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Abstract. This paper considers a real operational problem of routing and sched-
uling a fleet of fuel supply vessels used to service customer ships anchored outside 
a major port. The problem can be formulated as a rich multi-trip vehicle routing 
problem, including constraints related to stowage and time-dependent sailing times. 
An arc-flow and a path-flow model are developed and compared. A computational 
study shows that the path-flow model is superior and can be used in real planning 
situations. We also discuss how the model can be used in a real-time setting when 
new orders arrive and deviations from the plan occur. 
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1 Introduction 

Ocean shipping is the major transportation mode of the world trade today, and the 
volume carried by seaborne trade is growing (UNCTAD, 2014). Ships operate be-
tween ports for loading and unloading passengers and cargo, as well as for loading 
fresh water, supplies, and discharging waste. Another important task for ships in 
certain ports is fuel refilling. The problem studied in this paper regards the fuel 
supply business, where incoming customer ships are supplied with fuels by a given 
fleet of specialized fuel supply vessels. Even though fuel refilling is an important 
task for ships entering ports, the planning problem considered in this paper has, to 
the authors’ knowledge, only been studied in one previous paper (Christiansen et 
al., 2015). As in that case study, we consider the problem of a Hellenic oil compa-
ny operating in the broader area of Pireaus Port delivering fuel to customer ships, 
as illustrated in Figure 1. The incoming customer ships anchor in a specified area 
outside the port waiting to be supplied by the company’s fuel supply vessels. The 
supply vessels load at refineries in the inner part of the port area before supplying 
the customer ships. The refineries offer different types of fuel, and a given custom-
er ship may require more than one type. Fuel transported to the customer ships 
must be allocated to compartments on board the supply vessels, and different fuel 
types cannot be mixed in the same compartment. Each customer ship needs to be 
serviced within a given agreed time window. The planning problem, which we 
denote as the Fuel Supply Vessel Routing Problem (FSVRP), consists of determin-
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ing routes and schedules for the fleet of supply vessels such that costs are mini-
mized and all customer ships are serviced within their time windows. The vessels 
can perform more than one voyage during the planning horizon. The problem also 
includes allocating the different types of fuel to separate compartments within the 
supply vessels, which adds substantial complexity. The FSVRP can be considered 
as a rich version of the multi-trip vehicle routing problem with time windows, see 
for example Nguyen et al. (2013) and Cattaruzza et al. (2014).  
 

 
 

Figure 1: Map of Piraeus port area 
 

The fuel supply business in Piraeus Port, as probably in most other ports, has long 
traditions, and the business is to a large extent characterized by manual efforts in 
determining routes and schedules for the fuel supply vessels. However, many com-
plicating factors and the large amount of money involved increase the demand for 
good decision support systems in the fuel supply business. 
 
Christiansen et al. (2015) presented an arc-flow model for the FSVRP with some 
additional elements related to the customer ships. It was assumed that all different 
orders for the same customer ships could be serviced by more than one fuel supply 
vessel and the orders were optional and not contracted. They also proposed some 
alternatives of how to simplify the model to make it easier to solve using a com-
mercial solver. It was shown that the simplified version where one ensures that all 
orders for any customer ship are serviced by the same fuel supply vessel (i.e. with-
out customer splitting) provided similar results as the one without this simplifica-
tion (i.e. with customer splitting). This is also in correspondence with what is expe-
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rienced in practice where customer splitting is rarely performed. Unfortunately, 
Christiansen et al. (2015) experienced that even the simplified model was extreme-
ly hard to solve for realistic instances, and large optimality gaps were reported even 
after 10,000 seconds of running time.  
 
The objective of this paper is to describe the operational planning problem of de-
signing routes and schedules for a fleet of fuel supply vessels providing fuel to 
customer ships. Furthermore, the contributions of this paper are an enhanced arc-
flow model for the FSVRP where no customer splitting is allowed as well as a new 
path-flow model. We also show that the proposed path-flow model and correspond-
ing solution method is superior to the arc-flow model in Christiansen et al. (2015) 
with regards to computational performance, and realistic instances are solved to 
optimality within reasonable solution times. The planners need to use the model 
when new orders appear during the day or other unforeseen deviations from the 
plan occur. Therefore, we provide a discussion on how the model can support deci-
sion-making in a real-time setting. 
 
The outline of the remaining of the paper is as follows: Section 2 presents the 
FSVRP in more detail, while Section 3 surveys relevant literature. Section 4 pre-
sents the arc-flow and path-flow models for the problem, while the algorithm for 
generating the paths (i.e. feasible vessel voyages) is described in Section 5. A com-
putational study is conducted in Section 6, while Section 7 discusses how the pro-
posed models can be used as decision support in a real-time setting. Finally, con-
cluding remarks are provided in Section 8.  

2 Problem description 

Here, we distinguish the fuel supply vessels from the cargo and passenger ships 
that enter the port area to receive fuel, by using the words vessel or supply vessel to 
denote the fuel supply vessels, and ship or customer ship to denote the ships that 
are serviced by the fuel supply company.  
 
A given heterogeneous fleet of supply vessels is used to supply customer ships 
anchored in a port area. In the start of a planning horizon, some supply vessels may 
not be available for loading until some specified time since they may still be occu-
pied delivering fuel from a previous planning period. The customer ships place 
orders of different fuel types. The supply vessels load all fuel types at refineries, 
denoted as depots, which are located in the inner port area. After finishing loading 
at the depot, the supply vessels start sailing to the customer ships, which are locat-
ed in the outer port area. During nights, the vessels must sail around the Salamina 
Island since they are for security reasons not allowed to sail in the area of the navy 
dock, which is located in between the inner and outer port area (Figure 1). Since 
this takes longer time, the sailing time between the depots and the customer ships is 
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dependent on the hour of the day, resulting in time-dependent sailing times from 
the depots to the customer ships. Since all customer ships anchor in the outer port 
area the sailing times between them are not dependent of time. Furthermore, since 
the sailing times between the customer ships are usually small compared their ser-
vice times, they are assumed to be similar between all pairs of customer ships.  
 
A vessel’s voyage starts with loading at the depot, continues with sailing to and 
servicing one or several customer ships before returning empty to the depot. Within 
the planning horizon, a vessel may perform more than one voyage. Hence, every 
time a vessel loads at the depot, it starts a new voyage. A vessel may wait at a cus-
tomer ship or at the depot before operation starts. 
 
In this case study, there exist two refineries and both of them produce all fuel 
types. The quays at the refineries are also used by vessels from other companies. It 
is therefore not known long time in advance which refinery and which quay to visit 
before a particular voyage. We have adapted the case company’s planning practice 
where they, based on experience, only use an approximated fixed time, independ-
ent of vessel and loading quantity, for the loading operation at the refineries. Fur-
thermore, the distances between the refineries are almost negligible for this particu-
lar case study, so we assume that the refineries can be modeled as a single depot. 
The depot has a berth capacity, which implies that a maximum number of vessels 
may load simultaneously at a time. For this particular problem we assume berth 
capacity of one. This means that at most one of the company’s vessels can visit the 
depot at the same time, which will reduce the probability of having to wait for a 
quay. 
 
