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ABSTRACT
In linear Rankine panel method, the discrete linear dis-

persion relation is solved on a discrete free-surface to capture
the free-surface waves generated due to wave-body interactions.
Discretization introduces numerical damping and dispersion,
which depend on the discretization order and the chosen methods
for differentiation in time and space. The numerical properties of
a linear Rankine panel method, based on a direct boundary inte-
gral formulation, for capturing two and three dimensional free-
surface waves were studied. Different discretization orders and
differentiation methods were considered, focusing on the linear
distribution and finite difference schemes. The possible sources
for numerical instabilities were addressed. A series of cases with
and without forward speed was selected, and numerical inves-
tigations are presented. For the waves in three dimensions, the
influence of the panels’ aspect ratio and the waves’ angle were
considered. It has been shown that using the cancellation effects
of different differentiation schemes the accuracy of the numerical
method could be improved.

INTRODUCTION
Among the numerical methods applied for solving the wave-

body interaction problem, Rankine panel method is one of the
most popular. The flexibility provided by the simple Green func-
tion, makes this method applicable to a wide range of problems,
from linear to non-linear, frequency-domain to time-domain.
Moreover, its relative simplicity makes implementation cheaper,

and easily expandable. Although, this method could not achieve
the efficiency of the frequency-domain solvers, it is efficient
enough for solving many practical hydrodynamic problems in
comparisons to other alternatives such as volume methods. How-
ever, the advances in parallel computing makes the last statement
subject to discussion and, in principle, case dependent.

Similar to any other numerical method, Rankine panel
method introduces numerical inaccuracies into the ideal contin-
uous solution. The importance of identifying and quantifying
these inaccuracies has been known from the early applications
of the method. These inaccuracies are particularly of importance
when the propagation of waves on a discrete free-surface is of
interest.

Longuet-Higgins and Cokelet were among the first to iden-
tify and report the presence of numerical instabilities in the
Rankine source formulation. They adopted a mixed Eulerian-
Lagrangian method for solving the wave propagation problem
in [1] and identified the short-length numerical waves on top of
the main solution, which had destabilization effects. Since the
wave length of these instabilities were twice the size of the ele-
ments, they became to be known as saw-tooth instabilities.

In [2] Sclavounos and Nakos used Fourier analysis to study
the dispersion and damping properties of the waves generated
by a disturbance moving under the free surface with a constant
velocity in two dimensions. They investigated the consistency
and convergence of the discrete problem. The combination of
finite difference schemes with constant panels were investigated
in their paper. Moreover, they looked into the properties of a
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continuous differentiation using a third order B-spline method
(equivalent to a second order polynomial). They concluded that
their method have better dispersion and damping properties than
the constant element method. Moreover, they linked the numer-
ical instabilities to the presence of spurious roots in the discrete
dispersion relation. In [3] Romate also studied this problem in-
dependently by combining finite difference operators and higher
order polynomials as shape functions.

Later on, Nakos extended the two-dimensional analysis to
three dimensions in [4]. He studied the waves generated by a
moving and harmonically oscillating disturbance under the free
surface. He showed that the accuracy of the numerical method
also depends on the elements’ aspect ratio and τ =Uω/g. More-
over, he argued that the aliasing of the wave energy could be the
reason behind the energy build-up in spurious roots and lead to
the saw-tooth instability. Kim et al. in [5] used the numerical
method from [4] and looked into the accuracy of the numerical
method in capturing the waves traveling on the free surface in
absence of current or forward speed. They investigated temporal
stability and showed that it results in a Courant-type condition.

Raven in [6] considered the desingularization effects on the
properties of a constant element method for the waves generated
by a moving disturbance. Later in [7], Sierevogel studied the ac-
curacy of both upstream and downstream waves using constant
elements and finite difference methods in two dimensions. She
also considered the time discretization schemes for numerical
calculation of the time derivatives and investigated the temporal
stability of her method. In [8] Bunnik, expanded the calculations
in [7] to three dimensions. He also investigated the temporal sta-
bility using Z-transformation. He showed that, although central
difference schemes have good dispersion and damping proper-
ties, they may lead to an unstable solution.

