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Abstract Non-Newtonian fluids having Bingham or

power-law rheology are common in many applications

within drilling and reservoir engineering. Examples of

such fluids are drilling muds, foams, heavy oil, hydraulic-

fracturing and other stimulation fluids, and cement slur-

ries. Despite the importance of non-Newtonian rheol-

ogy, it is rarely used in reservoir simulators and fracture

flow simulations. We study two types of non-Newtonian

rheology: the truncated power-law (Ostwald-de Waele)

fluid and the Bingham fluid.

For either of the two types of non-Newtonian rhe-

ology, we construct relationships between the superfi-

cial fluid velocity and the pressure gradient in fractures

and porous media. The Bingham fluid is regularized by

means of Papanastasiou-type regularization for porous

media and by means of a simple hyperbolic function

for fracture flow. Approximation by Taylor expansion

is used to evaluate the fluid velocity for small pressure

gradients to reduce rounding errors. We report simu-

lations of flow in rough-walled fractures for different

rheologies and study the effect of fluid parameters on

the flow channelization in rough-walled fractures. This

effect is known from previous studies. We demonstrate

how rheologies on different domains can be included in

a fully-unstructured reservoir simulation that incorpo-

rates discrete fracture modeling (DFM).
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The above formulation was implemented in the open-

source MATLAB Reservoir Simulation Toolbox (MRST),

which uses fully implicit discretization on general poly-

hedral grids, including industry standard grids with

DFM. This robust implementation is an important step

towards hydro-mechanically coupled simulation of hy-

draulic fracturing with realistic non-Newtonian fluid

rheology since most hydraulic fracturing models imple-

mented so far make use of oversimplified rheological

models (e.g. Newtonian or pure power-law).

Keywords Non-Newtonian fluid · Fracture · Porous
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1 Introduction

Non-Newtonian fluids are commonly encountered in oil-

and-gas industry. Many fluids used in drilling, well ce-

menting, and enhanced oil recovery have non-Newtonian

rheology, e.g., water based and non-aqueous drilling flu-

ids, spacers, cement slurries, foams, hydraulic fractur-

ing fluids (including proppant-laden slurries), heavy oil,

etc. In the simplest non-Newtonian model, the so-called

generalized Newtonian model, the stress tensor is given

by T = −P I + 2µappD where P is the fluid pressure,

I is the identity tensor, µapp is the apparent viscosity,

and tensor D is the rate of deformation. The apparent

viscosity is a function of the shear rate, |γ̇| =
√

2D : D,

in such fluids, unlike the Newtonian fluid where µapp is

a constant known as the dynamic viscosity, µ.

The difference between a Newtonian fluid and a

non-Newtonian fluid can be illustrated by considering

the shear stress vs. shear rate relationship in a sim-

ple shear flow [12]. This is the flow between two paral-

lel walls being shifted relative to each other. The flow

is along the x-axis; the y-axis is normal to flow and
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Fig. 1: Schematic plot of shear stress vs. shear rate for

Newtonian (solid line) and non-Newtonian fluids in a

simple shear flow. Non-Newtonian fluid with a yield

stress is shown by the dotted line. Shear-thinning fluid

without yield stress is shown by the upper dashed line.

Shear-thickening fluid without yield stress is shown by

the lower dashed line.

normal to the walls. In such a flow, D is given by

D = γ̇
2

 0 1 0

1 0 0

0 0 0

, thus the shear rate is given by

|γ̇| =
√

2D : D = ∂u
∂y , where u is the fluid velocity. For

a Newtonian fluid, such as water, the shear stress is

directly proportional to the shear rate, with the coeffi-

cient of proportionality being the dynamic viscosity of

the fluid (Figure 1, solid line). Any other type of re-

lationship between the shear stress and the shear rate

indicates a non-Newtonian fluid. In order to predict the

flow of such fluids in porous media as well as in natural

or induced fractures, reservoir flow codes should incor-
porate non-Newtonian rheological models and closure

laws.

Non-Newtonian fluids may have a zero or nonzero

yield stress. When a fluid has a nonzero yield stress,

a finite, nonzero shear stress must be applied in order

for the fluid to start flowing. The simplest rheological

model describing such a fluid is the Bingham model

[34], in which the shear stress is a linear function of the

shear rate, as illustrated by the dotted line in Figure 1.

