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Abstract In this paper we study newly developed methods for linear elastic-
ity on polyhedral meshes. Our emphasis is on applications of the methods to
geological models. Models of subsurface, and in particular sedimentary rocks,
naturally lead to general polyhedral meshes. Numerical methods which can
directly handle such representation are highly desirable. Many of the numer-
ical challenges in simulation of subsurface applications come from the lack of
robustness and accuracy of numerical methods in the case of highly distorted
grids. In this paper we investigate and compare the Multi-Point Stress Ap-
proximation (MPSA) and the Virtual Element Method (VEM) with regards
to grid features that are frequently seen in geological models and likely to lead
to a lack of accuracy of the methods. In particular we look at how the methods
perform near the incompressible limit. This work shows that both methods are
promising for flexible modeling of subsurface mechanics.

Keywords Multi-Point Stress Approximation · Virtual Element Method ·
Mimetic finite difference · Geomechanics · Linear elasticity · Polyhedral grids

1 Introduction

Modeling of sedimentary subsurface rock naturally leads to general unstruc-
tured grids because of stratigraphic layering, erosion and faults. The industry
standard for grids in reservoir modeling is the Corner-Point grids (cp-grids).
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Other geometrical grid formats have been proposed to improve on this for-
mat, but all compact representations of the underlying geology will lead to
cells with high aspect ratios, distorted cells, large variations in cell volumes
and faces areas. By compact, we mean a geometrical representation where the
number of cells roughly corresponds to the number of physical parameters
(such as rock properties). When physical parameters are assigned to a domain
such as a reservoir, the connected regions that correspond to the same physical
parameter are typically not finely meshed, and in the most compact possible
representation, they are represented by a single cell. For very heterogeneous
media such as reservoir, non-compact representations typically lead to very
large grids that are computationally too demanding. Methods that are valid
on general polyhedral grids and are robust for different grid types will greatly
simplify the modeling of subsurface physics for multiphase flow encountered
in the oil and gas industry. The workhorse method there is the finite volume
discretization based on a two point flux approximation (TPFA). The method
does not necessarily converge to the exact solution for general grids and can
introduce large grid-orientation effects, see for example [20, Figure 3], but is
very robust due to its monotonicity properties, which often result in faster
computation times. The multi-point flux approximation (MPFA) method has
been developed to solve the convergence problems and has been successfully
applied to minimize grid-orientation effects [1, 15], but due to lack of mono-
tonicity, the method remains difficult to apply to complex grids such as those
arising from real reservoir models. Based on a mixed formulation, the mimetic
finite difference method has been proposed for incompressible flow [9, 8], but
problems arise in the case of fully compressible black oil models, as the method
introduces non-monotonicity and significantly more degrees of freedom. In re-
cent years, the coupling of geo-mechanical effects with subsurface flow has
become more important in many areas including oil and gas production from
mature fields, fractured tight reservoirs as well as geothermal application and
risk assessment of CO2 injection. Realistic modeling of these geological cases
is hampered by differences in the way geo-mechanics and flow models are built
and discretized.

Recently, a cell-centered finite volume discretization has been proposed in
[21] to specifically address problems arising in coupled geo-mechanical and
flow simulation of porous media. The method is inspired from the MPFA
discretization developed for flow problems and was thus named multi-point
stress approximation (MPSA). The MPSA method presents two appealing
features for subsurface applications. Since the method is based on the MPFA
method, it shares the same data structure based on finite volume discretization,
which is commonly used for the flow problem. Moreover, the method can
operate on the general polyhedral grids that are typically used to represent
complex heterogeneous medium. This later property is shared by the virtual
element (VE) method [6]. The VE method builds upon the long-standing effort
in the development of mimetic finite difference (MFD) methods, see [16, 5].
The MFD method reproduces at the discrete level fundamental properties of
the differentiation operators, using only the available degrees of freedom and
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without explicitly constructing the finite element basis. In this way, the method
can easily handle general cell shapes. The VE method is a reformulation of
the MFD method in the finite element framework. Both the MPSA and the
VE methods for mechanics naturally define the divergence of the displacement
on cells (see [23] for MPSA), which is also the natural coupling term between
flow and mechanics, when flow is discretized with finite volume methods. As
pointed out in [21], any attempt to extend the TPFA method to mechanics is
bound to fail as the method already fails the local patch test. The local patch
test verifies that the numerical method preserves rigid rotations, which are
exact solutions to the problem.

In this paper we will investigate the MPSA and VE methods for mechan-
ics with special emphasis on grid artifacts that are widespread in geological
models of sedimentary rock reservoirs. Even if both aspects are related, our
first interest is not the convergence properties of the methods but their per-
formance on coarse and distorted meshes. This paper contains the first set of
tests where the MPSA method is tested in view of applications to geosciences.
In addition, we will discuss the properties of the methods in the incompress-
ible limit since it has practical consequences for the short time dynamics of
elasticity problems coupled with flow, as for example the Biot’s equations. We
also look at the different properties of the methods for different types of grids
and how the methods can incorporate features like fractures.

2 Presentation of the methods

We study the methods for the standard equations of linear elasticity given by

∇ · σ = f ,

ε =
1

2
(∇+∇T )u,

σ = Cε,

(1)

where σ is the Cauchy stress tensor, ε the infinitesimal strain tensors and u
the displacement field. The linear operator C is a fourth-order stiffness tensor.
For isotropic materials, we have the constitutive equations

σ = 2µε+ λ trace(ε)I, (2)

where µ and λ denote the Lamé coefficients. We summarize the description of
the methods given in [10] for the VE method and in [21] for MPSA. In the case
of VE, we do not use the nodal representations of the load and traction terms.
Instead we use traction and load terms defined on faces and cells, respectively.
This is consistent with the physical meaning of these terms in addition to the
fact that the integration rules hold exactly. The advantages of this evaluation
for the volume force is discussed in [25].
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2.1 The Virtual Element Method

As in the classical finite element method, the VE method starts from the linear
elasticity equations written in the weak form∫

Ω

ε(v) : Cε(u) dx =

∫
Ω

v · f dx for all v. (3)

In (3), we use the standard scalar product for matrices defined as

α : β = trace(αtβ) =

3∑
i,j=1

αi,jβi,j ,

for any two matrices α,β ∈ R3×3. We have also introduced the symmetric
gradient ε given by

ε(u) = (∇+∇T )u,

for any displacement u. The fundamental idea in the VE method is to compute
on each element an approximation ahK of the bilinear form

aK(u,v) =

∫
K

ε(u) : Cε(v) dx, (4)

that, in addition to being symmetric, positive definite and coercive (uniformly
with respect to the grid size if we want convergence), is also exact for linear
functions. Note that in this paper, we only consider first-order methods. If
higher order methods are used, the exactness must hold for polynomials of
a given degree where the degree determines the order of the method. These
methods were first introduced as mimetic finite element methods but later
developed further under the name of virtual element methods (see [5] for dis-
cussions). The degrees of freedom are chosen as in the standard finite element
methods to ensure the continuity at the boundaries and an element-wise assem-
bly of the bilinear forms ahK . We have followed the implementation described
in [10]. In a first-order VE method, the projection operator P into the space of
linear displacement has to be computed locally for each cell. The VE approach
ensures that it can be computed exactly for each basis element. The projection
operator is defined with respect to the metric induced by the bilinear form aK .
The following orthogonal decomposition of the energy, which corresponds to
Pythagoras identity, holds

aK(u,v) = aK(Pu,Pv) + aK((I − P)u, (I − P)v) (5)

for all displacement field u and v (In order to keep this introduction simple,
we do not state the requirements on regularity which is needed for the dis-
placement fields). In [10], an explicit expression for P is given so that we do
not even have to compute the projection. Indeed, we have P = PR+PC where
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PR is the projection on the space R of pure rotations and PC the projection
on the space C of constant shear strain. The spaces R and C are defined as

R =
{
a+B(x− x̄) | a ∈ R3, B ∈ R3×3, BT = −B

}
,

C =
{
B(x− x̄) | B ∈ R3×3, BT = B

}
.

Then, the discrete bilinear form ahK is defined as

ahK(u,v) = aK(Pu,Pv) + sK((I − P)u, (I − P)v) (6)

where sK is a symmetric positive matrix which is chosen such that ahK remains
coercive. Note the similarities between (6) and (5). Since PR and PC are
orthogonal and PR maps into the null space of aK (rotations do not produce
any change in the energy), we have that the first term on the right-hand side
of (5) and (6) can be simplified to

aK(Pu,Pv) = aK(PCu,PCv).