The customer ships may place orders of different fuel types to be delivered at the 
same time. Each customer ship states a time window in which all its orders must be 
serviced and a given quantity is specified for each order. All orders at a customer 
ship are serviced by the same supply vessel, and the service of the orders must 
happen continuously. The supply vessels are obliged to service all customers dur-
ing the planning horizon. 
 
The fleet of supply vessels is heterogeneous, where the vessels have different ca-
pacities, costs and starting times when they become available. Each vessel has sev-
eral compartments with given capacities where the fuel types are loaded. A com-
partment may carry several fuel types, but it may only contain one fuel type at a 
time. The same fuel type may be carried in several compartments on board the 
same supply vessel, and large orders may be split between compartments. Moreo-
ver, if different customer ships order the same fuel type, the orders may be allocat-
ed to the same compartment.  
 
There exist two types of compartments in the supply vessels, i.e. one type dedicat-
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ed for marine gas oil and one dedicated for up to four alternative types of fuel oil. 
The various types of fuel oil are very similar and no cleaning of these compart-
ments is necessary between voyages when changing fuel oil type. This means that 
cleaning of compartments between voyages can be disregarded.  
 
The planning problem consists of determining routes and schedules for the fleet of 
supply vessels such that the transportation costs are minimized and all orders are 
serviced within their time windows. The total costs consist of fixed daily costs for 
using the vessels and variable sailing costs. The problem also includes allocating 
the different types of fuel to separate compartments within the supply vessels.  
 
To summarize: The planning problem can be considered as a rich vehicle routing 
problem, including multiple trips, time windows, tank allocation or stowage con-
straints, and time-dependent travel times. 

3 Literature review 

Maritime transportation planning problems have attracted considerable attention in 
the literature during the last decades; see for example the surveys by Christiansen 
and Fagerholt (2014) and Christiansen et al. (2013). The FSVRP studied in this 
paper has however received very limited attention so far except for Christiansen et 
al. (2015), which proposed and tested an arc-flow formulation for the problem. 
Some studies integrate refueling decisions when planning shipping routes. Besbes 
and Savin (2009) and Kim et al. (2012) study the handling of refueling decisions 
for a single vessel when determining its route, while Vilhelmsen et al. (2014) and 
Meng et al. (2015) deal with a similar problem when routing a fleet of ships. There, 
varying fuel prices between ports are taken into account. While the FSVRP focuses 
on the routing of the supply vessels, the latter studies look at the problem from the 
customer ships’ perspective. 
 
Path-flow models, like the one we propose in this paper, have proven to be very 
efficient for solving many routing problems, see for example Poggi and Uchoa 
(2015). Several studies have demonstrated the usefulness of such models also for 
maritime versions of the problem. As an example, Andersson et al. (2011) propose 
two alternative path-flow models for a maritime pickup and delivery problem. Sim-
ilar to our experience for the FSVRP, they demonstrate that the path-flow models 
perform significantly better than the corresponding arc-flow model. The models in 
Andersson et al. (2011) have continuous time in contrast to the model we propose 
in this paper, which uses discrete time to better handle the time-dependent sailing 
times.  
 
The allocation of products to compartments (i.e. stowage) is an important aspect of 
the FSVRP. Hvattum et al. (2009) describe a tank allocation problem (TAP) moti-
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vated from chemical shipping, and deals with the allocation of liquid bulk cargoes 
to the tanks on board a given vessel. They present several constraints that are simi-
lar to our problem, such as tank capacity and regarding no mixing of product types 
in the same tank. In contrast to the FSVRP, they do not consider routing and 
scheduling decisions. Only few studies in maritime transportation combine routing 
with allocation decisions like in the FSVRP. Kobayashi and Kubo (2010) deal with 
routing a fleet of oil tankers, where each tanker has several fixed compartments and 
different cargoes cannot be in the same compartment. Al-Khayyal and Hwang 
(2007) and Li et al. (2010) assume that each compartment is dedicated to specific 
products. Agra, Christiansen and Delgado (2013) consider both the case without 
any allocation of different fuel products into different cargo tanks as well as the 
case where there are dedicated tanks for families of products. The ship routing and 
scheduling problem studied by Fagerholt and Christiansen (2000) is also a com-
bined routing and allocating problem, where different dry bulk products cannot be 
stored together. However, in contrast to our paper, the tanks are not given as the 
cargo hold can be divided into a number of different configurations. 
 
Another special characteristic with the FSVRP considered in this paper is the time-
dependent sailing times between the depot and the customer ships. To the authors’ 
knowledge there exists no studies in maritime routing where this has been consid-
ered. However, in land-based routing time-dependent travel times are more com-
mon to capture, as the traffic, and hence the travel times, vary with time. See for 
example the recent review paper on time-dependent routing problems by Gendreau 
et al. (2015). Most models with time-dependent travel times ensure that a vehicle 
will never arrive at its destination earlier by postponing its departure, which is a 
reasonable assumption in most land-based routing problems. This is in contrast to 
the situation in the FSVRP studied in this paper where a supply vessel sometimes 
can avoid sailing the longer route around the Salamina Island by waiting.  

4 Mathematical models 

In this section, we propose two different mathematical models for the FSVRP. The 
first model is an arc-flow model and is a mixed integer programming model with 
binary variables on the arcs between nodes, while the other model is a path-flow 
model where the paths represents feasible voyages for each ship. Section 4.1 intro-
duces some assumptions and definitions that are used in the mathematical models. 
Section 4.2 describes the notation used for the arc-flow model. Furthermore, the 
objective function and the constraints of the arc-flow model are described in Sec-
tion 4.3. Finally, Section 4.4 presents the path-flow model including the necessary 
additional notation.  
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4.1 Modeling approach and assumptions 

We have chosen to develop a discrete time model due to the time dependent sailing 
time between the inner and outer port area. With discrete time representation, the 
planning horizon is divided into time periods of equal lengths.  
 
We define one node for each customer ship since we assume that one vessel ser-
vices all orders of a customer ship. This deviates from Christiansen et al. (2015) 
where a node represented an order placed by a customer ship. In addition to the 
nodes representing the customer ships, we include a depot node and a dummy end 
node. The depot node represents both refineries, while the dummy end node repre-
sents returning to the depot, without starting a new voyage. This is a fictive node 
representing where the vessels end up after servicing all customer nodes.  
 