Büchmann in [9] studied the spatial and temporal conver-
gence and stability of the B-spline method with shape-function
differentiation. He also presented a Courant-type condition for
stability, which depends on the discretization properties. Later
in [10] he showed that the mentioned condition is not a sufficient
but a necessary condition. He argued that forward speed (or cur-
rent) could change the nature of the instabilities from saw-tooth,
and reduce the frequency of the numerical waves. Recently, Kim
et al. in [11] expanded the calculations for constant elements,
with desingularization and collocation point shift, to include fi-
nite water depth effects as well.

In the present study the Fourier transformations of the con-
tinuous and discrete dispersion relations were utilized to investi-
gate the relative accuracy of the combination of different finite-
difference schemes and distribution orders in capturing the prop-
agating two and three dimensional waves. The focus was on di-
rect boundary integral formulation, i.e. source and dipole, and
linear distribution. The present study is, in some areas, an ex-
tension to the previous studies mentioned above. Not all the as-
pects touched upon in the previous studies were covered here. In

some parts, qualitative comparisons with previous findings are
presented. The intention was to find out the limitation of dif-
ferent models and assess the influence of different types of dis-
cretization step by step. The analysis presented here is not com-
plete. For instance, the influence of the grid non-uniformity and
the forcing function were not taken into account and left for fu-
ture works. As argued in [10], these may have influence on the
properties of the numerical method.

FORMULATION
The direct boundary integral formulation, by distribution of

Rankine sources and dipoles on the domain boundaries, was cho-
sen to represent the solution for the velocity potential function
(ϕ ). The focus of attention here was on the error in estimating
ϕ on the free surface. For this purpose, it was assumed that ϕ
on the body was known. In other words, all the effects due to
presence of the body were considered as a known forcing func-
tion. In this way, the direct boundary integral formulation could
be rearranged as Eqn. (1) shown below.

C(x)ϕ(x)+
∫∫
SF

G(x,ξ )
∂ϕ(ξ )
∂n(ξ )

dS−
∫∫
SF

ϕ(ξ )
∂G(x,ξ )

∂n(ξ )
dS = F

(1)

Here, n is the normal vector to the boundary surface pointing
inside the fluid domain, G(x,ξ ) = 1/ |x−ξ | is the Green func-
tion, SF is the free surface, and C is the solid angle (see for in-
stance [12]). Although the time parameter is omitted for clarity,
ϕ is a function of both time and space (ϕ(x, t)). F is the forcing
function. The forcing function represents the integral of all the
boundaries (SR) except the free surface, as shown in Eqn. (2).

F(x, t) =
∫∫
SR

ϕ(ξ )
∂G(x,ξ )

∂n(ξ )
dS−

∫∫
SR

G(x,ξ )
∂ϕ(ξ )
∂n(ξ )

dS (2)

Assuming the free surface to be flat and on the z = 0 plane by
linearization, the third term in Eqn. (1) becomes zero. Moreover,
the solid angle is equal to 2π on a flat free surface. The free
surface was assumed to extend to infinity. A uniform current
U in positive x direction, or alternatively a vessel with forward
speed U in the negative x direction, was assumed. Linearizing
the velocity potential about the mean incoming flow, the nor-
mal derivative of the velocity potential on the free surface could
be substituted from the Neumann-Kelvin free surface boundary
condition as shown in Eqn. (3),

2πϕ(x)+
1
g

∫∫
SF

[
ϕtt(ξ )+2Uϕtξ (ξ )+U2ϕξ ξ (ξ )

]
G(x,ξ )dS = F

(3)
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Taking a Fourier transform of Eqn. (3) with respect to x,y and t
gives Eqn. (4). The convolution properties of the Green function,
and Fourier transform of the derivatives were used in obtaining
Eqn. (4) after separating the terms (more details could be found
for instance in [2] and [11]).