The Bingham model is defined by two parameters: the

yield stress, τY, and the plastic viscosity µpl. In a simple

shear flow, the shear stress vs. shear rate for such fluid

is given by:

τ = τY + µpl|γ̇| (1)

Newtonian fluid can be regarded as a special case of

the Bingham model, with τY = 0. Most fluids used

for overbalanced drilling in oil-and-gas industry have

yield stress. The yield stress is usually built by adding

bentonite (a type of clay) or polymers to the drilling

fluid. The purpose of having a yield stress in this case

is to improve suspending properties of the drilling fluid:

when the circulation is stopped (e.g. for tripping), the

drilling fluid must be able to keep the drill cuttings in

suspension. In a fluid without yield stress, solids would

rapidly settle to the bottom-hole.

A closed-form solution exists for Bingham fluid flow

between parallel smooth walls (“a smooth-walled frac-

ture”). The relationship between the fluid velocity aver-

aged across the gap of the conduit, u, and the pressure

gradient, ∇P , is thereby given by [24,25]:

u =

{
0 if |∇P | ≤ 2τY

w[
− w2

12µpl
+ w

4µpl

τY
|∇P | −

1
3wµpl

( τY
|∇P | )

3
]
∇P if |∇P | > 2τY

w

,

(2)

where w is the width of the conduit. A finite pressure

gradient must therefore be applied in order to initiate

the flow. The reason for this is that the fluid behaves

like a solid if the shear stress is below the yield stress.

Low shear stresses occur in the middle of the conduit.

At the center plane of the smooth-walled conduit, the

shear stress is zero. Thus, a solid, non-yielded plug ex-

ists near the center plane. The width of this plug is

given by 2τY
|∇P | . The width of the plug increases as the

pressure gradient decreases, up until the plug occupies

the entire width of the fracture when |∇P | = 2τY
w . At

this point, the flow stops. This introduces a discontinu-

ity in the constitutive law and creates problems during

numerical implementation of the Bingham rheology (or

a yield-stress rheology, in general) in reservoir simula-

tion. We will see later how this issue can be handled by

introducing a regularization of the Bingham model.

Unlike flow in a fracture, there is no unique closed-

form solution for Bingham fluid flow in porous media.

A network model was employed by Bahlhoff et al. [4] to

study flow of Bingham and other non-Newtonian flu-

ids in porous media. Several numerical techniques (per-

colation, minimum threshold path, network and path

of minimum pressure) were compared by Sochi [31]. A

percolation-type model was used to analyze flow of a

yield-stress fluid in porous media by Rossen and Gauglitz

[28]. An ad-hoc relationship between the pressure gradi-

ent and the flow rate has been proposed in [35]. Scaling

and simple relations could be obtained by means of e.g.

the homogenization theory. However, for real rocks, it

seems more sensible to use experimental data and to

adjust the ad-hoc model accordingly, as is done for per-

meabilities, relative permeabilities, and capillary pres-

sure in traditional reservoir simulation. In this study,

we will construct an ad-hoc functional relation for Bing-

ham fluid flow in porous media (Eqs. (9) to (20) below)
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that captures the most essential features of such flow, in

particular the existence of a threshold pressure gradient

below which there is no flow.

For a Newtonian fluid (τY = 0), Eq. (2) turns into

the textbook equation for Darcy flow in a smooth-walled

conduit:

u = − w2

12µ
∇P (3)

A non-Newtonian fluid without yield stress has a

nonlinear shear stress vs. shear rate dependency. Such

a fluid can be shear-thinning (Figure 1, upper dashed

line) or shear-thickening (Figure 1, lower dashed line).

For a shear-thinning fluid, the slope of shear stress

vs. shear rate curve decreases with |γ̇|. For a shear-

thickening fluid, the slope increases with |γ̇|. Many frac-

turing fluids are made shear-thinning by adding poly-

mers. Shear-thinning rheology improves suspending prop-

erties of fracturing fluids, facilitating transport of prop-

pant. The simplest rheological model used to describe a

non-Newtonian fluid without yield stress is the power-

law fluid defined by:

τ = C|γ̇|n (4)

where C is the consistency index; n is the flow behav-

ior index. A shear-thinning fluid has n < 1; a shear-

thickening fluid has n > 1. Newtonian fluid is a special

case, obtained with n = 1. In the latter case, the consis-

tency index is the dynamic viscosity of the Newtonian

fluid.

Closed-form solution for the flow of a power-law

fluid between two smooth parallel walls is given by:

u = − n

2n+ 1

1

C
1
n

1

|∇P |2

(
w|∇P |

2

)n+1
n

∇P (5)

For a Newtonian fluid (n = 1, C = µ), Eq. (5) turns

into Eq. (3).

No unique closed-form solution is available for the

flow of a power-law fluid in porous media. Shah and

Yortsos [30] derived a closed-form solution using the

homogenization theory for a periodic medium. They

also provided an overview of other proposed expressions

available by the time.