Each vessel may execute multiple voyages during the planning horizon. In the 
mathematical model the numbering of voyages is related to each supply vessel. The 
time window of a customer ship represents the earliest and latest start of servicing a 
customer ship. The end time of the service is the important requirement for the 
customer ships, but the start of service can easily be calculated based on this since 
we assume a continuous unloading of the different fuel types. 

4.2 Notation 

Indices  
𝑣 supply vessel 
𝑖, 𝑗 customer ship node  
0 the depot node 
𝑑 the dummy end node 
𝑓 fuel type 
𝑐 Compartment 
𝑚 Voyage number 
𝑡 time period 

Sets  
𝒱 supply vessels 
𝒩 customer ship nodes 
𝒩𝑇  all nodes, i.e. 𝒩𝑇 ∪ {0} ∪ {𝑑} 
ℱ fuel types 

ℱ𝑐 ⊆ ℱ fuel types allowed in compartment 𝑐 
𝒞𝑣 compartments in supply vessel 𝑣 
ℳ𝑣 voyages for vessel 𝑣 
𝒯 time periods 
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𝒯𝐷𝐷𝐷 ⊆ 𝒯 time periods that represent a day’s first time period. For example, 
when the planning horizon starts with time period 0 and one time 
period represent one hour, time periods 0, 24, 48 etc. are time peri-
ods in the set.   

Parameters  
𝑇𝑣𝑣𝑣𝑣𝑆𝑆  sailing time when vessel 𝑣  sails directly between nodes 𝑖  and 𝑗 

when arriving at node 𝑗 in time period 𝑡 
𝑇𝑣𝑣𝑣𝑣𝑆𝑆  sailing time when vessel 𝑣 sails directly between node 𝑖 and 𝑗 when 

departing node 𝑗 in time period 𝑡 
𝑇𝑣𝑣𝑂 vessel 𝑣’s operating time at node 𝑖 

𝑇𝑖  start of time window for start of service at customer ship node 𝑖 
𝑇�𝑖  end of time window for start of service at customer ship node 𝑖 
𝑇𝑣𝑀 the minimum time a vessel may use on any voyage 
𝑇𝑣𝐸  the earliest time vessel 𝑣 is available for operation 
𝐻 number of time periods within 24 hours 
𝐵 berth capacity of the depot 
𝐷𝑖𝑖 

demanded quantity of fuel type 𝑓 for customer ship node 𝑖 
𝑄𝑐𝑐  load capacity of compartment 𝑐 on vessel 𝑣 

  𝐶𝑣𝐹  fixed daily cost of using vessel 𝑣 
𝐶𝑣𝑆 sailing cost per time period for vessel 𝑣 
𝑅𝑓 revenue per quantity delivered of fuel type 𝑓 

Variables  
𝑥𝑣𝑣𝑣𝑣𝑣  1, if vessel 𝑣 starts sailing in time period 𝑡 from node 𝑖 directly to 

node 𝑗 on voyage 𝑚/ 0, otherwise 
𝑦𝑣𝑣𝑣𝑣 1, if vessel 𝑣 starts operating node 𝑖 in time period 𝑡 on voyage 𝑚 / 

0, otherwise 
𝑤𝑣𝑣𝑣𝑣 1, if vessel 𝑣 is waiting in time period 𝑡 at node 𝑖 on voyage 𝑚/   

0, otherwise 
𝛿𝑣𝑣 1, if vessel 𝑣 is utilized the day that start with time period 𝑡/  

0, otherwise  
𝑘𝑣𝑣𝑣𝑣 1, if compartment 𝑐 of vessel 𝑣 is allocated to fuel type 𝑓 on voyage 

𝑚/ 0, otherwise 
𝑙𝑣𝑣𝑣𝑓𝑓𝑓  quantity of fuel type 𝑓 in compartment 𝑐 of vessel 𝑣 when sailing 

directly from node 𝑖 to 𝑗 on voyage 𝑚 

Before presenting the model, we would like to add some comments to the notation 
and the variables. The sailing and operating variables, 𝒙𝒗𝒗𝒗𝒗𝒗 and 𝒚𝒗𝒗𝒗𝒗, equal 1 if 
a vessel starts sailing or operating the given time period. The sailing or the opera-
tion itself may take more than one time period. The durations of these activities are 
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given by the sailing time parameters, 𝑻𝒗𝒗𝒗𝒗𝑺𝑺  and 𝑻𝒗𝒗𝒗𝒗𝑺𝑺 , and the operating time pa-
rameters, 𝑻𝒗𝒗𝑶 . The waiting variables, 𝒘𝒗𝒗𝒗𝒗, equal 1 for each time period a vessel 
waits at a node. All these types of variables are illustrated in Figure 2, which is an 
example of a vessel’s flow in a time-space network.  

 
Figure 2: Example of a vessel’s flow in a time-space network. The arc labels are 𝒚 for op-
erating, 𝒙 for sailing and 𝒘 for waiting. In this example the vessel starts by sailing from the 
depot, then it operates at nodes 𝒋, 𝒊 and 𝒌 before it sails to the dummy end node. Note that 
the operating time of node 𝒋, 𝑻𝒗𝒗𝑶 , is 2 time periods, while the operating times of the two 
other nodes are 1 time period. The sailing from the depot to node 𝒋,  𝑻𝒗𝒗𝒗(𝒕=𝟏𝟏)

𝑺𝑺 , is 4 time 
periods, while the other sailing times in this example are only 1 time period.  

4.3 Arc-flow model 

The mathematical formulation of the arc-flow model consists of the objective func-
tion and constraints related to routing, scheduling, loading and unloading.  

Objective function 
The objective function (1) represents the company’s transportation costs. It com-
prises the variable sailing costs and daily fixed costs of using the vessels. By in-
cluding daily fixed costs in this way, the model will strive towards solutions where 
the vessels are busy some days, and are idle other days. This is assumed to be prac-
tical in the real case problem, as longer breaks of whole days allow for necessary 
repairs and time off for the crew.  