2πϕ̃ +

(
(−iω)2

g
+

2U(−iω)(ik cosθ)
g

+
(ik cosθ)2

g

)
G̃ϕ̃ = F̃

(4)

Here ϕ̃ is the continuous Fourier transform of the velocity poten-
tial and a function of (k,θ ,ω) instead of (x,y, t). Using inverse
Fourier transform, the velocity potential is obtained as,

ϕ(x,y, t) =
1

8π3

∞∫
0

π∫
−π

∞∫
0

F̃

W̃
ei(ωt−kxcosθ−kysinθ)k dk dθ dω (5)

where

W̃ = 2π +

(
−ω2

g
+

2Uωk cosθ
g

+
−k2 cos2 θ

g

)
2π
|k|

(6)

The poles of the integral’s kernel (W̃ = 0) in Eqn. (5) corre-
spond to the wave-like solutions of the velocity potential. Setting
W̃ = 0 and rearranging the equation gives the familiar dispersion
relation for a propagating wave (Eqn. (7)).

W̃ =−ω2 +2Uω cos(θ)k−U2 cos(θ)2k2 +g |k|= 0 (7)

Here the parameters of the Fourier transformation could be re-
lated to the physical properties of the waves. ω is the wave fre-
quency, θ is the angle between x-axis and the wave propagation
direction. k = 2π/λ is the wave number, where λ is the dis-
tance between two wave-peaks along the propagation axis. As
expected, the representation of the problem using a continuous
distribution of sources and dipoles, on a free surface extending
to infinity, dose not change the dispersion relation. However, in
other to solve the problem numerically, truncation and discretiza-
tion of the free surface are needed. Truncation and discretization
of the free surface introduce errors in the numerical model. These
errors could be estimated by comparing the discretized version of
the boundary integral formulation to the continuous form (see [2]
and [3]). Here, the truncation effects were neglected and the fo-
cus was on discretization. Both space and time discretization
could introduce errors and therefore are of importance. Since the
errors in the free-surface’s velocity potential were of interest, it
was convenient to measure it in terms of the errors in the wave
length (dispersion) and amplitude (damping or amplification).

Let us start by assuming the free surface to be discretized
into infinite number of rectangular elements. The elements
were assumed to be uniform in size with constant aspect ratio

Λ = ∆y/∆x, where ∆x and ∆y are the elements’ spans in x and y
directions, respectively. ϕ on the flat free surface could be repre-
sented using the B-spline base functions as shown in Eqn. (8).

ϕ(ξ ,η) =
NV

∑
j=1

ϕ jB
(m)
j (ξ ,η) (8)

Here NV is the number of vertices on the surface, ϕ j is the veloc-
ity potential weight at that vertex, and B(m)

j is a periodic, uniform,
centered B-spline base function for a 2D surface with order m in
parametric coordinates ξ and η , B(m)

j (ξ ,η) = b(m)(ξ )b(m)(η).
The one dimensional base functions are obtained from the recur-
sive formula in Eqn. (9), where h is the panel span.

b(1)(ξ ) =
{

1 |ξ | ≤ h
2

0 otherwise

b(m)(ξ ) =
1
h

+∞∫
−∞

b(m−1)(τ)b(0)(ξ − τ)dτ
(9)

Using the discrete representation of the velocity potential in
Eqn. (8), the integral over the free surface changes into a summa-
tion over the elements, which could be related to the summation
over base functions. Although, this is directly applicable for the
B-spline method, the constant panel method ( [13]) and a uni-
form linear HOBEM ( [14]) could also be related to these base
functions by minor changes in the elements coordinate systems
(see [15]). The properties of the B-spline method of order higher
than two could be studied to give an indication of the numerical
properties of HOBEM.