The expression (6) immediately guarantees the consistency of the method, as
we get from (6) that, for linear displacements, the discrete energy coincides
with the exact energy. Since the projection operator can be computed exactly
for all elements in the basis - and in particular for the virtual basis elements for
which we do not have explicit expressions - the local matrix can be written only
in terms of the degrees of freedom of the method. In our case the degrees of
freedom of the method are the value of displacement at the node. Let us denote
ϕi a basis for these degrees of freedom. The matrix (AK)i,j = aK(ϕi,ϕj) is
given by

AK = |K|W T
CDWC + (I − P )TSK(I − P ). (7)

In (7), WC is the projection operator from the values of node displacements
to the space of constant shear strain and SK , which corresponds to a dis-
cretization of sK in (6), is a symmetric positive matrix which guarantees the
positivity of AK . There is a large amount of freedom in the choice of SK but
it has to be scaled correctly. We choose the same SK as in [10]. The matrix
D in (7) corresponds to the tensor C rewritten in Voigt notations so that, in
three dimensions, we have

Dij = εi : Cεj , for i, j = 1, . . . , 6.

Finally, the matrices AK are used to assemble the global matrix A corre-
sponding to ah.

2.2 Multi-Point Stress Approximation

The Multi-Point Stress Approximation (MPSA) is inspired from the MPFA
method [1] which is a finite volume method for fluid flow. Its derivation is based
on discrete principles for the conservation of momentum and the continuity of
the forces. We use the same notations as in [22], which are also summarized in
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Table 1 Notations used in the presentation of the MPSA method.

K, σ, s : Generic notation for a cell, a face or a vertex, respectively

Tσ, Ts : set of cells which contains the face σ and the vertex s, respec-
tively

FK , Fs : set of faces which belong the cell K and the vertex s, respec-
tively

VK , Vσ : set of vertices that belong to the cell K and the face σ, respec-
tively

Ks : Interaction region of the cell K with the vertex s

γ : Generic notation for a subface. Given σ ∈ Fs, γσs is the subface
contained in σ which contains the vertex s.

Is : interaction region corresponding to the vertex s, i.e. Is = ∪Ks

for K ∈ Ts.
uK : displacement at cell center K

xK : cell center

xσ,βs : location of the Gauss points of the subface γσs
uσ,βK,s : displacement at the Gauss points xσs , on the side of the cell K

(we allow uσ,βK,s 6= uσ,βK′,s, for σ = K ∩K ′)
uσK,s : displacement at subface γσs computed from the values at the

Gauss points using (8)

nK,σ : normal to the face σ pointing outwards from K.

T σK,s : force at the subface σK,s evaluated from Ks (we allow for
T σK,s 6= T σK′,s, for σ = K ∩K ′)

NFK,s : number of subfaces γσs , with σFK ∩ Fs for a given interaction
region Ks

NTs , N
F
s : number of cells and faces, respectively, which contain s

Table 1 and Figure 1 (Note that σ in this section no longer denotes the Cauchy
stress tensor but a face of a cell). Each cell K is divided into interaction
subregions, one for each vertex s of the cell K. We denote such subregion as
Ks. An interaction region for a vertex s, denoted Is, is defined as the union
of the subregions of the cells that share the vertex s. This partition induces
a partition of the faces in subfaces, which we generically denote by γ. For a
face σ = K ∩K ′, the subface γσs is given by Ks ∩K ′s. On the subface γσs , we
consider a set of Gauss points, xσ,βs for β ∈ {1, . . . , k}. We require that we
have enough Gauss points to obtain a second order approximation (In 2D, this
can be obtained for k = 2 which is also our choice in the implementation). We
can compute an approximation of the value of the displacement on the subface
σK,s given the values at the Gauss point by using the quadrature formula

uσK,s =

k∑
β=1

ωβu
σ,β
K,s, (8)
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cell K

Ks

subface γ σ
s

face σ

fa
ce
σ
′

vertex s

DK,s

uσ, 1
K, s

uσ, 2
K, s

uσ′, 1
K, s

uσ′, 2
K, s

uK

nK,σ

nK,σ′

T σ
K,sT σ
K,s

T σ′
K,sT σ′
K,s

Fig. 1 Illustration picture for the MPSA method. The interaction region for the vertex s
is represented in gray. See Table 1 for the notations.

where ωβ denotes the Gauss quadrature weights. A linear approximation of u
in a subregion Ks is defined by the value of uK at the cell center and a linear
mapping denoted DK,s ∈ Rd×d which corresponds to the gradient of the linear
approximation. Given a linear approximation in a subregion, the values of u
at the Gauss points is given by

uσ,βK,s := u(xσ,βs ) = uK +DK,s(x
σ,β
s − xK). (9)

and we denote by GK,s the corresponding mapping,

GK,s : Rd(d+1) → RdkN
F
K,s

uK , {DK,s} 7→
{
uσ,βK,s

}
σ∈Fs∩FK
β={1,...,k}

.
(10)

See Figure 2 for a schematic representation of the mappings that are introduced
in this section. Given a linear approximation, we can also compute the stress
field using Hooke’s law (2) and define the force on each subface as

T σK,s = ms
σ

(
µK(DK,s +Dt

K,s) + λK(trace(DK,s))I
)
· nK,σ. (11)

In (11), mσ
s denotes the area of the subface γσs . In this way, we define the

mapping TK,s that maps gradient to subface forces as

TK,s : Rd×d → RdN
F
K,s

DK,s 7→
{
T σK,s

}
σ∈Fs∩FK

(12)
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Finally, we introduce the reconstruction operator Rs which, from cell values
in an interaction region, yields a linear approximation in each interaction sub-
region (in form of a matrix),

Rs : RdN
T
s → RdN

T
s (d+1)

{uK}K∈Ts 7→ {uK}K∈Ts , {DK,s}K∈Ts .
(13)

The mapping Rs is largely undertermined in the sense that there are many
coefficients that remain to be set. We exploit these degrees of freedom in
choosing the coefficients of R to enforce the continuity of the forces at each
subface and minimize the jump of the displacement field at the Gauss points.
The continuity of the forces at each subface is given by

T σK,s = −T σK′,s (14)

whenever σ = K ∩K ′. The values of T σK,s are computed using (11). We define
a measure of the jump of displacement at the subfaces as

Js =
∑
σ∈Fs

∑
β∈{1,2}

∑
K,K′∈Tσ

wK′.K

∣∣∣uσ,βK′,s − u
σ,β
K,s

∣∣∣2 . (15)

The weights wK,K′ in (15) can be chosen as the harmonic mean of the largest
eigenvalue of the stiffness tensor C of the adjacent cells K and K ′, see [21,

22]. We introduce the vector vs ∈ RdNT
s that consists of all the cell values of

the displacement in the interaction region, vs = [uK1 , . . . ,uKNT
s

]. We denote

by dK,s ∈ Rd2 the vector representation of the matrix DK,s ∈ Rd×d and set
ds = [dK1 , . . . ,dKNT

s
]. The definition of Rs now boils down to determining

the values of ds (the gradients in the interaction region), given the values of
vs (the displacements at the cell center). We can check from (11) that the
condition (14) is linear and can be rewritten as

Ads = 0

for some matrix A : Rd2NT
s → RNF

s . We denote by δu ∈ RdkNF
s the vector

whose components are given by the jumps of the Gauss points,

δu =
{
uσ,βK′,s − u

σ,β
K,s

}
σ∈Fs,K∈Ts
β={1,2}

We can then rewrite Js as

Js =
1

2
δutMδu

where M is a diagonal symmetric positive definite matrix. The value at the
Gauss points depends linearly on the coefficients of DK,s and the values of
uL, see (9). Therefore, using the representation ds and vs, we end up with a
relation of the type

δu = Bds +Evs (16)
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for some matrices B : Rd2NT
s → R2kdNF

s and E : RdNT
s → R2kdNF

s . Using
(16), we get

Js =
1

2
dtsB

tMBds + dtsB
tMEvs +

1

2
vtsE

tMEvs (17)

We set ds as the minimizer of Js, with respect to ds, subject to the constraint
Ads = 0. We solve this quadratic minimization problem by using Lagrangian
multipliers and setting up the corresponding saddle-point equations. We end
up with an expression of the form ds = Rsvs. This matrix Rs then defines
the reconstruction operator Rs. Combining Rs and TK,s for each cell K ∈ Ts,
we can define the mapping Ts which, from cell values, computes the values of
the force at the subfaces. For a subface γσs , we denote the force acting at this
subface by T σs . Since the method imposes the continuity of the force, this value
is now well-defined. We denote by Ts the mapping that compute the forces in
the interaction region from cell-valued displacement,

Ts : RdN
T
s → RdN

F
s

{uK}K∈Ts 7→ {T
σ
s }σ∈Fs .

(18)

The mapping Ts can be written in the form

T σK,s =
∑
K′∈Ts

tK,K′,s,σuK′ . (19)

The local coefficient tensors tK,K′,s,σ are referred to as subface stress weight
tensors, and generalize the notion of transmissibilities from the scalar diffusion
equation [21]. The system of equations for linear elasticity are then given by
the discrete conservation of momentum. It means that, for each cell, the sum
of the forces applied to all faces is equal to the external force applied to the
cell, that is ∑

σ∈FK
T σK =

∫
K

f(x) dx. (20)

The force acting on a cell-face is naturally defined as the sum of the forces
acting on all the corresponding subfaces, that is

T σK =
∑
{s∈Vσ}

T σK,s (21)

where Vσ denote the set of vertices that belong to the face σ.