 
𝑚𝑚𝑚AF = � � � � �𝐶𝑣𝑆𝑇𝑣𝑣𝑣𝑣𝑆𝑆 𝑥𝑣𝑣𝑣𝑣𝑣  

𝑣∈𝒱𝑗∈𝒩𝑇𝑖∈𝒩𝑇𝑚∈ℳ𝑣𝑡∈𝒯

+ � �𝐶𝑣𝐹𝛿𝑣𝑣 
𝑣∈𝒱𝑡∈𝒯𝐷𝐷𝐷

 

 

(1) 
 

Routing and scheduling constraints 
The flow or routing constraints are given as follows: 
 



10 
 

� � �𝑦𝑣𝑣𝑣𝑣
𝑣∈𝒱𝑚∈ℳ𝑣

= 1
𝑇�𝑖

𝑡=𝑇𝑖

 

 

𝑖 ∈ 𝒩  
 

 
(2) 

�𝑦𝑣0𝑚𝑚 ≤ 1
𝑡∈𝒯

 

 

𝑣 ∈ 𝒱,𝑚 ∈ ℳ𝑣 
 (3) 

� 𝑦𝑣0(𝑚−1)𝜏

𝑡−𝑇𝑣𝑀

𝜏=0

− 𝑦𝑣0𝑚𝑚 ≥ 0 

 

𝑣 ∈ 𝒱,𝑚 ∈ ℳ𝑣 , 
𝑡 ∈ 𝒯|𝑚 > 1 

 
(4) 

𝑦𝑣𝑣𝑣(𝑡−𝑇𝑣𝑣
𝑂) = � 𝑥𝑣𝑣𝑣𝑣𝑣

𝑗∈𝒩𝑇

 

 

𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩 ∪ {0}, 
𝑚 ∈ ℳ𝑣 , 𝑡 ∈ 𝒯 

 
(5) 

� 𝑥𝑣𝑣𝑣𝑣(𝑡−𝑇𝑣𝑣𝑣𝑣
𝑆𝑆 )

𝑗∈𝒩∪{0}

+ 𝑤𝑣𝑣𝑣(𝑡−1)

= 𝑦𝑣𝑣𝑣𝑣 + 𝑤𝑣𝑣𝑣𝑣  
 

𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩,  
𝑚 ∈ ℳ𝑣 , 𝑡 ∈ 𝒯|𝑡 > 1 

 
(6) 

�𝑥𝑣𝑣0𝑚(𝑡−𝑇𝑣𝑣0𝑡
𝑆𝑆 )

𝑗∈𝒩

+ 𝑤𝑣0𝑚(𝑡−1)

= 𝑦𝑣0(𝑚+1)𝑡 + 𝑤𝑣0𝑚𝑚  
 

𝑣 ∈ 𝒱,𝑚 ∈ ℳ𝑣 , 𝑡 ∈ 𝒯 
 (7) 

�𝑦𝑣01𝑡 −� � �𝑥𝑣𝑣𝑣𝑣𝑣 = 0
𝑗∈𝒩𝑚∈ℳ𝑣𝑡∈𝒯𝑡∈𝒯

 

 

𝑣 ∈ 𝒱 
 (8) 

� � � (𝑦𝑣𝑣𝑣𝑣
𝑖∈𝒩∪{0}𝑚∈ℳ𝑣

+
𝑡+(𝐻−1)

𝜏=𝑡

� 𝑥𝑣𝑣𝑣𝑣𝑣
𝑗∈𝒩∪{0}

)

− 𝐻𝛿𝑣𝑣 ≤ 0 

𝑣 ∈ 𝒱, 𝑡 ∈ 𝒯𝐷𝐷𝐷  
 

 
(9) 

 
 
 

   

� � �𝑦𝑣0𝑚𝑚
𝑣∈𝒱𝑚∈ℳ𝑣

𝑡

𝜏=max {0,𝑡−𝑇𝑣0
𝑂+1}

≤ 𝐵 
𝑡 ∈ 𝒯 

 (10) 

𝑥𝑣𝑣𝑣𝑣𝑣 ∈ {0,1}  
 

𝑣 ∈ 𝒱, 𝑖, 𝑗 ∈ 𝒩𝑇 ,  
𝑚 ∈ ℳ𝑣 , 𝑡 ∈ 𝒯 

(11) 

𝑦𝑣𝑣𝑣𝑣 ∈ {0,1}  
 

𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩 ∪ {0},  
𝑚 ∈ ℳ𝑣 , 𝑡 ∈ 𝒯 

(12) 
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𝑤𝑣𝑣𝑣𝑣 ∈ {0,1}  
 

𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩 ∪ {0}, 
𝑚 ∈ ℳ𝑣 , 𝑡 ∈ 𝒯 

(13) 

𝛿𝑣𝑣 ∈ {0,1}  
 

𝑣 ∈ 𝒱, 𝑡 ∈ 𝒯𝐷𝐷𝐷  (14) 
 
Constraints (2) ensure that every customer ship node is serviced exactly once, by 
one vessel on one voyage. The constraints also control that the customer nodes are 
serviced within their time windows. Furthermore, constraints (3) make sure that the 
vessels operate at the depot at most once on each voyage. Constraints (4) control 
that a vessel cannot start a new voyage if it has not ended the previous voyage. The 
constraints also ensure that the previous voyage takes at least time 𝑇𝑣𝑀, which is the 
minimum time any vessel may use on a voyage. In constraints (5), it is described 
that when a vessel has finished servicing a node, it must start sailing to a customer 
node, the depot node or the dummy end node. Constraints (6) make sure that a ves-
sel either starts waiting or operating at a customer ship node when the vessel ar-
rives at the node. Moreover, if a vessel waits at a node in a time period, it is re-
stricted to either operate or wait at the node in the following time period. Con-
straints (7) are equivalent to the previous constraints, but concern the depot node. 
They make sure that when a vessel arrives at the depot, it must either start loading 
at the depot for a new voyage or wait at the depot on the current voyage. If a vessel 
waits at the depot in a time period, it may start operating on a new voyage or keep 
waiting on the current voyage in the next time period. Constraints (8) control that 
every vessel, if it is used at all, executes the fictive sailing to the dummy end node 
once during the planning horizon. Constraints (9) ensure that the variable 𝛿𝑣𝑣 
equals 1 if a given vessel is utilized the day which starts with time period 𝑡. Wait-
ing is not included, since it is possible to wait at the depot which in practice corre-
sponds to not utilizing the vessel. Constraints (10) ensure that in any time period, 
the company cannot have more than B vessels loading at the depot. Finally, the 
binary restrictions for the variables are given in (11)-(14).  
 

Loading and unloading constraints 
The load management or tank allocation on board the vessels is taken into account 
by the following constraints:  

 
� � 𝑙𝑣𝑣𝑣𝑣𝑣𝑣 −�𝐷𝑖𝑖𝑦𝑣𝑣𝑣𝑣

𝑡∈𝒯

− � � 𝑙𝑣𝑣𝑣𝑣𝑣𝑣 = 0
𝑗∈𝒩𝑇𝑐∈𝒞𝑣𝑗∈𝒩∪{0}𝑐∈𝒞𝑣

 

 

 
𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩 , 
𝑓 ∈ ℱ,𝑚 ∈ ℳ𝑣  

(15) 
 

� � 𝑙𝑣𝑣𝑣𝑣𝑣𝑣 −�� 𝑄𝑣𝑣𝑥𝑣𝑣𝑣𝑣𝑣
𝑐∈𝒞𝑣

≤ 0
𝑡∈𝒯𝑓∈ℱ𝑐𝑐∈𝒞𝑣

 

 

 
𝑣 ∈ 𝒱, 𝑖 ∈ {0}, 
𝑗 ∈ 𝒩,𝑚 ∈ ℳ𝑣 

 