The B-spline base function is the same for all the elements.
Therefore, different elements’ base functions could be related to
a single function at the origin by means of a simple translation
(see for instance [2]). Using this property, the boundary inte-
gral formulation gets a discrete convolution form as shown in
Eqn. (10).

2π
∞

∑
j=−∞

ϕ jB
(m)
i− j +

1
g

∞

∑
j=−∞

(
∂ 2ϕ
∂ t2

)
j
Si− j

+
2U
g

∞

∑
j=−∞

(
∂ 2ϕ
∂x∂ t

)
j
Si− j +

U2

g

∞

∑
j=−∞

(
∂ 2ϕ
∂x2

)
j
Si− j = F

(10)

Here, B(m)
i− j = B(m)

0 (xi −x j) and,

S
(m)

i− j = S
(m)
j (xi −x j) =

∞∫∫
−∞

B(m)
o (ξ )G(xi −x j −ξ )dξ dη (11)

where, xi and x j are the so-called field and source points, re-
spectively. Getting semi-discrete Fourier transform of Eqn. (10)
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and using the discrete convolution properties and aliasing the-
orem, the discrete dispersion relation is obtained, as shown in
Eqn. (12) below, where (̂) represents the semi-discrete Fourier
transformation.

Ŵ = 2πg+ D̂(tt) Ŝ

B̂(m)
+2UD̂(t)D̂(x) Ŝ

B̂(m)
+U2D̂(xx) Ŝ

B̂(m)
= 0

(12)

Here, D̂ is the semi-discrete Fourier transform of the differen-
tiation operator, which depends on the method and the order
of differentiation scheme (see for instance [16]). B̂(m) is the
semi-discrete Fourier transform of the base function defined in
Eqn. (13).

B̂(m)(u,v) = ∆x∆y
∞

∑
K,L=−∞

(
sin uK∆x

2
uK∆x

2

)m(
sin vL∆y

2
vL∆y

2

)m

(13)

Here, u and v are the components of the wave number in x and y
direction, respectively, and,

uK = u +
2πK
∆x

vL = v +
2πL
∆y

(14)

where K and L are integer indexes for summation. Ŝ is the semi-
discrete Fourier transform of Eqn. (11) shown in Eqn. (15).

Ŝ =
∞

∑
K,L=−∞

B̃(m)
o (u +

2πK
∆x

,v +
2πL
∆y

) G̃(u +
2πK
∆x

,v +
2πL
∆y

)

(15)

Here, B̃(m)
o and G̃ are continuous Fourier transforms of the base

function and the Green function presented in Eqn. (16) and
Eqn. (17), respectively.

B̃(m)(u,v) = ∆x∆y

(
sin u∆x

2
u∆x

2

)m(
sin v∆y

2
v∆y

2

)m

(16)

G̃ =
2π√

u2 + v2
=

2π
|k|

(17)

It is important to mention that if analytical differentiation is used
to calculate the spatial derivatives, the differentiation operator
will appear inside the summation of Eqn. (15).

Similar to the continuous problem, the roots of the discrete
dispersion relation represent the wave-like solutions of the dis-
crete problem. Ideally these roots in Eqn. (12) must be identi-
cal to the roots of the continuous dispersion relation in Eqn. (7).

However, in reality this is not the case. Assuming a frequency ω ,
a current speed U , and an angle θ the possible wave number k is
obtained by solving Eqn. (12). As mentioned before, the differ-
ence between the solution in the discrete and continuous prob-
lems could be evaluated in terms of the dispersion and damping
errors. Following [7] and [8], the following relation between dis-
crete (kd) and continuous (kc) wave numbers was assumed.

kd = kc(1+Cr + iCi) (18)

