvl, conflict resolution

1 Introduction

Software Product Line Engineering (SPLE) [1] has proved itself as a valuable
approach to produce configurable and customizable systems. CVL is a domain-
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Fig. 1: CVL product derivation workflow

specific language [2,3] for variability modeling [4] which enables defining software
product lines. The variability model is typically organized in a tree of features.
A resolution of the tree structure constitutes a particular product. Defining the
features [5] comprises a variability modeling (VM) process. There are several



approaches to variability modeling which make use of the feature concept, e.g. the
cardinality-based feature modeling approach by Czarnecki et al. [6]. Pohl et al. [1]
describe the Orthogonal Variability Model (OVM) methodology that prevents
cluttering of a base language with variability concepts. The Common Variability
Language (CVL) [7] exploits the feature term, defines variability orthogonally
and specifies how to derive a concrete product [8, 9]. Fig. 1 sketches how CVL
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Fig. 2: Containment, component and generalization (with placement and replace-
ment fragments)

derives a product. The feature tree defines all possible configurations of a car, i.e.
a car comprises an engine with two possible options (hp110, hp140), transmission
(WD2, WD4) and some extra equipment (FrontSensor, RearSensor). We would
like to have an engine with one hundred ten horsepower (hp110), two wheel drive
transmission (WD2) and front sensor (FrontSensor) for our car; therefore, we
need to choose the corresponding features. An engineer selects desired features
defining the Resolution tree in CVL. We illustrate this definition by gray shading
in the Feature tree, see Fig. 1.

To derive a product we specify how these abstract features are related to their
concrete representations in a base model. In Fig. 2, there are three UML [10] class
diagrams modeling the base model of a car. The derivation process is a set of
substitutions which remove elements of a placement fragment and inject elements
of a replacement. We have also defined two substitutions on our base model in
Fig. 2. We replace the Extras class and corresponding containment (placement
fragment, the diagram in Fig. 2a) with the FrontSensor class and associated
containment relation (replacement fragment, the diagram in Fig. 2b). We also
substitute Unit with the Sensor class to keep the generalization diagram in Fig.
2c consistent because FrontSensor is a Sensor specialization and not a Unit one.
We do not show the necessary substitutions of the engine and transmission for
the sake of simplicity.
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Modern modeling languages such as UML may have quite large meta-models.
A model in UML has a complex structure even for relatively small tasks. A
diagram is a view of a specific model part. Entities in different diagrams may
reference the same model elements. For example, we are not able to specify all
modifying elements for the car base model as a single selection in one diagram
since the involved classes and associations are present in different diagrams. A
modeling practice shows that an engineer works only with one diagram at a time
focusing on a specific part of a model.

In the instance diagram (see Fig. 3) of the UML meta-model [10], we show
all components presented in Fig. 2. We use arrows to show links between ob-
jects. The UML meta-model specifies even more objects and links than shown in
the figure. Fig. 3 outlines that even though the selections are made in different
diagrams (containment and generalization) and may look completely indepen-
dent, there are direct references from one placement to the other. We call such
relations between fragments adjacent. In the given example, the result of the
substitutions is well understood, i.e. we want a car with the front sensor which
is a specialization of the Sensor class. However, if the substitutions are carried
out independently as in MoSiS CVL [11, 12], the adjacent relation leads to an
incorrect final product.

In the paper we explain our approach to the adjacent relation using an ABC
example, present formal criteria and sketch algorithm to resolve this relation.
Further, we apply the suggested approach on the presented motivation exam-
ple to demonstrate the adjacent resolution technique. In addition, we catego-
rize other problematic inter-placement relations and propose solutions to tackle
them. We show that the graph rewriting techniques and tools [13–16] do not
give us a necessary vehicle for conquering the presented challenges.

We organize the rest of the paper as follows. Section 2 covers background
and related works. Section 4 gives a classification of the placement interferences
using the ABC example for simplicity. In Section 5, we discuss the adjacent
relation between placements while Section 6 elaborates all crossing cases. We
walk through the introduced approach against the motivation example in Section
7. Finally, Section 8 concludes our work.



2 Background

2.1 Variability Realization in CVL

The basic concepts for a variability realization in CVL are placement fragment,
replacement fragment and substitution combining them.

Definition 1 Placement fragment is a set of elements forming a conceptual
’hole’ in a base model, which may be replaced by a replacement fragment.