Eq. (4) suggests that, for n < 1, the derivative dτ
dγ̇

becomes infinite as γ̇ → 0 and lim
γ̇→∞

( dτdγ̇ ) → 0. This is

unphysical since the differential viscosity, | dτdγ̇ |, should

be positive and finite, on physical grounds. Likewise,

for n > 1, Eq. (4) yields zero differential viscosity at

γ̇ = 0 and infinite differential viscosity as γ̇ → ∞. To

remediate these issues, more advanced rheological mod-

els have been introduced, e.g. the Carreau model [7,8].

The main disadvantage of these models is that they do
not permit a closed-form solution for laminar flow be-

tween two parallel plates.

In order to remediate the issue of zero and infinite

viscosities pertaining to Eq. (4), a truncated power-law

model has been introduced [5]. This fluid behaves like

a power-law fluid within an intermediate range of shear

rates, and like a Newtonian fluid at very high and very

low flow rates. The differential viscosity is therefore al-

ways nonzero and finite. The shear stress vs. shear rate

relationship for a truncated power-law model is given

by:

τ =


µ0γ̇ for |γ̇| ≤ ( Cµ0

)
1

n−1

C|γ̇|n−1γ̇ for ( Cµ0
)

1
n−1 < |γ̇| ≤ ( C

µ∞
)

1
n−1

µ∞γ̇ for |γ̇| > ( C
µ∞

)
1

n−1

(6)

where C is the consistency index; n is the flow behavior

index; µ0 and µ∞ are dynamic viscosities of the (New-

tonian) fluid at low and high shear stress, respectively.

The truncated power-law model has four free parame-

ters, similarly to the Carreau model. However, unlike

the Carreau model, it enables a closed form solution

for the flow between two smooth parallel walls [19]:

u =



− w2

12µ0
∇P if |∇P | ≤ 2µ0

w ( Cµ0
)

1
1−n

−

[
2
3 ·

1−n
1+2n ·

C
3

1−n

µ
1+2n
1−n

0 |∇P |3w
+ 2n

1+2n ·
(w

2 )
1+2n

n

wC
1
n
|∇P | 1−n

n

]
∇P if 2µ0

w ( Cµ0
)

1
1−n < |∇P | ≤ 2µ∞

w ( C
µ∞

)
1

1−n

−

[
w2

12µ∞
− 2

3 ·
1−n
1+2n ·

C
3

1−n

|∇P |3w ( 1

µ
1+2n
1−n
∞

− 1

µ
1+2n
1−n

0

)

]
∇P if 2µ∞

w ( C
µ∞

)
1

1−n < |∇P |

(7)

where, w is the aperture size. The truncated power-

law model can be used to represent the rheology of hy-

draulic fracturing fluids (gels). There have been no at-

tempts to apply the truncated power-law rheology for

flow in porous media.

As with the Bingham fluid, there is no unique closed-

form “flow rate vs. pressure gradient” relationship for
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the flow of a truncated power-law fluid in porous media.

Deriving such solution could be attempted by using e.g.

the homogenization theory. However, the result would

not be unique, and the model still would need to be cali-

brated via experiments. It seems therefore more sensible

to construct an ad-hoc model and then to use experi-

mental data in order to adjust the model. In this study,

we will construct an ad-hoc functional relation for trun-

cated power-law fluid flow in porous media (Eqs. (27)

to (29) below) that captures the most essential features

of the flow. In particular, the flow reduces to a New-

tonian fluid flow at very high and very low superficial

fluid velocities.

Non-Newtonian rheology needs to be properly taken

into account when modeling flow in porous media and

in fractures. For instance, nonzero yield stress of drilling

fluids prevents them from entering pores and fractures

before the applied pressure gradient exceeds a certain

threshold value. Therefore, in order to construct reliable

numerical models of mud losses and extended leak-off

test, the flow equations must be closed with a rheo-

logical model that includes yield stress [20]. Moreover,

when a shear-thinning fluid or a yield stress fluid flows

in a rough-walled fracture, “dead zones” can develop

where there is no flow. This affects the effective perme-

ability of the fracture to such fluids [16]. It also affects

transport since the flow becomes more channelized [18,

17,2,3]. In hydraulic fracturing models, power-law rhe-

ology has been routinely used to describe fracturing gels

[33,27].