In this way, Cr is an indication to the dispersion error, while
Ci represents the damping or amplification error. Looking at
Eqn. (5), it is possible to conclude that Cr > 0 corresponds to
shorter and Cr < 0 to longer numerical waves in comparison to
the continuous waves, respectively. Moreover, Ci < 0 introduces
damping, while Ci > 0 corresponds to amplification of the wave
amplitude. It must be noted that the damping/amplification error
due to discretization, i.e. Ci, must not be confused with an os-
cillating floating body damping coefficient due to generation of
waves. Evaluations of the dispersion and damping errors for a se-
ries of different problems are presented in the following sections.
If more than one root exist for the solution due to discretization,
the results are shown only for the root closest to the continuous
solution. In practice, filtering techniques must be used to remove
the undesirable solution due to numerically appeared roots (see
for instance [4]).

RESULTS AND DISCUSSIONS
Without forward-speed

To simplify the problem, the properties of the discrete dis-
persion relation were compared to the continuous one first by
neglecting the forward speed. Moreover, it was assumed that
the waves are traveling only in the positive x direction, which
reduces the equations to two dimensions. Then, the continuous
dispersion relation in Eqn. (7) reduces to Eqn. (19) below.

W̃ = g |k|−ω2 = 0 (19)

The discrete dispersion relation for this case could have different
forms, depending on the continuous or discrete time and space
assumptions.

Continuous time and discrete space: As a first step,
a problem continuous in time and discrete in space was assumed.
This is the case, for instance, when a steady harmonic wave prob-
lem on a discrete free surface is studied. The discrete dispersion
relation for this problem is shown in Eqn. (20) below.

Ŵ = 2πgB̂(m)−ω2Ŝ = 0 (20)

Here the time-derivative operator was substituted using a con-
tinuous Fourier transformation (see [15]). The obtained wave
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numbers from the two dispersion relations, for different B-spline
orders, are compared in Fig. 1 using the notation in Eqn. (18).
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FIGURE 1. Dispersion and damping for waves without current, dis-
cretized space and continuous time, Cr: Dispersion, Ci: Damping, m:
B-spline order, λ : Wave length., ∆x: Element span in x

As Fig. 1 shows, discretized waves are longer than continu-
ous waves. Meaning that the discretization introduces a disper-
sion error in the problem. As expected, the error approaches zero
by reducing the element-span to wave length ratio. The error also
depends on the order of discretization. It is interesting to point
out that the linear elements (m = 2) give a more dispersive solu-
tion than constant panels (m = 1). This has been reported before
also by [3] for linear polynomials. Increasing the order to more
than m = 2 improves the dispersive properties significantly. The
damping introduced due to the space discretization in this case is
zero for all order of base functions. The dispersion error could
be predicted, and controlled, by choosing a reasonable element-
span to wave-length ratio for important waves in the problem.

Fig. 2 shows the relation between wave frequency and wave
number from the discrete and continuous dispersion relations for
different orders of space discretization. It is interesting to note
that the wave group velocity (Vg), which is defined by the slope
of ω−k curve, goes to zero when ∆x/λ approaches 0.5. As men-
tioned by [5], these waves correspond to the so-called saw-tooth
waves, with a wave length λ = 2∆x. Since the group velocity
approaches zero for these wave-lengths, they can not carry the
energy away from the source. Therefore, the energy introduced
by a disturbance, for instance an oscillating body, into these wave
numbers accumulates in time. This could be one of the reasons
behind the saw-tooth instability in the boundary integral solution
of free surface waves, which was first mentioned by [1].
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FIGURE 2. Frequency and wave number relation for discrete disper-
sion relation without current, discretized space and continuous time,
ω : wave frequency, Cont.: Continuous solution, m: B-spline order, λ :
Wave length, ∆x: Element span in x

Discrete time and space: The combined time and
space discretization was considered. The discrete dispersion re-
lation, with both time and space discretization, and without cur-
rent is shown in Eqn. (21) below.