(16) 
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� � 𝑙𝑣𝑣𝑣𝑣𝑣𝑣 −�� (𝑄𝑐𝑐 − � 𝐷𝑖𝑖

𝑓∈ℱ𝑐

)𝑥𝑣𝑣𝑣𝑣𝑣
𝑐∈𝒞𝑣

≤ 0
𝑡∈𝒯𝑓∈ℱ𝑐𝑐∈𝒞𝑣

 

 

𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩, 
𝑗 ∈ 𝒩𝑇 ,𝑚 ∈ ℳ𝑣 

(17) 

� 𝑘𝑣𝑣𝑣𝑣
𝑓∈ℱ𝑐

≤ 1 

 

 
𝑣 ∈ 𝒱, 𝑐 ∈ 𝒞𝑣 , 

𝑚 ∈ ℳ𝑣 
(18) 

𝑙𝑣𝑣𝑣𝑣𝑣𝑣 − min {𝑄𝑣𝑣 , �𝐷𝑘𝑘}
𝑘∈𝒩

𝑘𝑣𝑣𝑣𝑣 ≤ 0 

 

 
𝑣 ∈ 𝒱, 𝑖, 𝑗 ∈ 𝒩 ∪ {0}, 

𝑓 ∈ ℱ𝑐 , 𝑐 ∈ 𝒞𝑣 ,  
𝑚 ∈ ℳ𝑣 

 

(19) 

� � � 𝑙𝑣𝑣𝑣𝑣𝑣𝑣
𝑗∈𝒩

= 0
𝑓∈ℱ𝑐𝑐∈𝒞𝑣

 

 

 
𝑖 ∈ {0} ∪ {𝑑}, 

 𝑣 ∈ 𝒱,𝑚 ∈ ℳ𝑣 
(20) 

𝑘𝑣𝑣𝑣𝑣 ∈ {0,1} 
 

𝑣 ∈ 𝒱, 𝑓 ∈ ℱ𝑐, 
𝑐 ∈ 𝒞𝑣 , 𝑚 ∈ ℳ𝑣 

(21) 

𝑙𝑣𝑣𝑣𝑓𝑓𝑓 ≥ 0 
 

𝑣 ∈ 𝒱, 𝑖, 𝑗 ∈ 𝒩 ∪ {0}, 
𝑓 ∈ ℱ𝑐 , 𝑐 ∈ 𝒞𝑣 ,  
𝑚 ∈ ℳ𝑣 

(22) 

 
The difference in load within a supply vessel’s compartments before and after op-
erating a customer ship node equals the demanded fuel quantity of the node. This is 
ensured by constraints (15) for each fuel type. The load variables, 𝑙𝑣𝑣𝑣𝑣𝑣𝑣, can be 
denoted as arc-load flow variables. Agra et al. (2013) describe the strengthening 
advantages of having arc-load flow variables instead of the more common load 
variables not including a destination node 𝑗. Constraints (16)-(17) control that the 
𝑙𝑣𝑖𝑖𝑖𝑖𝑖 variables are assigned non-zero values only if the given vessel, 𝑣, sails di-
rectly between nodes 𝑖 and 𝑗, and that the compartments’ capacity limits are not 
exceeded. Constraints (18) ensure that only one fuel type is allocated to a com-
partment on each voyage. The constraints also make sure that a compartment is 
only loaded with a fuel type that it is allowed to carry. Constraints (19) control that 
the arc-flow load variables only take values for combinations of fuel type and 
compartment if the fuel type is actually allocated to that compartment. To facilitate 
the reading, we introduce constraints (20) to ensure that the vessels do not carry 
any load when returning to the depot or the dummy end node. Finally, the binary 
and non-negativity requirements for the variables related to loading are given in 
(21)-(22).  
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4.4 Path-flow model 

As an alternative to the arc-flow model presented in Section 4.3, we suggest a path-
flow formulation with variables that correspond to feasible and non-dominated 
vessel voyages. A voyage starts at the depot and then sails to one or several cus-
tomer ships before returning to the depot. The same notation as in the previous 
section is used. In addition, the following notation is needed: 
 
Index  
𝑟  a supply vessel voyage 

Set  
ℛ𝑣  feasible voyages for supply vessel 𝑣 

Parameters  
𝐶𝑣𝑣 

 
cost of sailing voyage 𝑟 using supply vessel 𝑣 

𝐴𝑣𝑣𝑣  1 if supply vessel ship 𝑣 visits node 𝑖 on voyage 𝑟 / 0 otherwise  
  𝑂𝑣𝑣𝑣   1 if supply vessel ship 𝑣 is occupied (sailing, loading/unloading or 

waiting) with voyage 𝑟 in time period  𝑡 / 0 otherwise 
𝐷𝑣𝑣𝑣   1 if supply vessel ship 𝑣 is at the depot in time period  𝑡 on voyage 

𝑟 / 0 otherwise 
Variable  

𝜆𝑣𝑣  1, if supply vessel 𝑣 operates voyage 𝑟/ 0, otherwise 

The path-flow model of the FSVRP can be formulated as follows: 

 
𝑚𝑚𝑚 PF = � � 𝐶𝑣𝑣𝜆𝑣𝑣 

𝑟∈𝑅𝑣𝑣∈𝒱

+ � �𝐶𝑣𝐹𝛿𝑣𝑣 
𝑣∈𝒱𝑡∈𝒯𝐷𝐷𝐷

 

 
 (23) 

� � 𝐴𝑣𝑣𝑣𝜆𝑣𝑣 = 1 
𝑟∈𝑅𝑣𝑣∈𝒱

 

 

𝑖 ∈ 𝒩 
 (24) 

� 𝑂𝑣𝑣𝑣𝜆𝑣𝑣 ≤ 1 
𝑟∈𝑅𝑣

 

 
𝑣 ∈ 𝒱, 𝑡 ∈ 𝒯 (25) 

� 𝑂𝑣𝑣𝑣𝜆𝑣𝑣

𝑡+(𝐻−1)

𝜏=𝑡

− 𝐻𝛿𝑣𝑣 ≤ 0 

 

𝑣 ∈ 𝒱, 𝑡 ∈ 𝒯𝐷𝐷𝐷  
 (26) 

� � 𝐷𝑣𝑣𝑣𝜆𝑣𝑣 ≤ 𝐵 
𝑟∈𝑅𝑣𝑣∈𝒱

 𝑡 ∈ 𝒯 (27) 

𝜆𝑣𝑣 ∈ {0,1} 
 

𝑣 ∈ 𝒱, 𝑟 ∈ ℛ𝑣 
 

(28) 
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𝛿𝑣𝑣 ∈ {0,1} 
 

𝑣 ∈ 𝒱, 𝑡 ∈ 𝒯𝐷𝐷𝐷  (29) 
 
The objective function (23) minimizes the variable sailing costs and daily fixed 
vessel costs and corresponds to the objective function (1). Constraints (24) ensure 
that each customer ship is serviced exactly once by one vessel on one voyage and 
substitute constraints (2) in the arc-flow model. A supply vessel might sail several 
voyages during the planning period, but in any time period each vessel can at most 
be occupied on one voyage. This is taken care of by constraints (25), corresponding 
to constraints (4) in the arc-flow model. Furthermore, constraints (26) and (27) 
correspond to constraints (9) and (10), respectively. Finally, the binary require-
ments for the variables are given by constraints (28) and (29). The routing con-
straints (3) and (5) – (8) of the arc-flow model are satisfied through the generation 
of the voyages or paths, as described in Section 5. 