A word of caution is due with regard to the use of

Eqs. (2), (3), (5) and (7) for flow in rock fractures. Un-

like smooth-walled conduits, for which these equations

have been derived, real fractures have rough walls. As-

perities protruding from the fracture faces make the

flow paths tortuous. It means that the same pressure

difference is applied to a longer pathline in the fracture

plane. This effectively reduces the fracture permeability

as compared to that of a smooth-walled fracture of the

same average aperture. Therefore, the average aperture

of a rough-walled fracture, i.e. the mean separation of

the fracture faces, is a poor indicator of the fracture

flow resistance. Instead, the hydraulic aperture should

be used. The hydraulic aperture, wh, is the aperture

of a smooth-walled fracture that yields the same flow

rate at a given pressure differential as the rough-walled

fracture [6,15,36]. The Newtonian-fluid velocity in a

rough-walled fracture is then given by:

u = − w2
h

12µ
∇P (8)

Roughness cannot be modeled explicitly in a reser-

voir simulator since its geometric scale is too small (to

make things even more complicated, there is a hierar-

chy of roughnesses and the fracture landscape is usually

a fractal surface, with the Hurst exponent of 0.7...0.8).

This should be kept in mind when applying Eqs. (2),

(3), (5) and (7) in reservoir simulation. The fracture

aperture, w, is therefore always understood as hydraulic

rather than mechanical aperture in this article.

2 Implementation of Bingham model and

truncated power-law model in reservoir

simulation

Our objective in this study is to construct relationships

between the flow rate (or, equivalently, the superficial

fluid velocity) and the pressure gradient for single-phase

flow in porous media and in fractures, to be used in hy-

draulic fracturing and reservoir flow simulations. Frac-

tures can thereby be represented as collections of el-

ements (tetrahedra in 3D) with increased permeabil-

ity. The fracture permeability depends on the fracture

opening. Representing fractures as collections of failed

elements (gridblocks) is a viable approach and has been

used e.g. in fully-3D hydraulic fracturing models [1,22,

21]

In this article, we focus on the implementation of the

Bingham model and the truncated power-law model in

the MATLAB Reservoir Simulation Toolbox (MRST)

[23]. Discrete fracture model [13,29] is employed to rep-

resent the fractures and handle the flow between frac-

tures and porous media.

2.1 Bingham model for porous media flow

An ad-hoc analogue of Darcy’s law can be constructed

for Bingham fluid flow in porous media as follows. The

essential feature of the Bingham fluid is the threshold

value of the pressure gradient below which there is no

flow. The threshold pressure gradient must be an in-

creasing function of the yield stress, τY. The simplest

model that satisfies these requirements is given by [35]:

u =

{
0 if |∇P | ≤ τY

d

−M∇P if |∇P | > τY
d

, (9)

where ∇P is the pressure gradient between two grid-

blocks; M is the fluid mobility between the gridblocks;

d is a material parameter of the porous media, namely

a characteristic internal length. The value of d is on

the order of the pore throat diameter. It is well known

that the threshold pressure gradient required to initiate

flow of a yield-stress fluid in porous media depends on

the details of the porous structure (e.g. [31]). Therefore,
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Fig. 2: An example of Papanastasiou regularization

(red) of Bingham model (blue).

it is, in general, not possible to cover all the complex-

ity of yield-stress fluid flow in porous media only with a

single structural parameter, d. Nevertheless, we use this

oversimplified approach here as a first-order approxima-

tion. For a detailed discussion of the yield-stress issue

in porous media the reader is referred to [31]. The mo-

bility can be represented e.g. as the harmonic average

of the mobility values in the two gridblocks:

M =
2M1M2

M1 +M2
(10)

with the mobility of gridblock i defined as follows [35]:

Mi =
ki
µpl

(
1− τY

d|∇P |

)
(11)

where ki is the absolute permeability of the ith grid-

block to Newtonian fluid.

Implementation of the Bingham model according to

Eqs. (9) to (11) leads to instabilities and convergence

problems since it involves a discontinuity in the flow

rate vs. pressure gradient. A common remedy is regu-

larization of the Bingham model. Several types of regu-

larization have been proposed in computational rheol-

ogy. The most popular one is probably the Papanasta-

siou regularization [26]. A thorough comparative study

carried out by Frigaard and Nouar [10] revealed that

the Papanastasiou regularization performs better than

other regularization types in computational fluid dy-

namics of Bingham fluids. The Papanastasiou regular-

ization of Eq. (1) is given by:

τ = τY[1− exp(−m|γ̇|)] + µpl|γ̇| (12)

where m is a regularization parameter. As evident from

Figure 2, the regularization removes the singularity and

makes the shear rate nonzero everywhere.

Introducing the non-dimensional shear rate, the non-

dimensional shear stress, the non-dimensional apparent

viscosity, and the non-dimensional regularization pa-

rameter as follows:
|˜̇γ| =

|γ̇|µpl

τY

τ̃ = τ
τY

µ̃app =
µapp

µpl

m̃ = mτY
µpl

, (13)

the Bingham model becomes:

µ̃app = 1 + |˜̇γ|−1 (14)

while the regularized Bingham model becomes:

µ̃app = 1 +
1− exp(−m̃|˜̇γ|)

|˜̇γ|
(15)

It is evident from Eq. (15) that the regularized model

approaches the “true” Bingham model as m̃→∞.