Ŵ = 2πgB̂(m)+ D̂(tt)Ŝ = 0 (21)

The expression for B̂(m) and Ŝ could be found in Eqns. (13) and
(15), respectively. D̂(tt) is the Fourier transform of the finite dif-
ference operator for the double derivative in time, which depends
on the finite difference operator order.Here, a second order back-
ward differentiation operator was chosen for double derivatives
in time.

Fig. 3 shows the discrete wave dispersion and damping, with
respect to ∆t/T , for different values of B-spline order, and ∆x/λ .
As Fig. 3 suggests, for ∆x/λ = 0.05 the accuracy of the numeri-
cal method is dictated by the time derivative scheme, and the B-
spline order plays no significant role. As ∆x/λ increases to 0.12,
the influence of the spatial discretization appears. By decreasing
the time-step, the discrete problem converges to a solution which
is different than the continuous solution. Moreover, increasing
the B-spline order decreases the dispersion error. It is interesting
to note that the damping factor Ci shows dependency to the spa-
tial discretization order, although the introduced damping by the
pure spatial discretization was zero in the time-continuous case
(see Fig. 1).
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FIGURE 3. Dispersion and damping for waves without current, dis-
cretized time and space for different B-spline orders (m). Cr: Disper-
sion, Ci: Damping, m: B-spline order, λ : Wave length., ∆x: Element
span in x, T : Wave period, ∆t: Time step
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FIGURE 4. Frequency and wave number relation for discrete disper-
sion relation without current, discretized time and space, T : Wave pe-
riod, ∆t: Time step, cont.: Continuous solution, m: B-spline order, λ :
Wave length., ∆x: Element span in x, β =

√
∆x/(g∆t2)

Fig. 4 compares the continuous and discrete dependency
between the non-dimensional wave frequency and wave num-
ber, for linear spatial discretization. The second order back-
ward difference operator was used for calculating the time dou-
ble derivative. Different curves are plotted for different values of
β =

√
∆x/(g∆t2), which indicates the relation between time-step

and element-span. Comparing Fig. 4 with Fig. 2, it is possible to
see that the group velocity no longer approaches zero for the saw-
tooth wave number, and instead, it goes to infinity. This was true
for all orders of spatial discretization. This effect may be related
to the damping introduced by the time discretization. Therefore,
presence of saw-tooth instabilities are less expected in this case.
However, as it is mentioned in [10], making a general conclu-
sion on the stability criteria for practical problems is not straight
forward.

With steady forward speed
The steady wave pattern generated by a traveling distur-

bance, with velocity U in the negative x direction, and infinite
water depth was considered. This is equivalent to the problem
of a ship advancing with a steady forward speed in absence of
waves. In this case, the generated waves travel at different an-
gles with respect to the axis of forward motion (x). Then, the
continuous dispersion relation in Eqn. (7) reduces to Eqn. (22)
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below.

W̃ = g |k|−U2k2 cos2 θ = 0 (22)

The discrete dispersion relation for the same problem is given in
Eqn. (23), where D̂(xx) is the discrete Fourier transformation of
the double derivative operator in x direction, and depends on the
differentiation order. D̂(xx) is obtained using the discrete convolu-
tion properties of finite difference operators (see for instance [2]
or [15]).

Ŵ = 2πgB̂(m)+U2D̂(xx)Ŝ = 0 (23)

Considering three dimensional waves, the discrete disper-
sion relation in Eqn. (23) has two more parameters which in-
fluence the dispersion and damping properties of the numerical
method. These are the wave propagation direction θ , and the ele-
ments’ aspect ratio Λ = ∆y/∆x. Focusing on the influence of the
surface discretization by assuming a continuous differentiation
operator (D̂(xx) =−k2 cos2(θ)) gives Eqn. (24).

Ŵ = 2πgB̂(m)−U2k2 cos2(θ)Ŝ = 0 (24)

Fig. 5 shows the dispersion error for different elements’ as-
pect ratios and propagation directions of waves. Since the deriva-
tives were assumed to be calculated analytically, the damping is
zero for all the cases in Fig. 5. It is interesting to note that the
dispersion error due to surface discretization is mostly positive.
Meaning that the waves are shorter than they would be in a con-
tinuous solution. As expected, the error generally increases by
increasing Λ or θ .