Fig. 4 exemplifies a pair of the placement and replacement fragments. We high-
light the placement by the solid oval line, while the dashed oval outlines the
replacement. The elements inside ovals belong to the placement and replace-
ment respectively. Placement and replacement fragments in CVL are defined via
boundary elements depicted by black dots in Fig. 4.

Definition 2 Boundaries are elements which represent the edges of a placement
or replacement fragment.

Definition 3 ToBoundary is a boundary that represents a reference going from
the outside to the inside of a placement or replacement fragment.

Definition 4 FromBoundary is a boundary that represents a reference going
from the inside to the outside of a placement or replacement fragment.
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Fig. 4: Basic CVL concepts

A variability expert defines a placement or replacement using our tool through
a simple selection procedure on a model. These elements inside placement or
replacement may reference entities outside the given selection. Boundaries cut
these references. Fig. 4 shows four boundary elements, i.e. two for the placement
fragment (pa - toBoundary, pb - fromBoundary) and two for the replacement
fragment (ra - toBoundary, rb - fromBoundary).

A subsequent execution of substitutions fragments modifies a base model
deriving a new product in CVL.

Definition 5 Fragment substitution is an operation that substitutes model frag-
ment (placement fragment) for another (replacement fragment).



The result of one fragment substitution is found in the rightmost of Fig. 4.
The operation removes the placement elements and copy the contents of the
replacement onto the recently cleared placement fragment.

Definition 6 A binding is a map between a placement and replacement bound-
ary elements.

We specify that the element 5 should reference element r1 and r2 should point
to 4 in the derived product via the binding of pa to ra and pb to rb respectively.
Thus, bindings control substitutions instructing how replacement elements glue
into existing structures.

3 Related Works

3.1 Conflicts in CVL

Oldevik et al. [17] analyze conflicts and confluence between substitution frag-
ments in CVL. The paper states that transformations in CVL can be mapped
to graph transformations in general case and checked using the critical pair an-
alyzes. In our work we give more elaborated classification of interferences, check
their confluence using graph transformation based tools, define solutions, for-
malize them and implement in the substitution engine 1.

Svendsen et al. [18] analyze conflicts in CVL on a Train Control Language
(TCL) [19] example. They discuss two kinds of conflicts: border inconsistency
and element inconsistency. The authors propose an algorithm to deal with incon-
sistencies in the base model by recording evaluation of the CVL model. Further,
they use the original and evolution CVL models to derive a product. To perform
the product derivation they analyze contextual information. Absence or shortage
of the context may prevent an automatic product derivation. In our approach,
we suggest evolving one CVL model and claim that the necessary information to
derive a product automatically is always in the model. In addition, we illuminate
other conflicts and propose solutions.

3.2 Confluence of Graph Transformations

Confluence of conflicting graph transformations plays a major role in the graph
rewriting theory. Conflicts between transformations occur if transformations
share common elements, the graph rewriting theory calls such transformation
non-parallel independent. Heckel, Küster and Taentzer [16] give theoretical bases
for identifying the parallel independence between transformations in terms of
the rewriting theory. If two transformations are parallel independent then the
local Church-Rosser theorem states that the transformations can be performed
in any order yielding the same result [20]. Thus, we can speak of confluence
in the parallel independent transformations. We do not consider confluence of

1 One can find instructions to set up experiments at http://goo.gl/9WD8Gx

http://goo.gl/9WD8Gx


placement fragments without any relations between each other in this paper
rather address cases where fragments are non-parallel independent (in terms of
the graph rewriting theory). Confluence is also feasible for non-parallel indepen-
dent transformations when all their critical pairs are confluent. A critical pair
analysis of our motivation example reveals a non-confluent graph transforma-
tion system [21]. Therefore, the desired product is not possible to derive in the
given settings. The basic graph approach is not capable of resolving the adjacent
relation in general since the critical pair analysis reveals a non-confluent system.

3.3 Feature-Oriented and Delta-Oriented Programming

Feature-oriented programming (FOP) [22] is a step-wise refinement approach by
Batory et al. [23] to the development of complex systems. A core idea of the
step-wise refinement approach is that a product may emerge by adding features
incrementally to a simple base model. Hence, we can avoid conflicts during a
product derivation, which is different with respect to the CVL methodology of
defining fragments. Batory et al. show that the approach can be applied to both
code and non-code artifacts given that one defines the composition operation for
each kind of artifacts.