The following relationship between the pressure gra-

dient, |∇P |, and the superficial fluid velocity, u, can

then be constructed in order to regularize the “true”

Bingham model:

u = − ∇P
|∇P |

u (16)

where u = |u| is the magnitude of the superficial fluid

velocity, to be obtained from the following nonlinear

equation:

|∇P |d
τY

= 1 +
µpld

kτY
u− exp

(
−m̃µpld

kτY
u

)
for all |∇P |

(17)

where k is the permeability of the porous media (har-

monic average of the absolute permeabilities of the two

gridblocks, k = 2k1k2
k1+k2

; d is the characteristic internal

length scale of the porous media as defined above; m̃ is

a non-dimensional regularization parameter defined as

follows:

m̃ =
mτY
µpl

(18)

Introducing the dimensionless pressure gradient and the

dimensionless superficial fluid velocity as follows:

|∇P̃ | = |∇P | d
τY

(19)

ũ = u
µpld

kτY

leads to the following dimensionless from of Eq. (17):

|∇P̃ | = 1 + ũ− exp(−m̃ũ) (20)

Eq. (20) is plotted in Figure 3 for m̃ = 100. Increasing

m̃ improves the approximation of the original “true”

Bingham model.
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Fig. 3: Regularized Bingham model for flow in porous

media, Eq. (20).

2.2 Bingham model for fracture flow

Consider now flow in a fracture. In the reservoir simu-

lator’s framework, this is the flow between two “failed”

(“fractured”) gridblocks. Without regularization, the

fluid velocity vs. pressure gradient dependency could

be constructed, for example, by using Eq. (9) with the

mobility defined as follows:

M =

0 if |∇P | ≤ 2τY
w

w2

12µpl
− w

4µpl

τY
|∇P | + 1

3wµpl

(
τY
|∇P |

)3
if |∇P | > 2τY

w

(21)

In Eq. (21), the average fracture aperture can be

calculated as the harmonic average of the fracture aper-

tures in gridblocks 1 and 2:

w =
2w1w2

w1 + w2
(22)

Convergence problems experienced with the “true” Bing-

ham model [Eq. (21)] motivates the use of a regulariza-

tion for fracture flow as well. Introducing the dimen-

sionless pressure gradient and the dimensionless super-

ficial fluid velocity as follows:

|∇P̃ | = |∇P | w
2τY

(23)

ũ = u
µpl

wτY

the “true” Bingham model would be given by (cf. Eqs.

(9) and (21)):

ũ =

{
0 if |∇P̃ | ≤ 1
1
6 |∇P̃ | −

1
4 + 1

12
1

|∇P̃ |2 if |∇P̃ | > 1
(24)

Eq. (24) can be regularized as follows:

ũ =

[(
1

4

)n
+

(
1

6

)n
|∇P̃ |n

] 1
n

− 1

4
for all |∇P̃ | (25)

(a) n = 4

(b) n = 6

Fig. 4: Regularized Bingham model for fracture flow,

with n = 4 (a) and n = 6 (b). Blue curve: “true” Bing-

ham model given by Eq. (24). Red curve: regularized

Bingham model given by Eq. (25).

where n is a dimensionless regularization parameter.

At small pressure gradient values, Eq. (25) involves

subtraction of two close values. This is not good for nu-

merical implementation and can be remedied by Taylor

expansion of the right-hand side of Eq. (25) for small

|∇P̃ |. Eq. (25) then becomes:

ũ ≈ 1

4n

(
4|∇P̃ |

6

)n
for small |∇P̃ | (26)

The values of n can be chosen within the range from 4

to 6 (Figure 4).

The model of Bingham fluid flow in a fracture given

by Eq. (21) is the classical and the simplest one, and

has been used previously, e.g. in [11]. More elaborate

models, taking into account the self-affinity of fracture

landscape, have become available recently [32] and can

be considered for implementation in future.
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2.3 Bingham model for flow between a porous media

element and a fracture element (leak-off)

This is effectively flow (leak-off) through the fracture

wall or from the fracture tip into the porous media. The

flow is dominated by the intact gridblock in this case

since the flow in the fracture is mostly from failed grid-

block to failed gridblock. Eq. (17) or its non-dimensional

counterpart, Eq. (20), are to be used in this case, with

the permeability, k, being the permeability of the intact

gridblock.