Different methods could be used for calculating the double
derivative operator in x direction. Assuming a continuous and
differentiable base function, the double derivative could be calcu-
lated analytically from the base function expression. In this case,
the Fourier transform of the finite difference operator changes to
the Fourier transform of a continuous differentiation. Moreover,
a combination of a continuous and finite difference operators is
also possible. Using the aliasing and the behavior of the inte-
gral kernel at infinity, the differentiation operator could be ex-
changed analytically between the base function and the source
function (G). This is the case for the indirect boundary integral
formulation, when one derivate is calculated using finite differ-
ence operator and the other by differentiating the source function
(see for instance [13]). Sclavounos and Nakos studied, to some
extend, different combinations of operators in [2] for their nu-
merical method. For instance, they showed that the third order
finite difference operator for calculating the double derivate in x
direction leads to an unstable solution.

Here a second order finite difference operator was used for
calculating the double derivatives in x direction. Fig. 6 shows
the dispersion and damping properties for different propagation

0 0.05 0.1 0.15 0.2

−0.2

−0.1

0

0.1

0.2

0.3

k̄ = ∆x/λ

Cr

θ = π/6, m = 2

 

 

Λ = 0.5
Λ = 1
Λ = 2
Λ = 4
Λ = 6
Λ = 8
Λ = 10

0 0.05 0.1 0.15 0.2
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k̄ = ∆x/λ

Cr

Λ = 3, m = 2

 

 
θ = 0
θ = π/9
θ = π/6
θ = π/4
θ = π/3

FIGURE 5. Dispersion and damping (steady forward speed) for sur-
face discretization only, different wave propagation directions θ and
element aspect ratio Λ. linear elements (m = 2), element aspect ratio
Λ = ∆y/∆x. Cr: Dispersion, θ : wave propagation direction. λ : Wave
length.

directions. It is interesting to note that the dispersion errors have
changed sign to negative (longer waves than continuous solu-
tion). This means that the chosen finite difference operator in-
creases the resulted wave lengths numerically. As a consequence,
the introduced dispersion error cancels the one from surface dis-
cretization. This cancellation is a function of the aspect ratio.
Moreover, the waves propagating oblique to the current have bet-
ter damping properties. This could be explained by considering
the fact that the damping error is introduced by the double deriva-
tive operator in x direction. Therefore, the waves with smaller
component in x-direction were less affected by the numerical dif-
ferentiation.

With forward speed and oscillations
The complete form of the dispersion relation is of relevance

for the waves generated by an oscillating disturbance with a con-
stant forward speed. The full dispersion relation, assuming har-
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2 : Second order finite
difference operator for double derivative in x.

monic steady-state oscillations, is presented in Eqn. (25). A
study on the temporal stability of the problem could be found
in [8] among others. The main focus here was on the perfor-
mance of the numerical methods for capturing the steady har-
monic solution of the problem.

W̃ = g |k|−ω2 +2Uωk cos(θ)−U2k2 cos2(θ) = 0 (25)

Harmonic waves with discrete surface and spatial
derivative: Harmonically oscillating waves on a linearly dis-
cretized surface with numerically calculated spatial derivatives,
using second order finite difference operators, were assumed.
Then, the discrete dispersion relation in Eqn. (12) reduces to
Eqn. (26). The influence of different differential operators and
discretization orders could be found in [4], [9] and [15] among
others.

Ŵ = 2πgB̂(m)−ω2Ŝ −2iUωD̂(x)Ŝ +U2D̂(xx)Ŝ = 0 (26)
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FIGURE 7. Wave dispersion and damping (forward speed and os-
cillations) on a discrete surface, continuous time, with a second or-
der finite difference operator for the spatial derivatives. τ = Uω/g, θ :
wave propagation direction, Cr: Dispersion factor, Ci: Damping factor,
Λ = ∆y/∆x: element aspect ratio.