2.3 Fundamental differences between the methods

There are fundamental differences between VEM and MPSA in the assembly
process. In the VE framework, the matrix A defining the discrete equation
Au = f is computed element for element, based on rock parameters and
the geometry of the cell. In the MPSA method, we first calculate the forces
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mapping GK,s mapping TK,s

mapping Rs mapping Ts

Input

Output

Input

Output

Fig. 2 schematic representation of the mappings used in the derivation of MPSA. Here
we use the same interaction region as in Figure 1 and give the locations of the input and
outputs for each mapping.

from cell center displacement. This calculation requires solving a constrained
quadratic minimization problem, which in our implementation is resolved by
solving a linear saddle-point system. For certain grids, a singular value decom-
position is required to eliminate redundant constraints. Then the contribution
to a matrix element is calculated by summing up the contributions from each
subface. So VE operates on the element, while MPSA operates on interaction
regions. Note that the set of interaction regions, considered as cells, will con-
stitute a dual grid of the original grid. Recently, a new variant of the MPSA
method has been developed in [12], based on ideas from weakly symmetric
mixed finite element discretizations. This new variant leads to a simpler lo-
cal problem, since the weakly imposed symmetry allows for well-posed local
problems using only a single continuity point on each face. Thus there are
equal number of constraints as degrees of freedom, and the local minimization
problems are replaced by simpler (and smaller) linear systems.

2.3.1 Comparison of the method with respect to grid features

In the context of geosciences, the MPSA method has the advantage to allow
for an easy treatment of fractures. A fracture appearing at the interface be-
tween two cells can be modeled in a straightforward way by decoupling the
corresponding face. If we denote this face by σ, Equation (14) is replaced by

T σK,s = 0 = −T σK′,s and the displacement values at the Gauss points, uσ,βK,s and

uσ,βK′,s for K,K ′ ∈ Tσ are removed from the sum in (15). The method, before
removing the degrees of freedom, is similar to a mixed method. This can be
seen more explicitly in [12], where the MPSA method which is presented there
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is very similar to the PEERS elements for triangles [3]. The difference is that
the PEERS elements have one set of forces on edges and an addition bub-
ble function to obtain stability for the incompressible limit, while the MPSA
method has two sets of forces on the edges. To reduce the degrees of freedom
of the global system, the MPSA method sacrifices the symmetry and posi-
tive definiteness of the local systems. In the case of triangles, there exists a
symmetric block diagonal inner-product as noticed in [17], which makes the
formulation [12] attractive.

The disadvantages of the MPSA method is that it is not symmetric and
only conditionally stable, a property which is also encountered in the MPFA
method [17, 14]. It may result in failure or poor results for severely distorted
grids, and strongly anisotropic media. However, the stability of the method can
be verified locally [22]. Still, this may prevent it from being used on specific
grids without extra griding. Generally the MPSA will suffer from the same
grid restrictions as MPFA. The method also requires the inversion of local
matrices, which may induce an extra cost, but this only affects the assembly
process, which is only done at the beginning of a simulation if the physical
parameters remain unchanged. In the case of VEM, we can expect the same
structure as for FEM so that the same solvers can be used. The system matrix
is by construction symmetric, positive and definite. If not modified, the VE
method suffers from the same limitations with respect to locking and accuracy
of stresses as a linear FE method. In addition, forces are not as naturally
defined on faces as they are in MPSA and methods of mixed type. Some of these
problems can be avoided by using techniques developed for FEM solutions [26]
since for simple grids the VE and FE methods become equivalent.

2.3.2 Limit of incompressible elasticity

In the limit of incompressible elasticity, the displacement field tends to be
solenoidal, that is, divergence free. Numerical locking occurs when solenoidal
fields are poorly approximated at the discrete level. In the context of sub-
surface application, numerical locking will be an issue when considering the
coupling of linear elasticity for the rock matrix with flow. To see that, let us
consider the Biot’s equations [7] which are commonly used in the simulation
of hydromechanical problems. The Biot’s equations consist of the following
linear equations,

∇ · σ + α∇p = f , (22a)

∂

∂t
(c0p+ α∇ · u) +∇ · (K∇p) = 0, (22b)

ε =
1

2
(∇+∇T )u, (22c)

σ = Cε, (22d)

where c0p + α∇ · u denotes the fluid content. The fluid content depends on
the fluid pressure p and on the rock volume change given by ∇ · u which is
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weighted by the Biot-Willis constant α. We discretize in time the equations
(22) and use a superscript n to denote the values corresponding to the time
step n. From (22), we get

∇ · σn+1 + α∇pn+1 = fn+1, (23a)

c0p
n+1 + α∇ · un+1 +∆t∇ · (K∇(pn+1)) = c0p

n + α∇ · un, (23b)

εn+1 =
1

2
(∇+∇T )un+1, (23c)

σn+1 = Cεn+1. (23d)

In equation (23b), we can see that, in the limit where the fluid becomes in-
compressible, that is c0 ≈ 0, when the time-step ∆t tends to zero, the change
in the divergence of u becomes very small. In this case, we are computing a
displacement field which is close to solenoidal and numerical locking becomes
an issue.

In the case of VEM and any finite element method, the material parame-
ters enter the discrete equations cell-wise in the assembly of the bilinear form
a, see (6). Letting λ be very large compared to µ therefore imposes a near
solenoidality condition on each cell. To evaluate the level of locking, we can
compare the number of degree of freedom of the whole system with the num-
ber of local solenoidal equations, that is, the equations which locally impose
the solenoidal condition for large λ. The heuristic is then the following: If the
number of local solenoidal equations is small with respect to the number of
degree of freedoms, then there are potentially enough degrees of freedom left
after having fulfilled the solenoidal equations to approximate the actual solu-
tion. We avoid also the appearance of spurious modes which is characteristic
for locking, see [5, section 8.3] where this aspect is discussed for the Stokes
equation. Such counting arguments to assess the well-posedness of a system,
which consists of comparing the number of degree of freedom and the number
of near constraint, have been used in the literature earlier, see e.g. [19]

In the case of VEM, the ratio between the number of cells and the number
of nodes will give an indication of the sensitivity of the grid with respect to
locking. The higher this ratio is, the more likely it is that locking appears.
Hence, triangular grid, where this ratio is high, are likely to lock. One has
to introduce extra face degrees of freedom and the restriction is the same as
for the case of the linear Stokes equations. A sufficient condition for avoiding
locking in 2D is that each corner have only three faces without extra degrees
of freedom. On the other side, PEBI grid (also called Voronoi meshes) where
this ratio is low will not be likely to lock. We refer to [5] for a detailed analysis
of the necessary conditions to avoid locking. In the case of the MPSA method,
the situation is the opposite. The discrete representation of the stress tensor
is done at each node so that the solenoidality condition will be imposed there.
Therefore, the ratio between the number of interaction regions (which is also
equal to the number of nodes) with the number of cells (which corresponds to
the number of degree of freedom for MPSA) will determine the sensitivity of
the grid to locking. A PEBI grid will then much more likely lead to locking
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than a triangular grid. More generally, we can conclude that the grids where
the MPSA method and the VE method lock are dual grids of each other. In
the case of many geological applications, the compressibility of water is about
the same as of the rock, which means that locking is not happening. Indeed in
that case the effective second Lamé parameter is λ+ 1

c0
, which is of the same

order of magnitude than µ. However, for mud and shale, it may be important
as λ� µ.

It seems that the limitations with respect to locking are a bit less severe
for MPSA. However, it is important in this case to resolve the local minimiza-
tion problems, see (17), with sufficient accuracy so that the div-free part of the
solution is well preserved, since this part will be multiplied with a large param-
eter. In the discretization of the Biot’s equations in the framework of MPSA,
a regularization-like term arises naturally by recognizing that the numerical
divergence for displacement depends on pressure. This can be seen from the
discretization in the reduction to cell-centered variables. The essential ingre-
dients are that the divergence operator is defined in terms of displacement at
cell boundaries and that the continuity of forces is required by using the effec-
tive stress, that is σ − αpI, and not the continuity of the forces due to stress
with an additional force from the pressure gradient. This requires that the dis-
cretization of the mechanics and the pressure system is done together. We also
note that the discretization of the coupling is independent of the discretization
of the gradient in the Darcy equation.