2.4 Truncated power-law model for porous media flow

An ad-hoc analogue of Darcy’s law can be constructed

for the truncated power-law fluid flow in porous media

as follows. An essential feature of the truncated power-

law fluid is that it approaches a Newtonian fluid at

very high and very low shear rates. The simplest porous

media flow model that has similar features is given by:

u = −M∇P for all |∇P | (27)

with the mobility given by Eq. (10). The individual

mobilities of gridblocks entering Eq. (10) can be defined

as follows, in order to resemble the truncated power-law

rheology:

Mi =


ki
µ0

if |∇P | ≤ ε1(
l
1+n
n

i

C
1
n

)
|∇P | 1−n

n k̃i if ε1 < |∇P | ≤ ε2

ki
µ∞

if ε2 < |∇P |

(28)

where, ε1 =
(

ki
k̃iµ0

)
C

1
1−n

l
1+n
1−n
i

, ε2 =
(

ki
k̃iµ∞

)
C

1
1−n

l
1+n
1−n
i

, where li

is the characteristic internal length of the porous me-

dia in the ith gridblock and has the meaning of the

“typical” pore throat size; k̃i is a dimensionless param-

eter, specified for each gridblock. Parameters ki, li and

k̃i are not independent. The relationship between the

three parameters becomes transparent if we consider a

specific case of truncated power-law model, namely the

Newtonian fluid. In this case, µ0 = µ∞ = C should

represent the dynamic viscosity, and Darcy’s law must

hold at all values of |∇P |. In particular, the second of

Eqs. (28) should reduce to Darcy’s law. This is only

possible if the following relationship between ki, li and

k̃i holds:

ki = k̃il
2
i (29)

The truncated power-law model for flow in porous me-

dia has thus six parameters (four for the fluid and two

for each gridblock, incl. the absolute permeability).
2.5 Truncated power-law model for fracture flow

The superficial fluid velocity vs. pressure gradient is

given by Eq. (27) in this case, with the mobility, M ,

given by Eq. (10). Individual mobilities of gridblocks

entering Eq. (10) can be evaluated analytically from

the closed-form fracture flow equations available for this

rheology and given by the above Eq. (7) [19]:

Mi =



w2
i

12µo
if |∇P | ≤ 2µo

wi
( Cµo

)
1

1−n

2
3 ·

1−n
1+2n ·

C
3

1−n

µ
1+2n
1−n

o |∇P |3wi

+ 2n
1+2n ·

(
wi
2 )

1+2n
n

wiC
1
n
|∇P | 1−n

n if 2µo

wi
( Cµo

)
1

1−n < |∇P | ≤ 2µ∞
wi

( C
µ∞

)
1

1−n

w2
i

12µ∞
− 2

3 ·
1−n
1+2n ·

C
3

1−n

|∇P |3wi
( 1

µ
1+2n
1−n
∞

− 1

µ
1+2n
1−n

o

) if 2µ∞
wi

( C
µ∞

)
1

1−n < |∇P |

(30)

Here, wi is the aperture size.

2.6 Truncated power-law model for flow between a

porous media element and a fracture element (leak-off)

This is effectively flow (leak-off) through the fracture

wall or from the fracture tip into the porous media. The

flow is dominated by the intact gridblock in this case

since the flow in the fracture is mostly from failed grid-

block to failed gridblock. Eq. (27) is to be used in this

case, with the mobility, M , referring to the intact grid-

block and calculated using Eq. (28), where parameters,

ki, li and k̃i, refer to the intact gridblock.

3 Examples

To demonstrate the application of the models developed

above, we apply them to the flow of Bingham fluid and

truncated power-law fluid in a rough-walled rectangu-

lar fracture. The distribution of the fracture aperture

is shown in Figure 5. The in-plane dimensions of the

fracture are 65 cm × 65 cm. Two fractures were con-

structed: with the mean aperture equal to 1.7-mm and
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Fig. 5: Distribution of the fracture aperture (mm) in

the fracture plane of the 1.7-mm fracture. The in-plane

dimensions of the fracture: 65 cm × 65 cm.

with the mean aperture equal to 1.02mm. The former

one had nonzero aperture everywhere; the latter had

zero aperture (closed fracture) at some locations. The

1.7-mm fracture (Figure 5) was produced numerically

by generating two rough surfaces with the Hurst expo-

nent equal to 0.7, placing the surfaces opposite to each

other, and subtracting them. The 1.02-mm fracture was

produced by subtracting 0.68mm from the apertures of

the 1.7-mm fracture.