Delta-oriented programming (DOP) [24] is an extension of the FOP paradigm
and a novel programming language approach which operates with deltas to derive
a product. Deltas allow removing elements from a product which is not generally
allowed in the feature modeling. One may define a SPL on any language using
the DOP paradigm. The approach proposes to resolve all conflicts between deltas
by specifying the order of their resolution. The notion of deltas is somehow sim-
ilar to fragments in CVL. However, one may define several fragments modifying
the same elements in a model, which is a core distinction. Moreover, we con-
sider substitutions as independent operations which the CVL engine may apply
potentially in the arbitrary order. Therefore, the ordering is not a solution to
conflicting fragments at least within the current CVL semantics. In addition, any
specific resolution order of the adjacent fragments does not solve the problem
with dangling references.

3.4 Aspect-Oriented Programming

Aspect-oriented Programming (AOP) is an approach to weave cross-cutting con-
cerns into a program. Aspects are developed as separate units which can be ap-
plied independently. Lauret et al. [25] state that AOP suffers from a well-known
composition issue i.e. several concerns are applied to the same join point. The
problem is known as the aspect interference issue. Lauret et al. suggest inserting
executable assertions to detect different kind of interference between aspects.
As a solution to avoid undesirable interferences, the authors suggest ordering
of conflicting advises. The notion of aspects is highly relevant to fragments in
CVL which can be applied to the same model elements. However, the ordering of
fragments to resolve conflicts is somewhat different with respect to CVL where



substitution operations do not have any particular order. In addition, ordering
of substitutions does not help with adjacent fragments.

4 Placement Interference

4.1 Definitions and Concepts

A placement fragment forms a conceptual ’hole’ in a base model according to
Definition 1. The fragment substitution operation removes all elements of the
placement creating a ’hole’ in the model. Subsequently, the substitutions fills this
’hole’ out with a copy of the replacement fragment. Any placement fragment is
defined by means of boundary elements in CVL. Boundary elements reference
objects outside and inside placement/replacement fragments (see Fig. 4) defining
gluing points and elements to remove. Outside boundary references point to
elements beyond a placement fragment. Boundary references outline also a set
of affected elements (neighboring elements or gluing points), which we do not
remove during a resolution process. We do not explicitly select these elements.
Hence, we can conclude that a placement affects a set of objects which is wider
than the set of the explicitly outlined objects by an engineer.
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Fig. 5: Internal and external placement elements (PEint, PEext)

Definition 7 Placement Element internal (PEint) is a set of all elements re-
ferred by inside boundary references and all elements in the transitive closure of
all references from the elements in the set, but cut off at elements found through
outside boundary references.

Definition 8 Placement Element external (PEext) is a set of all elements re-
ferred by outside boundary references.

In Fig. 5 PEint = {4, 5, 6} and PEext = {3}. Thus, we define two sets of
elements (PEint, PEext), which are affected by a selection. The dashed arrows
pointing to 3 are outside boundary references, while the dashed arrows pointing
to 4 and 5 are inside boundary references. The oval in Fig. 5 with the solid black
border outlines PEint while the solid gray line highlights the union of PEint and
PEext. Finally, we can conclude that PEint is a placement fragment in the CVL
terminology, while PEext is a set of elements which relations are affected.
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Fig. 6: Placement kinds of interference

4.2 Kinds of Interference

A variability engineer defines a set of elements to substitute via a selection in a
base model. This selection is a set of objects which defines a placement fragment.
This selection defines PEint that is a placement fragment and set of the affected
elements, i.e. PEext. Thus, we can discuss relations between placements in terms
of set relations. To find all possible relations between two different fragments we
consider PEext

⋃
PEint for each fragment and look for intersections between

these unions. If the unions do not intersect then the substitution process goes
smoothly. We do not discuss this case further. There are three unique intersection
cases considering other combinations and simple 2x2 table. An overlap only
between two PEext does not cause malformed configurations during resolution in
MoSiS CVL [11]. Thus, we are left with two basic overlapping kinds. There is also
a special case for an intersection between PEints, namely when one placement
is fully contained by another placement. The given interference kinds are not
mutually exclusive. Fig. 6 depicts four overlapping relations between placements
which we will elaborate in the subsequent sections.