2.3.3 Regularization methods for the near-incompressible limit

We have implemented different regularization strategies to handle materials
close to the near incompressible limit. For VEM, our approach follows [4] even
if the results there hold for elements of order k ≥ 2 while we only consider
linear elements, that is k = 1. We will comment on that later. We use the
constitutive equation given by (2) and the energy in a cell K is given by

1

2
aK(u,u) = µ

∫
K

ε(u) : ε(u) dx+
λ

2

∫
K

|∇ · u|2 dx. (24)

We introduce

aµ,K(u,v) =

∫
K

ε(u) : ε(u) dx

so that (24) can be rewritten as

aK(u,u) = 2µaµ,K(u,u) + λ

∫
K

|∇ · u|2 dx (25)

The coercivity of aK follows from the coercivity of aµ,K but it deteriorates
when λ get very large compared to µ. In terms of the Poisson ratio ν, we have

µ

λ
=

1− 2ν

2ν
(26)
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so that the deterioration of the coercivity occurs when ν tends to 1
2 . In this

case, the exact solution will be very close to a solenoidal field. As mentioned
before, numerical locking occurs when too many degrees of freedom are used
to satisfy the solenoidal constraint so that too few are left to approximate
close-to-solenoidal solutions. Instead of (25), we consider the following ap-
proximation of aK ,

aK,app(u,v) = 2µaµ,K(u,v) + λ

∫
K

|Π0,K(∇ · u)|2 dx. (27)

Here Π0,K is the L2 projection. When λ becomes very large, the strong pe-
nalization of the term following λ in (27) will impose on the solution the
constraint

Π0,K(∇ · u) = 0 (28)

while, for (25), it gave ∇ · u = 0. We have in this way relaxed the system as
the constraint (28) is easier to fulfill than the solenoidal constraint ∇ · u = 0
(the latter implies the former, but not the other way around). More degrees
of freedom are therefore left to resolve the rest of the displacement field. At
the same time, we commit a variational crime meaning that we base our
formulation on a non-exact form of the energy. However, in the VE method,
the energy we consider is already an approximation because of the stabilization
term and we are going to see that we retain exactness in the case of solutions
corresponding to linear displacement, even when we use the relaxed version.
To approximate aµ,K , we use the projection P and introduce a stabilization
term as described in Section 2.1, that is,

ahµ,K(u,v) = aµ,K(Pu,Pv) + sµ,K((I − P)u, (I − P)v). (29)

Then, the discrete approximation of the energy is given by

ahK(u,u) = 2µahµ,K(u,u) + λ

∫
K

|Π0∇ · u|2 dx. (30)

As usual the total energy will obtained by summing up the cell contributions,

ah(u,v) =
∑
K∈T

ahK(u,v). (31)

We can check that Π0(∇ · u) can be computed exactly for all elements of
the virtual basis. Indeed to compute the L2 projection of ∇ · u, we only need
to evaluate its zero moment, that is, the integral of ∇ · u. A straightforward
integration by parts give us∫

K

∇ · u dx =

∫
∂K

u · n dx (32)

and, by construction, for any u which belongs to the virtual basis, u is linear
on the edges so that the integral on the right-hand side above can be computed
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exactly. Thus, the bilinear form ahK in (30) can be assembled and the corre-
sponding system inherits the consistency property of the VE method. Namely,
if u is linear and v is one of the virtual basis element, then

ahK(u,v) = aK,app(u,v). (33)

We define a discrete divergence operator from node to cell variables as∑
K∈T

qKdiv(u)K =
∑
K∈T

qK

∫
K

∇ · u dx

for all qK . Here u is the function in the virtual finite element space corre-
sponding to the nodal displacement coefficients given by u. We assemble the
matrix A corresponding to the bilinear form ahµ in the same way as in section
2.1. We obtain that, for any discrete nodal displacement vector u, the discrete
bilinear form ah takes the form

ah(u,u) = µ uT Au +
λ

2
|div(u)|2 .

The discrete system of equations is obtained by taking the variation of ah and
we get

2µAu + λdivT div(u) = f,

for a given right-hand side f. We can rewrite this system as

2µAu + grad(p) = f (34a)

div(u)− 1

λ
p = 0, (34b)

where grad = divT . Then, p can then be interpreted as a pressure. This
strategy where the solenoidal constraint is relaxed using a projection operator
can be successfully applied when considering higher order method virtual finite
element methods. Indeed, in [4], it is shown that for a method of order k
is the projection operator Πk−2 is used for relaxation then the method is
unconditionally convergent with respect to the parameter λ. Since we consider
linear elements, that is k = 1, such operator is not available. Therefore, we
need to introduce additional degree of freedom, in addition to the nodal values
of displacement. In [5], it is shown that it is only necessary to introduce an
extra edge degree of freedom for edges which connect to nodes that have more
than three edges. The following three VE methods have been implemented,

VEM : Standard implementation, as described in Section 2.1,

VEM-relax : Implementation using the relaxed version coming from
(30), see (34),

VEM-relax-extra: Same as VEM-relax but we introduce an extra degree
of freedom on each face so that the stability condition
given in [5] is fulfilled.
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For the MPSA method, a regularization of a similar nature is presented in
[21] in the case of the poro-elastic equation. We detail its application to the
incompressible limit. We use the same framework and notations as given in
Section 2.2. The essential ingredient in [21] is to add to each cell K an extra
degree of freedom pK to approximate the divergence term λK∇ · u in the cell
K. We replace the definition (11) of the forces on subfaces as

T σK,s = ms
σ

(
µK(DK,s +Dt

K,s) + λKpKI
)
· nK,σ. (35)

The linear mapping Rs is defined in this case by following the same approach as
before: Given uK and now in addition pK , for all cells K in Ts, the interaction
region of the vertex s, let us choose the coefficients of Rs such that the forces
as defined by (35) are continuous across each subfaces, that is (14) holds, and
the measure of the jumps in displacement values given by (15) is minimized.
Then, we obtain at each interaction regions Ts, the mapping Ts,relax which
corresponds to Ts in (18) for the standard MPSA method, as

Ts,relax : R(d+1)NT
s → RdN

F
s

{uK , pK}K∈Ts 7→ {T
σ
s }σ∈Fs .

The global system of equation is then given by the equation of conservation
of momentum (20) and an equation for the pressure. The relation between
the pressure and the displacement field is obtained by a discretization of the
divergence operator,

pK =
λK
|K|

∑
{s|K∈Ts}

∑
{σ∈FK∩Fs}

|(K, s, σ)|uσK,s · nK,σ, (36)

where |σs| denotes the length (or surface in 3D) of the the subface γσs and |K|
the volume of the cell K. The equation (36) is a discretization of∫

K

p dx = λK

∫
K

∇ · u dx =
∑
σ∈FK

∫
σ

u · nK,s dσ

and defines a discrete divergence operator divK on each cell K

divK : RN
F
K → R{

uσK,s
}
s∈VK ,σ∈FK∩Fs 7→ pK .

Using the same arguments as in [21], one can prove that with essentially the
same grid restrictions that apply for the elastic and pressure discretizations
independently, the method is convergent uniformly with respect to λ. The
method introduces the extra degrees of freedom pK and it also introduces
relaxation. Indeed, the divergence term in the definition of the force is imposed
through pK , that is, from the condition (36), which is imposed cell-wise. This
represents a relaxation in comparison with the original MPSA method, where
different values of the divergence are used for each interaction subregions (Ks
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with s ∈ VK). Note that finite-volume based method for flow defines a natural
divergence operator into cells and the coupling term of the mechanical system
with a finite volume method, which is due to the volume changes of the cells,
will also require for the mechanical system a divergence operator into cells.
Hence, in the limit of incompressible fluid and small time steps, it will lead to
the same constraint as the near-incompressibility constraint for the mechanical
system. This means that for MPSA the ratio between the number of degrees
of freedom and the near div-free condition, both defined on cells in the case of
Biot’s equations, is independent of the grid, while for VEM it depends on the
ratio between nodes and cells. The following two MPSA methods have been
implemented

MPSA: Standard implementation, as described in Section 2.2,

MPSA-relax : Implementation using the relaxed version where an extra
pressure degree of freedom is used, see (35).

3 Numerical test cases

The test cases are designed to study the robustness of the methods with re-
spect to grid features that are specific to subsurface applications. All of the
code has been written and run using the framework of MRST, [18]. We con-
sider only two-dimensional configurations and plan to study three-dimensional
configurations in subsequent works, see [25] for 3D studies using VEM. At the
moment, only full Dirichlet boundary conditions have been implemented for
MPSA but the extension to other general boundary conditions such as rolling
conditions (that is, component-wise Dirichlet conditions) is not difficult but
requires some careful work. We summarize the different test cases in Table 2.
We pay particular attention to the error in the divergence field, because of its
central role in the coupling with poro-elasticity, and to the local behavior of
the stress fields, due to its importance in the simulation of the development
of fractures and faults.