5 Path generation algorithm 

Before solving the path-flow model presented in Section 4.4, all feasible voyages 
for each supply vessel must be generated. To do this, we have used a labeling algo-
rithm, following the approach described by Irnich and Desaulniers (2005). They 
present labeling algorithms as a dynamic programming approach that may be ap-
plied to find the set of Pareto-optimal paths to a shortest path problem with re-
source constraints (SPPRC). In their approach, a label is used to represent a (par-
tial) path from the depot to a node 𝑖, together with information regarding the accu-
mulation of resources along the path. Each resource is required to stay within given 
limits, referred to as resource windows, at each node along the path. Labels are 
extended along arcs in the problem-defining network creating new labels where the 
resources are updated according to resource extension functions and checked for 
feasibility with respect to the resource windows. Any label extended to the end 
node of the graph represents a complete feasible path through the network. To 
avoid generating sub-optimal paths, a dominance step is introduced to remove la-
bels whose extension cannot become Pareto-optimal.  
 
Applied to the problem studied in this paper, the SPPRC is defined on a graph 
where the set of nodes consists of the depot node 0, the set of customer ships 
𝑖 ∈  𝒩, and the artificial end node 𝑑. The set of arcs contains arcs from the depot to 
every customer ship, arcs between all pairs of customer ships, and arcs from all 
customer ships to the end node. A path is considered feasible if it does not violate 
constraints (3)-(9), nor constraints (15)-(22). In the following we describe in detail 
what information is stored in a label, and how a label is extended. Further, we pre-
sent how pairs of labels can be compared with respect to dominance, and how we 
extend a label to the depot node and create (possibly more than one) voyage for a 



15 
 

given label. Finally, an overview of the labeling algorithm is given, together with a 
pseudo-code.  

5.1  Label data 

Each label represents a partial path from the depot node 0 to node 𝑖. For each label 
we store the following information: 

- 𝑖 – the current node 
- 𝑝 – the predecessor label 
- 𝑐 – the accumulated cost when arriving at node 𝑖 
- 𝑡 – the accumulated time when arriving at node 𝑖 
- 𝒩𝑉 – set of nodes visited 

 
The current node is stored to know the end node of the partial path, while the pre-
decessor label is stored to be able to recursively re-trace the path. In addition, cost 
and time are the resources accumulated along the path, while the set of nodes visit-
ed helps to check that the path is elementary and stowage feasible. In the following 
we use 𝑖(𝐿) to denote the current node of label 𝐿, and similarly use 𝑝(𝐿), 𝑐(𝐿), 
𝑡(𝐿), and 𝒩𝑉(𝐿) for the predecessor label, accumulated cost, accumulated time, 
and set of nodes visited, respectively.  

5.2  Extending labels 

Initially, the algorithm starts with only one label, representing a path visiting only 
the depot node. After this, all new labels are created by adding customer ships to 
existing labels. When extending an existing label 𝐿 along arc (𝑖(𝐿), 𝑗), we create a 
new label 𝐿′, where the resource extension functions can be stated as follows: 

- 𝑖(𝐿′) = 𝑗       (30) 
- 𝑝(𝐿′) = 𝐿       (31) 
- 𝑐(𝐿′) = 𝑐(𝐿) + 𝐶𝑣𝑆𝑇𝑣𝑣(𝐿)𝑗𝑗(𝐿)

𝑆𝑆      (32) 
- 𝑡(𝐿′) = max {𝑇𝑗, 𝑡(𝐿) + 𝑇𝑣𝑣(𝐿)

𝑂 + 𝑇𝑣𝑣(𝐿)𝑗𝑗(𝐿)
𝑆𝑆 }   (34) 

- 𝒩𝑉(𝐿′) = 𝒩𝑉(𝐿)⋃{𝑗}      (35) 
 
Equations (30), (31) and (32) set the current node of the label, the predecessor la-
bel, and the accumulated cost of the label, respectively. Further, equations (34) and 
(35) update the accumulated time and the set of visited nodes, respectively. 
 
The new label 𝐿′ is considered feasible if the following holds: 

- 𝑡(𝐿′) ≤ 𝑇�𝑗 
- 𝑗 ∉ 𝒩𝑉(𝐿) 
- stowfeas(𝒩𝑉(𝐿′)) 
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The method stowfeas(𝒩𝑉(𝐿′)) checks whether there exists a feasible stowage plan 
on board the supply vessel for servicing all the customer ships visited on the voy-
age represented by label 𝐿′. The method is implemented as a simple depth-first 
dynamic programming algorithm which assigns the orders of the different fuel 
types from the relevant customers to cargo holds on board the vessel. Once a feasi-
ble stowage plan has been found or it has been proven that no such plan exists, the 
method terminates. Since the labeling algorithm is run for each time period, the 
stowfeas() method will be executed several times for the same set of customer 
ships (𝒩𝑉(𝐿′)). To avoid solving the same problem multiple times, the solution 
for a given set of customer ship nodes is stored the first time the method is execut-
ed.  

5.3 Dominating labels 

The dominance criteria used to remove dominated labels are as follows:  
 
Proposition 1 
A label 𝐿1 dominates label 𝐿2 if: 
𝑐(𝐿1) ≤ 𝑐(𝐿2)  
𝑡(𝐿1) ≤ 𝑡(𝐿2)  
𝒩𝑉(𝐿1) = 𝒩𝑉(𝐿2)  
 

This dominance criterion is almost the same as the one stated in Irnich and De-
saulniers (2005) for elementary SPPRC, with two notable exceptions. Since we 
want the best voyage that visits each subset of customer ships, we require all Pare-
to-optimal paths also with respect to the nodes visited. Thus, we have replaced 
𝒩𝑉(𝐿1) ⊆ 𝒩𝑉(𝐿2) with 𝒩𝑉(𝐿1) = 𝒩𝑉(𝐿2), requiring that that the paths must 
have visited the same set of nodes. In addition, we can exploit the fact that the trav-
el times between all customer ships are assumed to be equal, thus allowing us to 
omit the term 𝑖(𝐿1) = 𝑖(𝐿2). Given that the above dominance criterion holds, any 
feasible extension of the label 𝐿2 will also be feasible for 𝐿1, even if they depart 
from different customer ships.  