Definition 9 Adjacent placements are placements, where PEint1 intersects PEext2.

Definition 10 Adjacent relation is a reference between two elements in different
adjacent placements.

Definition 11 Crossing placements are placements, where PEint1 intersects
PEint2.

Definition 12 Crossing relation is a reference between two elements in different
crossing placements.

Fig. 6 shows three cases, where two placements conform to the definition of
crossing placements.

Definition 13 Contained placements are placements, where PEint1 ⊆ PEint2.

Definition 14 Contained relation is a reference between two elements in differ-
ent contained placements.
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5 Adjacent Placements

Independent substitutions of interfering placements cause dangling references in
a variability model. Fig. 7 demonstrates a derivation process in MoSiS CVL [11].
There are two adjacent placements and corresponding replacements in Fig. 7a.
We bind pa to ra and pb to rb to specify substitutions. A substitution of the
adjacent fragment pl1 results in a dangling outside boundary reference going
from pb to the object 3 (an arrow with the filled large head) in Fig. 7b. Note,
the object 3 is not in the model any more. A subsequent substitution of the
second adjacent fragment pl2 in MoSiS CVL yields an invalid product due to
this reference, i.e. the product in Fig. 7c misses a link between r2 and r3. Graph
transformation tools (Henshin [26], EMorF [27]) consider the given transforma-
tions as non-confluent since the first substitution disables the second one. Thus,
the desired substitutions are not feasible applying the graph techniques either.
Fig. 8 sketches the derivation process with a necessary adjustment (see Fig. 8c)
of the dangling reference to obtain the expected product in Fig. 8d.

The case shows that we cannot consider substitutions with adjacent place-
ments as independent. We need to see these transformations together. A solution
for the problem is to modify the variability model during an execution. In our
example, if the outside boundary reference of pb (see Fig. 8b) pointed to the
object r2, then the resolution would yield the proper model. Fig. 8c exemplifies



the required adjustment of the outside boundary reference. Thus, an essence of
our approach to adjacent placements is to find and correct dangling references
in such a way that they point to correct objects all the way through a derivation
process. Summarizing, the adjacent resolution is a threefold process: 1) find ad-
jacent placements, 2) find adjacent boundaries, 3) fix references of the adjacent
boundaries during a product derivation.

Definition 9 gives necessary criteria to find adjacent placements, i.e. PEint1⋂
PEext2 6= ∅ ∧ PEint1

⋂
PEint2 = ∅. Therefore, we need to walk through

all placements in the model testing them against the proposed criterion. Two
placements are adjacent placements if the criterion holds.

Further, we find all adjacent boundaries for adjacent placements. An ad-
jacent relation between placements affects these boundaries yielding dangling
references during substitutions. Thus, we have to modify them as the derivation
progresses to keep the model consistent. Boundaries are adjacent if their outside
boundary and inside boundary references match certain patterns. We formalize
these patterns in Algorithm 1. Two adjacent boundaries are an adjacent bound-
ary pair if these boundaries conform to the same match pattern. In Fig. 8a, the

Data: boundariesP lc1 - boundaries of the first adjacent placement,
boundariesP lc2 - boundaries of the second adjacent placement

Result: adjBoundaryCurrent, adjBoundaryStale - boundary maps
for b1 ∈ boundariesP lc1 do

for b2 ∈ boundariesP lc2 do
if IsInstanceOf(b1) = FromBoundary and
IsInstanceOf(b2) = ToBoundary then

if b1.inside4 b2.outside = ∅ and b2.inside ⊆ b1.outside then
adjBoundaryCurrent[b1]← b2;
adjBoundaryStale[b1]← copyBoundary(b2);

end

end
if IsInstanceOf(b1) = ToBoundary and
IsInstanceOf(b2) = FromBoundary then

if b1.outside4 b2.inside = ∅ and b1.inside ⊆ b2.outside then
adjBoundaryCurrent[b1]← b2;
adjBoundaryStale[b1]← copyBoundary(b2);

end

end

end

end
Algorithm 1: Procedure to find adjacent boundaries

boundaries pa and pb constitute an adjacent boundary pair. Informally, an adja-
cent boundary pair is a pair of adjacent boundaries which cut the same adjacent
relation.