In all test cases, we use a uniform medium. In the first test cases (Cases
1 to 4), we use the same reference solution which is computed as follows. We
consider the displacement field u = [u1, u2]T given by

u1 = x(1− x) sin(2πy) u2 = sin(2πx) sin(2πy), (37)

for x and y belonging to [0, 1]. Using (1), we compute the force f for which u,
given by (37) is the solution. In this way, we have obtained an exact solution
of the linear elasticity equations (1) that we will use to compare our results
in all the examples below. The boundary conditions are zero displacement on
all sides. Since the problem is linear, the choice of one of the Lamé coefficient
is insignificant as it only corresponds to a re-scaling of the results. Except for
the simulations concerning numerical locking, we will use λ

µ = 1.
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Table 2 Summary of the numerical tests

Case 1 : Twisted grid

Case 2a : Mixed grid with challenging features

Case 2b : Large aspect ratio with hexagonal grid

Case 2c : Large aspect ratio with triangular grid

Two regions (Case 3)

Case 3a : Two regions, uniform refinement (both in x and y) in one region

Case 3b : Two regions, refinement only in the y direction in one region

Case 3c : Two regions with the same Cartesian discretization, but with
20 extra nodes in each face at the interface

Thin layer (Case 4)

Case 4a : Vertical thin layer, no refinement inside the layer

Case 4b : Vertical thin layer with refinement inside the layer, Cartesian
grid

Case 4c : Vertical thin layer with refinement inside the layer, twisted grid

Locking examples (Case 5)

Case 5a : ν = 0.495 with hexagonal grid

Case 5b : ν = 0.495 with triangular grid

Case 5c : ν = 0.495 with quadrilateral grid

Biot system (Case 6)

Case 6a : Biot test case with triangle grid

Case 6b : Biot test case with hexagonal grid

3.1 Case 1: Twisted grid with random perturbation

In this test case, we check the convergence properties of both methods. The VE
method is in general first order convergent, as shown in [4, 5], but numerical
tests show second order convergence under general conditions [4, 10]. For the
VE method used in the near-incompressible case, see Section 3.5, where pres-
sure is considered as an independent variable, then the pressure converges at
first order, see [5, theorem 9.1]. Convergence estimates for the MPSA method
are not available in the established literature but numerical tests show the same
features as VEM, see [21]. Accordingly, Figure 3 shows convergence rates of
two and one for the displacement and the divergence, respectively. The most
refined grid is obtained by refining 16 times the initial grid. The grids which
are considered in this test case are non-regular quadrilateral grids, see Fig-
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ure 4 for an example. To generate such grids, the starting point is a uniform
Cartesian grid with a given refinement. Then, a deformation field which is
independent of the refinement factor is applied to each node. The deformation
should leave the boundaries unchanged so that, as we apply the same bound-
ary conditions, the exact solution is also unchanged. Such refinement setting
leads however to the generation of cells that are close to parallelogram for
small refinement, meaning that the grid is strongly regularized in the refine-
ment process. Such regularity for the grid cannot be expected in a realistic
context and that is why we add a random perturbation to each node. To can-
cel out the random part in the generation of the grids, we have produced the
same error plots several times and we observe that the convergence rates keep
the same characteristics. Let us briefly explain how the discrete L2 and L∞

norms are computed for both methods. The displacement values are defined on
nodes for VEM and at cell centers for MPSA, so that the discrete L∞ norms
for the displacement, even if not equivalent, provide comparable estimates.
For both methods, the divergence is defined on cells, so that the discrete L2

and L∞ norms are directly comparable. The stress is piecewise constant for
VEM, while MPSA defines forces on faces. We define the discrete L2-norm for
stress for the MPSA method as the summation of the discrete L2 norms of the
force over the edges. In this way, we obtain an averaged quantity but it is not
directly comparable with the discrete L2 norm used for stress in VEM, which
is the standard volume integral over the domain.
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err(u)

err(∇ · u)

err(σ)

L2-norm L∞-norm

Fig. 3 Convergence plot for a twisted Cartesian grid. The L2-norm (left) and L∞-norm
(right) of the error are plotted for the displacement (upper row), the divergence (middle
row) and the stress (lower row). Logarithmic scales are used and the values on the x-axis
give the logarithms of the refinement factor, which we denote N . In the small boxes, the
slopes corresponding to a convergence factor of one and two are represented (by definition,
a convergence factor of r corresponds to an error decaying as err = (1/N)r).

Fig. 4 Example of a deformed grid, with refinement factor equal to 7. The grid is obtained
from a Cartesian grid by applying a smooth given deformation field to the nodes, which also
leaves the boundary invariant. In addition, random shifts are added to avoid a regularization
of the grid as the refinement is increased, see the explanations given in the text.
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3.2 Case 2: Mixed cell types

We set up a case (Case 2a) with a grid that combines several difficulties.
The grid is made up by, first, assembling regions with different cell types
(triangles, quadrilaterals, hexahedral) and, then, twisting the grid. Many cells
have unfavorable aspect-ratio. There are also hanging nodes. However, as it
can be seen from Figures 5, 6 and 7, the methods manage to capture rather well
the exact solution. Note that MPSA has problem to handle triangles where
not all the angles are smaller than 90 degrees. Nevertheless, the error that
occurs at these cells does not spread to the whole domain.

We investigate further the case of large aspect ratio for hexagonal (Case 2b)
and triangular grid (Case 2c). Both grids are obtained by stretching uniform
grids in the x-direction with a given factor. In both cases, we use an aspect
ratio of 7. In Figure 8 and 9, we observe that the VEM method manages to
handle the hexagonal case correctly while, for the grid made by triangles, it
produces a displacement field that captures the correct trend but fails quan-
titatively and oscillatory values for the divergence. By construction, VEM
methods are always well-posed in the sense that a solution to the discrete
system always exists. However, the quality of the solution may be very poor.
The situation of very large aspect ratio has been analyzed in more details in
[24], where it is shown to depend on the choice of the stabilization term. In
contrast, All MPSA and MPFA methods require a local coercivity condition
for well-posedness. This condition is implicitly defined, in that it depends on a
combination of material heterogeneity, anisotropy and grid geometry. In Fig-
ure 8, the poor quality of the results for the MPSA method can be measured
by comparing them to the results of VEM, which can be considered here as a
reference solution. The poor performance of MPSA is caused by the deterio-
ration of the grid with respect to the criteria mentioned above, which enter in
the well-posedness condition. For the triangle case, the MPSA method simply
fails and the results are not shown. Note that we can also make the method
fail for the hexagonal case by considering sufficiently high aspect ratio. For
MPFA, well-posedness conditions have been made explicit in [13, 14] in the
case of quadrilateral grids, by reformulating the MPFA method as a Mixed
Finite Element (MFE) method where quadrature rules, instead of exact inte-
gration, are used in the assembly. In [2], the authors reformulate the MPFA-O
method for general grids using a discrete functional framework. Then, they are
able to derive a sufficient well-posedness condition for the method in form of
local (defined at each node) coercivity conditions. Well-posedness conditions
of the same type have been derived for MPSA in [22]. However, as we just
mentioned, those conditions are defined implicitly and do not lend themselves
to simple expressions. Note that a more restrictive, but also more tractable,
well-posedness condition on each cell is also proposed in [2] for MPFA. The
new MPSA method presented in [12] overcomes many of the limitations we
observe for triangular grids that are observed in case 2c.
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dx dy

Fig. 5 Displacement field u (Case 2a) for the MPSA and VE methods. Even for this grid
that was artificially set up to mix different challenging cell types, both methods produce
satisfactory results
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err(dx) err(dy)

Fig. 6 Error in t he displacement field u for both methods (Case 2a). The error is slightly
higher for the MPSA method compared to VEM but not in a significant way.
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err(∇ · u)

Fig. 7 Error in the divergence field ∇ · u for both methods (Case 2a).

dx dy ∇ · u

VEM

MPSA

Fig. 8 Aspect ratio 7 using an hexagonal grids (Case 2b). For the purpose of a better
visualization, we plot the values of the displacement and divergence fields on a grid which is
stretched back to a uniform grid (with aspect ratio 1). The VEM is able to produce reliable
results in this case. The MPSA method, as the MPFA method, has inherent limitations
which makes it unsuitable for grids with high aspect ratio, as the plots from the last row
can confirm.
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dx dy ∇ · u

VEM

Fig. 9 Aspect ratio 7 using a triangular grid (Case 2c). The same visualization procedure as
in Figure 8 is used here. The VEM method leads always to a well-posed system of discrete
equations but the quality of the approximation is affected by high aspect ratio in this
case. The solution for the displacement field is captured qualitatively but not quantitatively
(compare with Figure 8). The solution for the divergence presents oscillations.
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3.3 Case 3: Stability with respect to decomposition of the grid in regions
with different refinement

Grids in subsurface simulations are typically heterogeneous, mixing cells of
different sizes and shapes. We consider two test cases where two regions of
equal size but with different refinements are set side by side. For the first case
(Case 3a), the refinement in the region on the right-hand side is isotropic in
the sense that it is done in both x and y direction. For the second case (Case
3b), the grid on the right hand-side is refined by splitting the cells only in the
y direction. In both cases, we keep the same coarse domain on the left-hand
side. See Figure 10

Case 3a Case 3b Case 3c

Fig. 10 Illustration of the grids used in case 3. The nodes are plotted in red and, for
illustration purpose, we use a low refinement. We set also the nodes of the two regions
so that they do not coincide, except at the boundaries. In this way, we avoid artificial
correlations between the node locations as we increase the refinement.