5.4 Extending a label to the depot node 

Extending a label 𝐿 to the depot node is not straight forward in the cases where the 
supply vessel is finished servicing customer ships and is ready to return to the de-
pot during the night. The supply vessel then has, in many cases, two choices: Re-
turn immediately to the depot sailing around Salamina Island and thus returning 
earlier but at a higher cost. The second choice is to wait until the vessel is allowed 
to sail past the navy dock, and return to the depot later, but at a lower cost. Since 
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both options can be optimal in given situations, we create two paths for each label 
where this is the case. In all other cases, we create one path.  

5.5 An overview of the labeling algorithm 

A pseudo-code for the generation of voyages for vessel 𝑣 in time period 𝑡 is given 
in Algorithm 1. The algorithm starts with one initial label, which is added to a set 
of unprocessed labels 𝑈. This initial label 𝐿0 is created for a given vessel and start 
time combination and has the following values: 𝑖(𝐿0 ) = 0 , 𝑝(𝐿0) = 𝑛𝑛𝑛𝑛 , 
𝑐(𝐿0) = 0, 𝑡(𝐿0) = 𝑡, and 𝒩𝑉(𝐿0) = Ø. Until the set of unprocessed labels is emp-
ty, one label is removed from 𝑈, using the function remove. This function returns 
the label 𝐿 representing the path with the least accumulated time. For each custom-
er ship, a new label 𝐿′ is created by extending label 𝐿 to the corresponding node. If 
𝐿′ is resource feasible and not dominated by any other labels in 𝑈, it is added to the 
set of unprocessed labels. We also check whether the new label 𝐿′ dominates any 
existing labels, and if so, remove the dominated labels from 𝑈. Finally, we extend 
label 𝐿 to the depot node, and save the path(s) corresponding to label 𝐿 in the set of 
paths ℛ𝑣𝑡. The set ℛ𝑣𝑣 is then returned by the algorithm. Algorithm 1 is run once 
for each 𝑣 ∈ 𝒱 and 𝑡 ∈ {𝑇𝑣𝐸 , … , |𝑇|}, and the set ℛ𝑣 = ⋃ ℛ𝑣𝑣

|𝑇|
𝑡=𝑇𝑣𝐸

 is used by the 
path-flow model. 
 
Algorithm 1: Pseudo-code for the labeling algorithm for vessel 𝒗 in period 𝒕 
1: Create initial label 𝐿0 
2: 𝑈 =  {𝐿0}  
3: While 𝑈 ≠ Ø do 
4: 𝐿 =  𝑟𝑟𝑟𝑟𝑟𝑟(𝑈)  
5: For each customer ship 𝑗 ∈ 𝒩 do 
6: Create new label 𝐿′ by adding node 𝑗 to label 𝐿 
7: If 𝐿′ is feasible then  
8: If no label in 𝑈 dominates 𝐿′ then 
9: Add 𝐿′ to 𝑈  
10: Remove all labels in 𝑈 that are dominated by 𝐿′ 
11: End-if 
12: End-if 
13: End-for 
14: Extend 𝐿 to 𝑑 and add the corresponding paths to ℛ𝑣𝑣 
15: End-while 
16: Return ℛ𝑣𝑣 
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6 Computational study 

This section presents a computational study performed on a number of test instanc-
es generated from real data from the case company. The mathematical models de-
scribed in Section 4 have been implemented in Mosel and solved using the com-
mercial optimization software Xpress v7.8 64-bit, while the path-generating algo-
rithm described in Section 5 has been implemented in Java. All computational tests 
have been run on a HP DL 160 G5 computer with an Intel Xeon QuadCore E5472 
3.0 GHz processor, 16 GB RAM, and running on a Linux operating system. Sec-
tion 6.1 describes the test instances, while the computational experiments and re-
sults are presented in Section 6.2. There, we present both the results from solving 
the arc-flow model, as presented in Section 4.3, and the path-flow model, as pre-
sented in Section 4.4, as well as a comparison of the two.  

6.1 Test instances 

The test instances are generated based on data regarding customer ships and their 
fuel orders provided by the case company. All test instances include three supply 
vessels, as this was the number of vessels in the shipping company’s fleet. Infor-
mation regarding the vessels’ compartments, load capacities, costs and pumping 
rates was also given. The vessels have from five to seven compartments and their 
total load capacities are in the range of approximately 1300 to 3000 m3.  
 
Since the sailing times are relatively small compared to the operating times at the 
customer ships and the depot (three to 12 hours), we have approximated the sailing 
times between customer ships and between the depot and the customer ships to one 
hour. Exceptions are the sailing time between the depot and the customer ships 
during night time, which is set to four hours because of the navy dock closure. Tak-
ing these sailing times into account, we have chosen to use a time discretization of 
1 hour. 
 
The customer ships typically have from one to three orders each (with two on aver-
age). Most customer ships have wide time windows specifying service within a 
given day (i.e. during a period of 24 time periods). However, some of the ships 
request morning deliveries where the deliveries must be made between 7 am and 2 
pm on the given day. 
 
The number of time periods to include in the planning horizon was set to the end 
time of the latest time window of the customer ships: |𝒯| = max(i∈𝒩) 𝑇�𝑢 . This 
varied between 48 and 96 hours (i.e. two to four days). The start of the planning 
horizon was set to 𝑡 = 0. Since the vessels are already engaged in fuel deliveries 
when solving this problem (from the previous planning period), they are given dif-
ferent times for when they become available. Vessel 1 becomes available for load-
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ing at the depot from time period 𝑡 = 17, meaning 𝑇1𝐸 = 17, while vessels 2 and 3 
are available from 𝑡 = 7 and 𝑡 = 0, respectively.  

Table 1. Test instances with varying number of customer ships on different days 

Test instance # Ships 
day 1 

# Ships 
day 2 

# Ships 
day 3 

# Total 
ships 

# Time 
periods 

4_4_0 4 4 0 8 72 
3_3_2 3 3 2 8 96 
10_0_0 10 0 0 10 48 
5_5_0 5 5 0 10 72 
6_6_0 6 6 0 12 72 
4_4_4 4 4 4 12 96 

 
Table 1 summarizes the different test instances used in the computational study, 
where for example instance 4_4_0 denotes a test problem with four customer ships 
on days 1 and 2, and none on day 3. It should be noted that day 1 starts at 𝑡 = 24, 
meaning that there is a day 0 previous to the service of the customer ships (due to 
the availability of some fuel supply vessels). 