Fig. 8c shows a modification we have to execute once we substitute pl1. We
need to modify an adjacent boundary of the adjacent pair. The modification is
a twofold process, i.e. 1) walk through adjacent boundaries of a not yet sub-
stituted placement removing pointers to invalid objects, e.g. the object 3 2)
correct boundary references to point to just replaced elements, e.g. object r2
(see Fig. 8c). Algorithm 2 presents formally the outlined procedure. This proce-
dure eliminates the dangling reference from the boundary pb to an element in
the placement pl1.

Data: boundaries - boundaries of a not yet substituted adjacent placement;
adjBoundaryCurrent - a map that stores adjacent boundary pairs and
their current references; adjBoundaryStale - map that stores adjacent
boundary pairs and their stale references (before substitution)

Result: fixed outside and inside boundary references
for b ∈ boundaries do

if IsInstanceOf(b) = ToBoundary then
b.outside← adjBoundaryCurrent[b].inside;

end
if IsInstanceOf(b) = FromBoundary then

b.outside← b.outside \
adjBoundaryStale[b].inside

⋃
adjBoundaryCurrent[b].inside;

end

end
Algorithm 2: Fixing boundary references for adjacent placements

6 Kinds of Crossing Placements

6.1 Approach Overview

Fig. 6b, Fig. 6c and Fig. 6d outline all possible crossing kinds between place-
ments. An engineer may define placement fragments in different diagrams that
leads to crossing placements in the base model. An attempt to substitute these
two placements one by one, results in dangling references and malformed prod-
ucts. In addition, two substitutions may replace elements of the crossing twice.
This may cause different final products depending on the substitution order.

We argue that crossing placements should be considered as a single place-
ment as well as their replacement fragments. Thus, we introduce a unionization
procedure as a solution for this case. The crossing may originate from either
a pragmatic need or an error in a variability definition. Therefore, we must be
able to distinguish the cases. Required information for the decision is already
in a variability model. By checking for unionizing crossing fragments we 1) spot
erroneous variability definitions, tackle cases where the unionization operation
is possible, 2) reduce the overall amount of substitutions facilitating the deriva-
tion process and 3) widen the semantics of the fragment definition which may
enhance the variability specification process.
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6.2 Crossing Placements

Two substitutions with crossing placements should be resolved as a single sub-
stitution, i.e. we should attempt to unionize the given placements and corre-
sponding replacements. Boundary elements in CVL fully define placement and
replacement fragments; therefore, we can alter boundaries in order to adjust
fragments. The unionization of crossing fragments removes boundary elements
which are internal to the unionized fragment. Boundary elements are removed
when their outside boundary references point to elements inside the unionized
placement since this contradicts the definition [7]. In Fig. 9a, we bind pa to ra,
pb to rb, pc to rc and pd to rd. The boundary elements pb and pc are inter-
nal w.r.t. the unionized placement as well as rb and rc. Thus, we remove these
boundaries to unionize the placement and corresponding replacement fragments.
The unionization result is in Fig. 9b.

Let us now consider the same placement fragments from Fig. 9a and replace-
ments in Fig. 9c. We bind the boundaries as in the previous case. The unioniza-
tion approach suggests removing the placement boundary elements pb, pc and
corresponding boundaries rb, rc. This unionizes the placement fragments. On
the contrary, the replacement fragments become inconsistent and the remaining
boundaries do not define a unionized replacement. In addition, the unionization
of the non-crossing fragments does no make any sense. We consider an error in a
variability definition when placement fragments overlap, but their replacements
do not intersect or the replacement overlap of a different kind.

6.3 Crossing and Adjacent Placements

Fig. 10a shows an example of two placements and replacements that are both ad-
jacent and crossing. We cannot apply to such fragments the adjacent technique
since it does not handle the crossing relation. While the unionization procedure
should eliminate the adjacent relation between two crossing placements. The
boundary elements pc and pb define the overlap of the kind crossing placements,
and pe and pf constitute the adjacent case. As in the crossing case, the boundary
elements pc, pb and rc, rb have to be removed when we unionize two placements.
These boundaries are internal w.r.t. the newly unionized placement and replace-
ment. The reference in Fig. 10b (which creates the adjacent relation between
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pl1 and pl2 ), is an internal link now. Hence, the adjacent relation is eliminated
and there is no any interference . The pure crossing case is a special case of the
crossing placements with the adjacent relation. Thus, developed criteria should
be capable to handle both cases. The suggested unionization approach can tackle
pure adjacent placements. However, unionization needs to consider relations be-
tween corresponding replacements. Thus, it reduces the amount of valid fragment
definitions. The adjacent resolution method does not count on relations between
replacement fragments. Therefore, the adjacent resolution method is more appli-
cable to adjacent placements and can handle more cases than the unionization
technique.