In Figure 11, we look at the error when the refinement factor on the right-
hand side is increased in both directions. By refinement factor, we mean the
number of sub-intervals that an edge of the initial grid is divided into to
obtain the refined grid. We observe that the error for the VE method increases
significantly for the divergence of the displacement and the stress in the L∞-
norm. In the L2-norm, the increase is much less severe, which indicates that
error is essentially of local nature. This is confirmed by the plots of Figure 12.
In Figure 13, we plot the force at the interface between the two regions. For
the VE method, the stress is defined inside the cells so that we obtain two
curves at the interfaces, one for the coarse cells, the other for the fine cells.
The force is computed at a cell interface by integrating the product of the
stress in the cell with the normal of the interface. For the MPSA method, the
force is defined on the edges and is therefore readily available at the interface.
We observe that the stress for the VE method is strongly oscillating in the
cells which belong to the refined region. For the horizontal component of the
force, the oscillations take the form of peaks, while the force computed from
the cells belonging to the coarse region is smooth and rather close to the
analytical value which is zero due to the symmetry of the problem. For the
y-component of the force, the analytical value is no longer constant. For the
VE method, the value computed from the cells of the fine region still presents
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oscillation but, in addition, the value computed from the coarse region presents
strong variations, approximating the smooth analytical values by a staircase
function. Such behavior may be problematic if the solver is coupled with a
fracture model, typically non-linear, based on local value of the stress field.
In comparison, the MPSA method yields much smoother approximations. In
Figure 14, we plot the error in displacement at the interfaces. From this figure,
it is clear that the computed solution present artificial discontinuities between
the nodes belonging to the two different regions, see also Figure 12. In case
3c, we study further this numerical artifact.

Let us now consider the case where the refinement is done only in the
y-direction (Case 3b). The discretization at the interface is the same as in
the previous case but the cells at the right-hand side get a relatively larger
area and a larger aspect ratio. In Figure 15, we observe that the error in the
L∞-norm no longer grows for the VE method. The strong oscillations in the
x-component of the force are smaller compared to the previous case, as we can
observe by comparing Figures 13 and 16. We have checked that the same type
of discontinuities as shown in 14 is also observed in this case. The distribution
of the errors for the displacement and divergence fields is also similar to the
one that are obtained in the previous case (Case 3a) and shown in Figure 12.

Finally, we setup a case where the two regions have the same coarse mesh
but we add extra nodes at the interface (Case 3c). In this way, we remove
the difference in volumetric refinement between the two regions and isolate
the effect of edge refinements. In Figure 17, we plot the error displacement for
the VE method at the interface and observe that the hanging nodes and the
nodes that belong to horizontal edges behave differently. This case shows that
the error at nodes observed in the previous cases is not due to the volumetric
refinement but to the edge refinement, on one side of the grid. We propose the
following explanation for this behavior. In the VE method, the basis elements
are not computed, only the degrees of freedom are used for the assembly
and linear approximations remain exact but, in the case of elements with
many nodes, the basis elements will be highly non-linear. We illustrate this
in Figure 18 where we compute some of the virtual basis elements. To define
the virtual elements in the cells (that is, make in them no longer virtual), we
use harmonic lifting as in [10], see also [6]. We consider the same type of cells
as the ones which lie at the interface in Case 3c, reducing the refinement to
ten nodes in order to make the pictures easier to read. For simplicity, this
illustration has been created using the Laplace operator and not the linear
elasticity operator. We can sort the virtual basis in three categories:: Basis
with two large edges (type I), basis with a large and a small edge (type II),
basis with two small edges (type II), see Figure 18. The virtual basis elements
have very sharp gradients in small regions and are almost flat elsewhere so
that most of their energy is concentrated in high frequencies. In this case, the
projection operator P over linear function, see section 2.1, does not provide a
good approximation and most of the contribution for this basis element will
be handled by the regularization term, sK , which is only a poor substitute
for aK . We have computed the fraction of the energy that comes from the
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orthogonal part of the projection, for the three types of basis functions,

aK(φ− Pφ, φ− Pφ)

aK(φ, φ)
=


0.49 if φ is of type I,

0.90 if φ is of type II,

0.99 if φ is of type III.

(38)

Since in this case the length of the large and small edges are L = 1 and l = 0.1,
respectively, these computations confirm the following orders of magnitude,

aK(Pφ,Pφ)

aK(φ, φ)
≈


1 if φ is of type I,

l/L if φ is of type II,

(l/L)2 if φ is of type III,

which can be obtained by roughly estimating the area of the support of the
gradient of the basis function. In Figure 14, we observe that, at the interface
region, the displacement values obtained at nodes that are connected to a
large edge (left region) have different errors to those connected to a small edge
(right region).
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Fig. 11 The region at the right-hand side is refined equally in both the x and y direction
(Case 3a). The L2-norm (left) and L∞-norm (right) of the error are plotted for the dis-
placement (upper row), the stress (middle row) and the divergence (lower row). The x-axis
indicates the refinement factor in the right-hand side region. We can see that both methods
are robust with respect to the increase of heterogeneity that is introduced by an asymmetric
refinement. The increasing error in the L∞ norm for the VEM method shows that the error
is more localized for this method.
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Fig. 12 Plot of the error in the divergence and in the horizontal and vertical displacement,
for Case 3a. The vertical refinement ratio in the region on the right-hand side is equal to 20.
We can observe how the error is more localized around the interface between the two regions
for the VEM method compared to MPSA. As far as the divergence field is concerned, we
observe how the MPSA method spreads the error to the large cells of the left-region at the
interface.
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Fx

Fy

y

Fig. 13 Plot of the forces at the interface between the two regions for Case 3a. For the
MPSA, the stress at the interface is directly available. For the VE method, the stress is
computed in the cells so that there are two values, one from the coarse and the other from
the fine region, which can be used to define the value of the stress at the interface. We
observe that VEM produces oscillations in the stress that do not appear with MPSA.

vertical displacement

horizontal displacement

y

Fig. 14 Plot of the displacement for the VE method (Case 3a). We can observe two different
responses at the interface, in form of peaks in the horizontal displacement and jumps in the
vertical displacement. The locations of the peaks and jumps correspond to the nodes that
belong to the coarse region. See also Figure 17 for a related experiment.



Comparison Study between VEM and MPSA 31

err(u)

err(∇ · u)
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Fig. 15 The region at the right-hand side is refined only in the y direction (Case 3b).
The L2-norm (left) and L∞-norm (right) of the error are plotted for the displacement
(upper row), the stress (middle row) and the divergence (lower row). The x-axis indicates
the refinement factor in the right-hand side region. We can see that, also in this case, the
methods are robust with respect to asymmetric refinement.
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Fig. 16 Plot of the forces at the interface, for Case 3b. The values are obtained in the
same way as in the plot of Figure 13. The magnitude of the oscillations is lower for VEM
compared to the previous case (Case 3a).
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vertical displacement

horizontal displacement

y

regular nodes
hanging nodes

Fig. 17 On the left, plot of the error in displacement at the interface, only for the VE
method in the case where there is no layer but 20 extra nodes on each face at the interface
(Case 3c). On the right, we plot a sample of the grid used for this experiment where the nodes
are plotted in red. From this experiment, we can infer that the different response between
the nodes (hanging versus regular nodes) is not due to volumetric refinement, which was
present in the previous cases (Cases 3a and 3b)

basis φ of type I basis φ of type II basis φ of type III

0

1
1

0.6930

0 0

0

1
1

9.8466

0 0

0

1
1

13.4321

0 0

Fig. 18 Illustration for Case 3c using the Laplace operator. First row: Plot of three virtual
basis elements for a square cell with 10 edges on one side. The red dots indicates the position
of the nodes. We can sort the virtual basis in three types: Basis with two large edges (left),
basis with a large and a small edge (middle), basis with two small edges (right). Second
row: Plot of the norm of the residual of the projection, that is |∇(φ− Pφ)|2, for the basis
function represented above. The basis of type III contains much more residual energy than
the basis of type II and type I, see (38).
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3.4 Case 4: Layer between two domains

In subsurface flow, significant parts of the flow are concentrated in the fractures
of the rock. We set up therefore test cases that reproduce the geometry of a
fracture by introducing a thin layer in an otherwise uniform Cartesian grid. If
this layer were a fracture or a damaged zone, then it would have very different
mechanical properties than the rest of the matrix, but, in our test case, the
layer is assigned the same properties as the rest of the domain so that the
analytical solution given by (37) still holds. In this way, we isolate the errors
of the numerical methods that are induced by a typical geometrical discrete
representation of a fracture, without including the mechanical effects of the
fracture itself. First, we consider a test case (Case 4a), where the layer is
discretized with the same level of refinement in the y direction as the rest of
the matrix. In Figure 19, we plot the error as we let the width of the layer get
thinner and thinner. We observe that the error does not grow, indicating the
robustness of both methods with respect to the thickness of the layer. Figure
20 gives the error in displacement and divergence of displacement. We observe
that the error in displacement is more localized for the VE method and more
spread for the MPSA method, which is consistent with the results of Figure
19 when comparing the L∞ norm and L2-norms. In Figure 21, we present a
plot of the forces at the interface between the layer and the region with coarse
cells. We choose the left interface of the layer but the results on the other
interface have the same characteristics. We observe that the MPSA method
gives slightly but not significantly better approximation of the force.