6.2 Computational experiments and results 

Table 2 shows the best obtained solutions within a running time limit of 10,000 
seconds for the arc-flow model. The table shows the best objective value found 
within the time limit together with the best lower bound and the gaps between these 
two values. We also present the value of the linear programming (LP) relaxation, 
i.e. the value of the root node in the branch-and-bound (B&B) tree, and the number 
of nodes in the B&B tree.  

Table 2. Computational results from solving the arc-flow model. 

Test 
instance 

After 10,000 seconds LP-
relaxation 

# B&B no-
des 

Solution 
time [s] Obj. 

value 
Best 

bound 
Gap 
[%] 

4_4_0 106 65.0 63.1 24.3 435,438 10,000 
3_3_2 76 76.0 0 23.2 2373 188 

10_0_0 73 73.0 0 37.9 19,682 896 
5_5_0 75 73.0 2.7 29.1 373,549 10,000 
6_6_0 105 88.2 19.1 34.7 198,185 10,000 
4_4_4 113 88.0 28.4 33.8 102,163 10,000 
 

As shown in Table 2, we were only able to find proven optimal solutions within the 
given time limit for two of the test instances, i.e. test instances 3_3_2 and 10_0_0. 
Three of the remaining instances still have large gaps even after 10,000 seconds 
running time. The reason for this is the weak LP relaxation which results in a large 
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number of nodes to explore in the B&B tree.  
 
Table 3 summarizes the results obtained when running the path-flow model. In 
addition to the information provided in Table 2 for the arc-flow model, we also 
report the number of paths (i.e. feasible vessel voyages) that were generated and 
the time spent on this. Since all test instances were solved to optimality within the 
time limit, we do not report the lower bounds and the gaps.  

Table 3. Computational results from solving the path-flow model.  

Test 
instance 

Objective 
value [s] 

 
# paths 

LP-
releax-

tion 

# B&B  
nodes 

Time path 
generati-

on [s] 

Time 
path-flow 
model [s] 

4_4_0 71 14,243 55.5 45 0.4 4.3 
3_3_2 76 17,797 54.6 27 0.5 4.6 

10_0_0 73 19,892 58.2 15 2.9 4.0 
5_5_0 75 38,602 63.8 11 2.7 13.3 
6_6_0 98 102,926 71.7 82 79.0 96.8 
4_4_4 108 129,448 74.7 459 57.8 129.4 
 

It can be noted from Table 3 that using the solution algorithm based on the path-
flow model we were able to solve all instances to optimality within reasonable 
time. Even the two largest test instances were solved in about three minutes, in-
cluding the time spent on generating the paths. Why the path-flow model performs 
much better than the arc-flow model can be explained by the improved LP relaxa-
tions, which result in much lower numbers of B&B nodes. For example, by com-
paring the results on test instance 10_0_0, which we were able to solve to optimali-
ty with both models, we see that the LP relaxation for the arc-flow model is 37.9, 
while it is 58.2 for the path-flow model. Similarly, while the number of B&B nodes 
is almost 20 thousand for the arc-flow model, the path-flow model only needs to 
explore 15 nodes to prove optimality. 

Table 4. Comparison of the performance between the arc-flow and path-flow models.  

 
Test instance 

Arc-flow model Total time path-
flow model [s] Gap from optimal 

solution [%] 
Time [s] 

4_4_0 49.3 10,000 4.7 
3_3_2 0 188 5.1 

10_0_0 0 896 6.9 
5_5_0 0 10,000 16.0 
6_6_0 7.1 10,000 175.8 
4_4_4 4.6 10,000 187.2 

 
To compare the results between the two models, we have summarized some of the 
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information from Tables 2 and 3 in Table 4. It should be noted that the gaps report-
ed in the second column now are the gaps from the optimal solutions (i.e. the solu-
tions from the path-flow model). It can be noted that except for test instance 4_4_0, 
the solutions obtained by the arc-flow model are not very far away from the opti-
mal ones as one might believe when studying the gaps from the lower bounds in 
Table 2. However, especially when taking the solution times into account, the re-
sults in Table 4 still show that the performance of the path-flow model is superior 
to the arc-flow model. 

7 Practical use of the model in a real-time setting 

The routing and scheduling of the fleet of supply vessels is performed following a 
rolling horizon planning principle, where the plan can be updated in specified time 
intervals or when new important information becomes available (e.g. new orders or 
information about delays). This means that the schedule made is quite likely to be 
changed after starting executing the plan. Thus, the planner needs to solve the 
problem over and over again with only minor changes to the current data, such as 
with the new orders and/or new times for when the vessels become available due to 
delays.  
 
In practice customers request fuel orders about three days ahead of delivery. Some 
of these customers have long-term contracts and these orders are mandatory to 
service. When such orders arrive, the planner must solve the model again, and 
hopefully find a new feasible solution including the new orders. However, some of 
the requests may be spot orders that come from customers to which the company 
has no contractual obligations, and these orders can be considered as optional. In 
these situations, the planner may also not agree on the demanded quantities, if for 
example the fleet is short on capacity at the time of the delivery. The planner might 
instead propose a new offer, which is a fraction of the quantity originally 
demanded. Moreover, in this case the planner must solve the model updated with 
the new order, possibly with the quantity given as a decision variable; see the 
model proposed in Christiansen et al. (2015). When the spot orders are accepted, 
they become mandatory contract orders and the quantities are fixed. Therefore, the 
planner must be careful when accepting new spot orders, as it might restrict the 
possibilities for accepting (mandatory) future orders. 
 
Since one frequently has to update the plan when new information arrives (e.g. new 
orders), it becomes important to find solutions quickly. The planners in the case 
company have suggested that solutions need to be obtained within a time frame of 
approximately ten minutes to be useful in the daily planning. Therefore, the results 
from using the path-flow model, summarized in Table 3, are very promising with 
respect to developing an optimization-based decision support system based on this 
research.  
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8 Concluding remarks 

We have presented two alternative models for a combined fuel supply vessel rout-
ing and tank allocation problem, i.e. an arc-flow and a path-flow model, as well as 
an algorithm for generating the paths (i.e. feasible vessel voyages) as input to the 
path-flow model. We have also conducted a computational study on a number of 
test instances generated based on data from the case company.  
 
The test results showed that the performance of the path-flow model was superior 
to the one by the arc-flow model. By using the arc-flow model we were only able 
to find proven optimal solutions to two of the six test instances with a running time 
limit of 10,000 seconds. However, using the path-flow model we were able to find 
optimal solutions to all test instances in less than about three minutes, which is less 
than what the case company has suggested as a reasonable time frame to provide 
practical decision support. In a real-time setting, the problem will be solved over 
and over again when new information arrives. This can for example be when the 
company receives a new request for a spot order and needs to decide whether to 
accept it or not, or when a supply vessel is delayed. Therefore, the results are very 
promising with respect to developing an optimization-based decision support sys-
tem based on the proposed path-flow model. 
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