In the simulations, the pressure gradient was applied

along the x-axis, between two opposite sides of the frac-

ture. The flow rate was calculated. Simulations were run

for a wide range of pressure differentials. Based on the

fluid velocity field obtained in the simulation, the tortu-

osity of the flow was calculated. Tortuosity was defined

as follows [9,14]:

T =
〈|u|〉
〈u‖〉

, (31)

where the numerator is the average value of the absolute

magnitude of the superficial fluid velocity; the denomi-

nator is the average value of the superficial fluid veloc-

ity’s component in the direction parallel to the applied

pressure differential. In our case, this is the direction of

the x-axis. For a less tortuous (i.e. more unidirectional)

flow, the value of T should be lower. For a perfectly uni-

directional flow, e.g. in a fracture with smooth parallel

walls, T = 1. For all other fractures, T > 1. The value of

T depends on the aperture distribution of the fracture.

For non-Newtonian fluids, it also depends on their rhe-

ological properties and the applied pressure gradient. In

particular, shear-thinning fluids are known to produce

less tortuous (more channelized) flows in rough-walled

fractures than their Newtonian counterparts [17,18].

3.1 Fracture flow of Bingham fluid

Simulations were performed with the following param-

eters of the regularized Bingham model: τY = 10 Pa,

µpl = 0.01 Pa, n = 6. Simulations were performed for

pressure differential values from 103 to 107Pa. Example

results for the 1.7-mm and the partially-closed 1.02-mm

fracture with 105 Pa pressure differential are shown in

Figure 6 and Figure 7, respectively.

Tortuosity of the flow is greater for the partially-

closed fracture than for the 1.7-mm fracture (Figure

8). Tortuosity increases with the pressure differential

for both fractures. The reason is that, at higher pres-

sure differentials, the role of yield stress diminishes, i.e.

the fluid behaves more and more like a Newtonian fluid.

In the limit of an infinite pressure differential, the Bing-

ham fluid would simply be a Newtonian fluid with the

dynamic viscosity equal to µpl (cf. Figure 1, |γ̇| → ∞).

On the contrary, as the pressure differential decreases,

the shear-thinning behavior of the Bingham fluid plays

more and more important role. As a result, the flow

becomes more channelized [17]. Hence, the tortuosity

decreases.

3.2 Fracture flow of truncated power-law fluid

Simulations were performed for two truncated power-

law fluids: a shear-thinning fluid and a shear-thickening

fluid. The shear-thinning fluid had the following param-

eters: n = 0.6, C = 0.005 Pa · sn, µ0 = 0.5 Pa · s,
µ∞ = 0.001 Pa · s. The shear-thickening fluid had the

following parameters: n = 1.4, C = 0.005 Pa · sn,
µ0 = 0.001 Pa · s, µ∞ = 0.01 Pa · s. Simulations were

performed for pressure differential values from 10−5 to

105 Pa.

The results for the shear thinning fluid are presented

in Figure 9. The tortuosity is lower at intermediate pres-

sure differential values, and increases at very high or

very low pressure differential values. This is due to the

fluid becoming more like a Newtonian fluids at very

high and very low shear rates, which was the very mo-

tivation for introducing this type of rheology. A shear-

thinning fluids leads to more channelized flow than a

Newtonian fluid, therefore, the tortuosity is lower at

intermediate pressure differentials.

The opposite results are obtained with the shear-

thickening truncated power-law fluid (Figure 10). In

this case, the flow is more tortuous at intermediate

pressure differential values. At very high and very low

pressure differentials, the fluid is thinner as compared

to the intermediate range. Therefore, the flow becomes

more channelized (less tortuous) at very high and very
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2 4 6 8

×10
4

(a) (b)

Fig. 6: Distribution of the fluid pressure (a) and superficial fluid velocity (b) in the 1.7-mm fracture. The fracture

has nonzero aperture everywhere.

2 4 6 8

×10
4

(a) (b)

Fig. 7: Distribution of the fluid pressure (a) and superficial fluid velocity (b) in the partially-closed 1.02-mm

fracture. White spots have zero aperture (contact between the fracture faces).

low pressure differential values, where the fluid behaves

close to a Newtonian fluid.

3.3 Truncated power-law fluid in porous media with a

fracture

Simulations were performed for a shear-thinning trun-

cated power-law fluid in porous media. Two models

were assembled: one with homogeneous permeability

(Figure 11) and the other one with randomly gener-

ated heterogeneous permeability (Figure 12). The fluid

properties were as follows: n = 0.6, C = 0.005 Pa · sn,

µ0 = 0.5 Pa · s, µ∞ = 0.001 Pa · s. The dimensions

of the computational domain were 20m× 20m× 5m.

The pressure differential applied between the left-hand

boundary and the right-hand boundary was 6 · 105 Pa.

A fracture was embedded in the domain. The objective

of the simulations was to study how the existence and

the orientation of the fracture would influence the flow

in the porous media. The length of the fracture was 14

m; the aperture of the fracture was 1mm. The fracture
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Fig. 8: Tortuosity as a function of pressure differential

for regularized Bingham fluid.