In applications, the discretization level of the fracture layer may typically
not match the one of the matrix. We investigate this situation by setting up
a test case where the refinement in the layer is increased (Case 4b). We also
consider the same case but we twist the grid (Case 4c) to break eventual
symmetry effects. In Figure 22, we can observe the L∞-norm of the error for
the stress grows significantly for the VE methods. The error in divergence
remains zero in the Cartesian case (Case 4b) but, by looking at the twisted
case (Case 4c), we conclude that this is only due to a symmetry effect. The
error in displacement for this test case is plotted in Figure 23 which also serves
as an illustration of the twisted grid we are considering in Case 4c. We observe
also the type of oscillations for the VE method as previously in the case of two
adjacent regions with different discretization levels (namely Case 3a). Also in
this case, the MPSA method gives a smoother approximation closer to the
analytical solution. In Figure 24, we present a plot of the divergence along the
interface together with a zoom on the region around of the error in divergence.
Note that for the MPSA method, we use the finite volume definition of the
divergence, that is, the value of the divergence in the cell is equal the sum of
the normal component for each face. Again, we observe how the error in the
VE method remains highly localized and concentrates inside the layer while
the error for the MPSA methods spreads more to the coarse cell.
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err(u)

err(∇ · u)

err(σ)

L2-norm L∞-norm

Fig. 19 The width of the layer is decreased and no vertical refinement in the layer is
used (Case 4a). The L2-norm (left) and L∞-norm (right) of the error are plotted for the
displacement (upper row), the stress (middle row) and the divergence (lower row). The x-
axis indicates the reduction factor for the width of the layer. We observe that the methods
are robust with respect to layer refinement.
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Fig. 20 Error in the divergence (two upper figures) and the displacement in both x and y
directions (Case 4a). The width of the layer is 20 times smaller than the adjacent cells. We
observe that the error is more local and concentrated at the interface for the VEM while
it spreads throughout the domain for MPSA. For the divergence field, we observe the same
spreading of the error to the large cells in the coarse region for the MPSA method, as in
Case 3, see Figure 12
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Fig. 21 Plot of the forces at the interface, for Case 4a. The values are obtained in the same
way as in the plot of Figure 13. The conclusions are similar to the two region cases (Case
3) in the sense that we observe more oscillations for VEM than for MPSA.

err(u)

err(∇ · u)

err(σ)
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Case 4b

L2-norm L∞-norm

Case 4c

Fig. 22 The width of the layer is decreased but the aspect ratio of the cells in the layer
is preserved. The L2-norm (left columns) and L∞-norm (right columns) of the error are
plotted for the displacement (upper row), the stress (middle row) and the divergence (lower
row). On the left, we have the Cartesian case (Case 4b) and the twisted case on the right
(Case 4c). In all plots, the x-axis indicates the value of the reduction factor of the layer
width. The relatively low error in the L∞ norm of the divergence field in case 4b is in fact
only due to symmetry effects, as it can be seen by comparing with case 4c.
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Fig. 23 Plot of the error of the displacement in x and y directions (Case 4c). We can observe,
even more clearly than in Figure 20, how the error for the VEM method is concentrated in
the layer while it spreads out in for MPSA.
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Fig. 24 Plot of the divergence at the interface of the layer for Case 4c (top). We observe
large oscillations for the VE method (middle) inside the layer but they remain confined
in the layer. Comparatively, the oscillations are weaker for MPSA (bottom) but the error
spreads more to the neighboring cells.
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3.5 Case 5: Stability near incompressibility

In the following experiments, we set up cases to study the behavior of the
methods with respect to the near-incompressibility limit. The boundary con-
ditions are zero displacement on the left and right side and free displacement
on the top and bottom sides. The external force is a constant volumetric ver-
tical force, like for example a gravitational force. We present test results for
three grid types which highlights the main features. We consider grids made
of hexahedrons (Case 5a), triangles (Case 5b) and quadrilaterals (Case 5c).
To generate each grid, we start with a uniform tessellation. Then, the grid is
twisted in order to remove any side-effects that may arise from symmetry. The
resulting grids can be seen from Figure 25, 26 and 27. In the case of hexahe-
drons (Figure 25), we observe numerical locking for VEM and MPSA while
VEM-relax, VEM-relax-extra and MPSA-relax give a good approximation of
the solution, see Section 2.3.3 for the definitions of these methods. The nu-
merical locking for VEM can be observed directly in the displacement field.
Indeed, the amplitude of the computed displacement is much smaller than the
one of the exact solution, so that the material appears to be stiffer than it
actually is, hence the name of locking which is used to denote this numerical
artifact. The numerical locking for MPSA is more visible in the divergence
field, as artificial oscillations. Note that we could have chosen the parameter ν
closer to 0.5 where the effects of numerical locking lead to a computed solution
which is far off the exact solution, but we prefered to show examples where we
can still recognize the solution and observe the beginning of the perturbations
caused by locking. We summarize all the results in the table 3.

VEM VEM
relax

VEM
relax
extra

MPSA MPSA
relax

hexagonal nl ok ok nl ok

triangle nl nl ok ok ok

quadrilateral nl nl ok ok ok

Table 3 Overview of the results for numerical locking experiments, where nl stands for
numerical locking and ok for free of numerical locking. Numerical locking depends on the
combination of the grid and the method. We observe an overall better resilience of MPSA
with respect to numerical locking.

For the VEM method, numerical locking occurs always if we do not use the
Stokes relaxation with the standard regularization term. The Stokes relaxation
(VEM-relax) corresponds to introducing an extra cell degree of freedom corre-
sponding to the solid pressure λ∇·u. In VEM, this can be seen as introducing
a modified regularization term since the solid pressure can be locally elimi-
nated. Once the relaxation is done, the results we obtain are in accordance
with the theory, as presented for the Stokes problem in [5, Section 8]. In the
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case where a node belongs to more than three edges, as for the triangle or
quadrilateral grid, bubble-edge degrees of freedom have to be included. Such
degrees of freedom are obtained by adding an extra node on some of the edges.
The requirement on the final grid is that each node can be connected to at
most three edges that do not have bubble-edge element. In VEM-relax-extra,
by adding nodes on every edge, we always fulfill this requirement and, as ex-
pected, no numerical locking is observed. In the hexagonal case, each node
belongs to only three edges, so that the stability of the method is guaranteed.
In comparison to VEM, the MPSA method behaves surprisingly well. Indeed,
in two of three cases, for quadrilateral and triangle grid, the method does not
show any sign of numerical locking in our experiments. The counting argument,
presented in section 2.3.2, which consists of comparing the number of degree of
freedom and the number of near constraint, predicts opposite behavior for the
MPSA and VEM methods, as the methods operate with degrees of freedom
that are dual to each other (dual in the sense of dual grid). Our conclusion
there was that the hexagonal grid is favorable and the triangle grid unfavor-
able for VEM, and the opposite conclusion for MPSA. However, this argument
applies at different levels of grid enrichment for VEM and MPSA. For VEM,
numerical locking occurs on all of the original grids (hexagonal, quadrilateral,
triangular) and the favorable hexagonal grid becomes free from numerical lock-
ing only after introducing pressure cell degrees of freedom (Stokes relaxation)
or equivalently modify the regularization term. For MPSA, two of the original
grids (quadrilateral and triangle) are free from locking without further enrich-
ment. Only the unfavorable hexagonal grid presents locking, which is removed
by the Stokes relaxation. Further enrichment of the grid is not necessary to
get rid of locking, as it was the case for VEM. This result is interesting for
applications to the Biot equation. Indeed, if a MPFA method is used for the
flow to compute the fluid pressure, all the necessary operators are then already
introduced to deal with the solid pressure and no numerical locking is then
expected to appear with this formulation.