Fig. 7 shows that the dispersion and damping of the down-
stream waves are governed by the finite difference operator used
for differentiation in x-direction. As a consequence, the waves
traveling oblique to the current have better properties. Similar
behavior was discussed in steady forward speed case (see Fig. 6).

Fully discretized dispersion relation: The fully dis-
cretized dispersion relation in space and time was shown in
Eqn. (12). The study was focused on linear elements (with B-
spline base function of second order m= 2), together with second
order finite difference operators for the spatial derivatives.

The first, second, and third order backward finite differ-
ence operators were used to calculate the single and double time
derivatives. The coefficients for these operators could be found
in [8] and [16] among others. Fig. 8 compares the dispersion and
damping properties of different time derivative operators, with
respect to the ratio between the time-step and the oscillations
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period. The ∆x/λ ratio was chosen to be 0.01 in order to mini-
mize the spatial error at this stage. The third order operator has
the best dispersion properties. However, the positive Ci indicates
amplification, which leads to an unstable scheme in time. The
next best choice is the second order operator. This operator has
a similar absolute dispersion error to the first order, however, has
much better damping properties.
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Λ = ∆y/∆x: element aspect ratio.

Focusing on the second order backward difference for the
time derivatives, Fig. 9 presents the dispersion and damping
properties of different ∆x/λ ratios. The model’s error approaches
a non-zero value by reducing the time-step. The constant error,
as expected, comes from the spatial discretization and the numer-
ical calculation of derivatives, which reduces by reducing ∆x/λ .
By comparing the damping in Figures 8 and 9, one could ex-
pect that Ci, for the third order time marching method, becomes
negative for small enough time-steps. In other words, the damp-
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ing introduced by the spatial derivatives could stabilize the third
order time marching scheme for small enough time steps.

CONCLUSIONS
The dispersion and damping errors introduced by discretiza-

tion of space and time were investigated for Rankine panel
method. The direct boundary integral formulation, i.e. distribu-
tion of sources and dipoles were considered. The presence of a
body was neglected. The free surface was assumed to be flat and
extended to infinity. The elements were assumed to be rectangu-
lar with uniform shape and arbitrary aspect ratios. The solution
was assumed to be presentable using a summation of centered
B-spline functions. Semi-discrete Fourier analysis was used to
obtain the discrete dispersion relation in comparison to the con-
tinuous dispersion relation, following [2] and [8] among others.
The influence of discretization of time and space on different lev-
els were considered separately. The study were focused on the
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linear distribution of unknowns and second order finite difference
operators in time and space.

It was shown that, in absence of current/forward-speed the
dispersion and damping properties were mostly governed by
the time-discretization scheme. The influence of the space dis-
cretization only appeared for relatively fewer number of elements
per wave length than regular practice. Assuming continuous
time, unlike dispersion, the introduced damping was zero and in-
dependent of the space discretization order. By introducing dis-
crete time, the damping became space discretization dependent.
The waves’ group velocity did not approach zero for saw-tooth
wave length when both space and time discretization were con-
sidered.

The time-independent dispersion relation in presence of
current/forward-speed was considered. Assuming continuous
spatial derivative, the space discretization introduced positive
dispersion error, i.e. the numerical waves became longer than
the physical waves. The error was dependent on the direction of
differentiation and panels’ aspect ratios. Calculating the spatial
derivative using a second order finite difference operator resulted
in a negative dispersion error. Meaning, the error due to discrete
differentiation canceled the error introduced by the space dis-
cretization to some extent.

The fully discretized dispersion relation was considered.
The results for three different time derivative operators were pre-
sented. The relative importance of space and time discretization
was touched upon. It was shown that it is possible to stabilize
unstable time-marching methods using the damping introduced
by the spacial derivatives.
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