Fig. 9: Tortuosity as a function of pressure differential

for shear-thinning truncated power-law fluid (n = 0.6).

Fig. 10: Tortuosity as a function of pressure differ-

ential for shear-thickening truncated power-law fluid

(n = 1.4).

had the same aperture at all locations and thus was a

smooth-walled fracture. For the homogeneous example

(Figure 11), the permeability of the porous media was

set equal to 3 Darcy. For the heterogeneous example

(Figure 12), the permeability of the porous media was

between 3 · 10−2 mD and 3Darcy, the average perme-

ability being equal to 0.2613Darcy.

As shown in Figure 11 and Figure 12, when the di-

rection of the fracture was normal to the flow direction,

the existence of the fracture virtually did not influ-

ence the flow, while when the direction of the fracture

was along the flow direction, it affected the flow sig-

nificantly. This was also reflected in the change of the

flow rates. For the homogeneous example (Figure 11),

the flow rate without fracture was 8.4228 · 10−3 m3/s,

the flow rate with a vertical fracture was the same

(8.4228 · 10−3 m3/s), while the flow rate with a hori-

zontal fracture was 1.1708 · 10−2 m3/s. For the hetero-

geneous model (Figure 12), the flow rates were 2.0005 ·
10−6 m3/s, 2.1051 · 10−6 m3/s and 4.9524 · 10−6 m3/s,

respectively.

4 Conclusions and further work

Models for flow of Bingham fluid and truncated power-

law fluid in porous media have been constructed. Closed-

form solutions for flow between parallel plates were used

for fracture flow. Ad−hoc equations were used for flow

in porous media. The Bingham model was regularized

by means of Papanastasiou-type regularization for flow

in porous media, and by means of hyperbolic regular-

ization for fracture flow. Taylor expansion of flow rate

vs. pressure gradient was used to improve convergence

at small pressure gradient values.

The models were tested on fracture flow in opened

and partially-closed fractures. For a shear-thinning trun-

cated power-law fluid, the flow becomes less tortuous

(i.e. more channelized) at intermediate pressure gra-

dient values. This is consistent with the well-known

trend of shear-thinning fluids to result in channelization

in rough-walled fractures. A shear-thickening truncated

power-law fluid produces more tortuous flow at interme-

diate pressure gradient values. It produces more chan-

nelized flow at very high and very low pressure gradient

values, where the truncated power-law fluid approached

Newtonian rheology.

Regularized Bingham fluid produces more tortuous

flow with increasing pressure differential. This is due to

the diminishing role of yield stress at higher shear rates

and, thus, at higher pressure differential values.

Simulations with porous media for truncated power-

law fluid are also presented. The effect of the orientation
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(a) (b) (c)

Fig. 11: Distribution of the fluid pressure in the simulations of fluid flow in the porous media with homogeneous

permeability (a), a vertical fracture (b) and a horizontal fracture (c).

(a) (b) (c)

Fig. 12: Distribution of the fluid pressure in the simulations of fluid flow in the porous media with randomly

generated heterogeneous permeability (a), a vertical fracture (b) and a horizontal fracture (c).

of the fracture embedded in the porous media is inves-

tigated. An extension to the current fracture model will

be required in order to handle more general and com-

plicated fracture networks within porous media.

The truncated power-law and Bingham fluid rheolo-

gies used in this study only describe the correct rela-

tionship between the pressure drop and the flow rate in

straight uniform conduits. These models are somewhat

inadequate to describe the behavior of a non-Newtonian

fluid in a porous medium, where the elastic nature of

the fluid could be important (if the Deborah number

is larger than 1). Therefore, Eqs. (27) and (28) can be

valid for porous media, strictly speaking, only in a lim-

iting case of low Deborah number. Implementation of

visco-elastic fluid models for porous media and frac-

tures in MRST should be the subject of further work.

More advanced rheological models might be required

also to describe flow of polymer solutions/dispersions in

porous media and small-aperture fractures. Pore throat

clogging, polymer adsorption, and shear-induced poly-

mer degradation are examples of phenomena that af-

fect polymer flow in fractured and porous media. These

phenomena should be accounted for in a model. The

truncated power-law model used in this article can only

serve as a first-order approximation for such fluids.

Only single-phase flow has been considered in this

article. In multiphase flow, additional assumptions and/or

closures would be required in the models. For instance,

the threshold value of the pressure gradient in Eq. (9)

for each phase must depend on the saturation since each

phase only has a fraction of the pore (or fracture) vol-

ume at its disposal locally. Experiments may provide

further important insights on multiphase flow of non-

Newtonian fluids in fractured and porous media.
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