We also note that the solution obtained from MPSA-relax contains slightly
more oscillations and is not as good as the one obtained by standard MPSA.
This result highlights the relaxation effect of the method, which means that,
if numerical locking is not an issue, the standard MPSA is expected to give
less error than MPSA-relax. In the setting of VEM, it corresponds to the fact
that, when there is no locking, VEM has in general a smaller error constant
than VEM-relax, as the latter considers a less accurate approximation of the
divergence, see (27) compared to (25).

Finally, we illustrate the artifacts that are introduced by numerical locking
in solutions to the poro-elastic Biot’s equation. We use a test case inspired from
[11] where the authors study similar effects. We consider a two dimensional
domain with three regions of equal area and where the region in the middle
has a permeability that is 1× 10−5 smaller than in the two other regions, see
top of Figure 28. The boundary condition are no flow on the sides and at the
bottom for the flow and, for the solid part, we impose no displacement at the
bottom and no horizontal displacement with free vertical displacement on the
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sides. We assume that the water is incompressible, that is c0 = 0 in (22), and
the other parameters are µ = 1, λ = 1 ∆t = 0.1 α = 1 (in SI units). The
system is initially at rest (displacement and pressure equal to zero) and we
start the experiment by setting at the top of the domain the pressure equal to
zero and apply a constant vertical force equal to one and pointing downwards.
At t = 0, the pressure instantaneously jumps to one in the whole domain. To
see that, we consider the asymptotic expansion of (22) for very small time
step or, equivalently, consider the system given by (23) after letting ∆t = 0.
We obtain

∇ · σ +∇p = 0, (39a)

∇ · u = 0. (39b)

We recognize the Stokes system. Given the boundary conditions σn + pn +
fext = 0 for fext = −n, we can check that p = 1 and σ = 0 in the whole
domain Ω is a solution. Since the solution to the Stokes system is unique, this
is indeed the solution. Then, since the fluid pressure is zero at the boundary,
the liquid will start flowing out. In the first permeable region, for the given
time step, pressure variations are sufficiently large to keep us away from the
incompressibility constraint. In the second region, with very low permeability,
the exact solution of the time-discretized system has a divergence of the dis-
placement field which is highly constrained, in this case equal to some constant
because the value of ∆t∇ · (K∇pn+1) approaches zero. When the numerical
scheme is not able to capture such incompressible displacement field, they are
then approximated by an oscillatory divergence field (see, for example, VEM
case in Figure 26). Then, the numerically computed fluid pressure will ad-
just to it and become oscillatory. In our experiments, we use the VEM-relax
method for the mechanical part and a Two Point Flux Approximation (TPFA)
to discretize the differential operators in the flow equation. We consider a tri-
angle and an hexagonal grid and, as we have seen, numerical locking occurs for
the triangle grid while it does not affect the hexagonal one, see 3. In Figure
28, we observe as expected that oscillations in the fluid pressure appear in
the case of the triangle grid while the hexagonal grid manages to reproduce a
reliable pressure field.
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dx dy ∇ · u

VEM

MPSA

VEM relax

VEM relax
extra

MPSA
relax

Fig. 25 Hexagonal grid and ν = 0.495 (Case 5a). MPSA and VEM suffers from numerical
locking. VEM-relax, VEM-relax-extra and MPSA-relax are free from numerical locking. The
numerical locking is easiest observed from the divergence field which becomes oscillatory but
it can also be observed in the low amplitude of the displacement field (hence, the name of
locking).
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dx dy ∇ · u

VEM
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VEM relax

VEM relax
extra

MPSA
relax

Fig. 26 Triangular grid and ν = 0.495 (Case 5b). VEM and VEM-relax suffers from nu-
merical locking. MPSA, MPSA-relax and VEM-relax-extra are free from numerical locking.



Comparison Study between VEM and MPSA 45

dx dy ∇ · u

VEM
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VEM relax

VEM relax
extra

MPSA
relax

Fig. 27 Quadrilateral grid and ν = 0.495 (Case 5c). VEM and VEM-relax suffer from
numerical locking. MPSA does not present any sign of locking. VEM-relax-extra is free
from locking, as predicted by the theory
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Fig. 28 This figure presents the result for the simulation of Biot’s equation (case 6). We
consider a triangle grid (left) and hexagonal grid (right), where the yellow region has high
permeability (1) while the other color indicate low permeability (10−5). In the lower row, we
show the pressure as a function of the vertical position, after one time step simulation. We
use VEM-relax. We can observe how the numerical locking, in the case of the triangle grid,
introduces artificial pressure oscillations. In comparison, the hexagonal grid which prevents
locking yields an oscillation free pressure field.
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4 Conclusion

In this paper, we have tested the behaviors of the VE and MPSA methods
for linear elasticity with respect to grid features and parameter values that
are typical to subsurface models. We can conclude that both methods are ca-
pable to handle in a satisfactory manner the polyhedral grid structures that
are standard in such models. A priori, both methods have relative advantages.
The MPSA method is attractive from the physical point of view, due to the ex-
plicit treatment of the force continuity at the cell interfaces. The MPSA offers
a natural stable coupling with poro-elasticity, see [23]. From the implementa-
tion point of view, the MPSA method is cell-centered and therefore shares the
same grid structure as the MPFA method, which is also often the preferred
convergent method for multi-phase flow. The VE method has the advantage of
robustness. Obtained from a variational principle applied to an energy norm,
it leads automatically to a symmetric positive definite system of equations
which guarantees the robustness of the method. For simplexes, the method
reduces to the finite element method so that the large collection of techniques
developed for finite elements, such as preconditioning, super-convergence tech-
niques or patch recovery can be relatively easily applied to VEM. When we
use the approach presented in [10] as we do in this paper, the projection oper-
ators are given explicitly and do not require extra local computations as they
usually do in a VE method, so that the local assembly has finally the same
structure as in the traditional finite element method. If one is interested in
generating the deformed grid obtained from a computed displacement field,
another advantage of the VE method is that that the deformed grid can be
readily constructed as the method yields nodal displacement. In comparison,
the MPSA method requires an extra post-processing step and the task of gen-
erating a deformed grid from displacements at cell centers is not trivial. There
is no explicit reconstruction of continuous displacement field from values given
at cells.

In geological models, the convergence properties of a method are not as
important as its performance on coarse and strongly irregular meshes. In a
first series of test, we have checked the convergence of the method for ran-
domly perturbed quadrilateral grids. Then, we studied the behavior of the
method on strongly distorted grid and grids with high aspect ratio. At this
stage, we reached the limit of both methods. For the MPSA, we exceeded the
grid restriction of the method. The VE method is robust but convergence is
guaranteed with a uniform bound on the aspect ratio. At high aspect ratio, it
was therefore not surprising that we observe discrepancies of the solutions.

We have studied the behavior of both methods for grids containing two
regions with different refinements (cases 3). The first conclusion is that both
methods are robust with respect to the refinement ratio in averaged norms
(L2 norms). As the refinement ratio is increased, oscillations in the forces at
the interaction region appear for the VE method and, in the case of isotropic
refinement (case 3a), the local values for the stress even blow-up. We interpret
this behavior by the highly non-linear nature of the virtual basis in this case.
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The freedom we have in choosing the regularization term in VEM could be
used to dampen these unwanted effects but we do not explore this possibility
in this paper. The MPSA does not present the same level of oscillations in the
force term and yields more reliable values for the forces, which is in accordance
with the fact that the method is based on a force continuity principle. We have
studied the behavior of the methods in the case of a thin layer (case 4). The
conclusion is that both methods are robust with respect to the thickness of
the layer. When the layer is refined, the VE method introduces, as previously,
oscillation in the forces at the interface but also in the divergence term inside
the layer. The error term in the divergence remained confined to the layer in
VEM while it is spread for MPSA.

Even if the rocks considered in a subsurface model are far from being
incompressible, the coupling with fluid flow requires that the methods used for
elasticity are robust with respect to the incompressible limit and, in particular,
not sensitive to numerical locking. We have conducted tests for both methods
(Case 5). First, we confirm the intuition that the MSPA and VEM methods
have opposite responses to numerical locking depending on the grid structure:
In VEM, numerical locking will appear for grids with relatively more cells
than nodes (such as triangular grids) and, in MPSA, it will appear for grids
with relatively more nodes than cells (such as hexagonal grids). We can get
rid of numerical locking for VEM using established theory, as presented in
[5] for the Stokes problem, by relaxing the divergence term and adding extra
degrees of freedom. For MPSA, by introducing an extra degree of freedom at
cell center, which correspond to pressure, it is also possible to derive a method
that is robust with respect to locking. All these methods have been tested and
the regularized methods fulfill the expectation we have concerning locking.
Moreover, we can conclude from our experiments that, using the standard
versions, the MPSA method seems more robust than the VE method with
respect to locking. For example, MPSA can handle quadrilateral grids where
VEM fails.

Acknowledgements We thank Odd Anderson from SINTEF ICT in Oslo for his help to
set up the numerical test case for the Biot model.
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