6.4 Contained Placements

An example of the contained placements in Fig. 6d. If we execute a containing
placement, then the corresponding contained placement is never substituted.
This resolution order never brings problems to the derivation process. On the
contrary, a subsequent execution of the contained fragment and containing place-
ment results in dangling references. We consider the contained placements as a
potential problem in variability definition due to this ambiguity. The unioniza-
tion procedure is also feasible for contained placements. We cannot find examples
where such configuration is practically useful. Thus, we suggest unionizing for
crossing fragments and reporting every time the substitution engine discovers
contained placements.

7 Example Walkthrough

Let us finally walk through our motivation example from the introduction sec-
tion. Fig. 11a and Fig. 11b depict two placement and replacement fragments
which specify the desired transformation, i.e. we want to derive a car with a
front sensor. In order to substitute pl1 onto rl1, we bind pa to ra, pb to rb, while
pl2 substitution is achieved via binding of pc to rc, and rd is bound to null (we
do not need this relation in the final model). We do not show inside-/outside
boundary references just for the sake of neatness in the figures. The given place-
ments in Fig. 11a are adjacent. Two adjacent boundaries pb and pc constitute
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Fig. 11: Simplified instance diagram - walk through

the adjacent pair, i.e the outside boundary references of pl1 and pl2 point to
the elements of the opposite placements. Hence, the outside references of these
boundaries have to be modified during a transformation process.

Let us first substitute pl1, the outside boundary reference of pc points to
Extras:Class which does not exist in the model; therefore, it is a broken reference.
We know that pc is an adjacent boundary and should be modified to reference
FrontSensor:Class. This reference is taken from inside boundary reference of
rc which is bound to pc. Therefore, we are able to perform a substitution of
pl2, where the substitution engine restores the link down to Sensor:Class from
FrontSensor:Class. Two subsequent substitutions yield the product in Fig. 11c,
which conforms to our expectations and definitions. We achieve the same result
even if we perform substitutions in a different order.

We implemented the suggested approach in the CVL tool 1. The procedure
does not require any human interaction and completely automated as a deriva-
tion progresses.

8 Conclusion

CVL is a language to define software product lines. The language has the notion
of fragments to specify elements to substitute in a model. Modern modeling
languages may have complex meta-models; therefore, the tools, which implement



the corresponding meta-models, may use different diagrams to represent a model
and facilitate the development process. Fragments defined in different diagrams
may interfere in a model causing unintended results during a product derivation.
A variability engineer can define interference intentionally, reflecting a pragmatic
need to specify substitution fragments in different diagrams, or by accident where
overlaps indicate a failure in a variability model. In this article, we classify the
fragment interferences, i.e. adjacent, crossing, adjacent and crossing, contained
placements. For each kind we define the detection criteria and how to handle
them properly.

We have implemented the findings in the substitution engine developed at
SINTEF 1 as well as demonstrated the proposed method to the adjacent relation
on the motivation example. The engine performs substitutions, has functionality
to detect and solve the adjacent relation. The resolution process of the adjacent
relation includes the following steps: 1) detect adjacent relations, 2) find adjacent
boundaries, 3) modify the adjacent boundaries. The engine executes the adja-
cent resolution procedure after a single substitution step to keep a variability
model consistent all the way through a derivation process. The adjacent detec-
tion between placement fragments is a costly procedure. There are C2

n possible
combinations, where n is the number of placement fragments and order is not
important. Thus, we require to suggest optimizations to speed up this step. It
is a part of our future work.

We have introduced the unionization approach to fragments with the cross-
ing relation. There are three kinds of the crossing relation, i.e. crossing frag-
ments, adjacent and crossing fragments, contained fragments. We demonstrate
that the unionization approach is feasible only when placements and correspond-
ing replacements have similar crossing kinds. Otherwise, a variability model is
not consistent; thus, we assert an error. We argue that a case with contained
placements indicates a potential problem in variability definition. The crossing
resolution technique requires further elaboration and is not implemented in the
engine yet which is a part of the future work.
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