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Abstract

Implicit transport solvers used in reservoir simulation can take longer time steps than explicit solvers,
but for long time steps the commonly used Newton-Raphson’s method will often fail to converge. The
convergence issues may manifest themselves as oscillating residuals even though the implicit discretization
itself is stable. This behavior occurs because the fractional flow-type flux functions often change between
convex and concave during long time steps, resulting in multiple contraction regions for the Newton-
Raphson solver. The common strategy to overcome this is to set limits on the saturation changes during
the nonlinear iteration, but such a limit has to be determined on a case by case basis, excess iterations
may be required and practical convergence is not guaranteed for a given problem. Previous work on
this problem by multiple authors has resulted in solvers based on trust regions, where unconditional
convergence can be obtained for incompressible two-phase flow provided a priori analytical knowledge of
the flux function exists. The goal of our work is to extend this methodology to a solver where inflection
points demarking the different contraction regions does not need to be explicitly known. Instead, these
values are estimated during the solution process, giving improved convergence by a local computation
for each interface in the simulation model. By systematically reducing updates over regions known
to produce convergence issues, it is possible to greatly reduce the computational expense, making the
same formulation suitable for an arbitrary number of components. We present a series of numerical
results, including arbitrary time-step lengths for two and three-phase gravity segregation, as well as
three-dimensional gas and water injection problems with wells and a mixture of both viscous and gravity-
dominated flow regimes. The test cases are a systematic validation on a wide variety of both analytical
and tabulated relative permeability curves.

1 Introduction

Simulation of flow in porous media is an essential tool in a wide variety of fields, ranging from the management
of petroleum assets and enhanced oil recovery to CO9 sequestration and geothermal energy. The advent
of modern computers has enabled practitioners to model a large number of complex physical effects in
highly detailed models with grids that finely resolve the simulation domain. The resulting model equations
constitute large systems of highly nonlinear conservation laws, which, when discretized, often suffer from slow
convergence and severe limitations on the time steps.

A common approach has been to exploit knowledge of the underlying physics to create better solvers
for porous media flow. The first step in some approaches is to split a set of coupled conservation equations
governed by Darcy’s law into an elliptic or parabolic pressure equation along with a set of hyperbolic or
parabolic transport equations. This may be done to solve each equation separately, keeping certain quantities
fixed [39, 33], or to create tailored linear solvers such as the constrained pressure residual (CPR) two-step
preconditioner [37]. By treating the different equations according to their distinct nature, greatly improved
performance can be achieved.

The pressure equation is generally considered to be computationally expensive due to the (semi-)global
nature of the pressure field, but the convergence rates are usually quadratic in the absence of phase transitions.
Advanced solvers for elliptic equations have thus focused on efficient ways of systematically reducing the
residual [14, 34, 9] or producing approximate pressures that retain certain key properties, such as the overall
trend of the pressure and a conservative velocity field [12, 16, 24].



The transport problems, owing to the hyperbolic nature of the underlying equations, are often considered
to be less computationally expensive to solve, as temporal changes in the solutions for these equations are
spatially localized near fronts and source terms. However, convergence rates can be poor even for seemingly
simple problems and as such the transport problem is a major source of time-step restrictions and reduction
during simulation. Traditionally, explicit methods have seen widespread use for the transport equations, but
as modern reservoir models have a large number of cells with greatly varying flow throughput and strong
nonlinear coupling, the restrictions posed by the Courant—Friedrichs—Lewy (CFL) condition have led to the
popularity of implicit methods. The two main choices are the fully implicit and sequential-implicit methods,
which may be unconditionally stable, but in practice the convergence can fail for longer time steps for even
relatively well behaved problems. Different heuristic techniques are therefore used to select time steps and
limit solution updates to reasonable values, but these strategies will often fail in practice or be too conservative
for practical purposes.

The localized nature of the equations has resulted in a wide variety of approaches where equation locality
and other characteristics are exploited. Some examples include solvers based on potential ordering, which
use topological traversal of the flux graph to localize and reduce the size of the nonlinear systems [25, 17,
23], approaches based on operator splitting to distinguish between flow due to viscous forces and gravity
[7, 8, 22], localization techniques for implicit schemes [40, 28] and streamline methods [2, 32] as well as
alternate discretizations that make the residual functions smoother and thus better suited for Newton’s
method [19, 18, 10].

Convergence difficulties for the transport problem were attributed to the nature of the flux functions by
Jenny et al. [13], who argue that unconditional convergence for two-phase viscous incompressible flow can be
achieved by limiting the saturation updates based on inflection points in the flux function. The same principle
was applied to compositional problems with phase transitions in Voskov et al. [35], Voskov and Tchelepi [36].
Wang and Tchelepi [38] further developed what was termed a trust-region solver by considering saturation-
dependent potential changes due to gravity and capillary forces. Further works by Li and Tchelepi [20, 21]
demonstrated that the numerical flux function differs from the continuous form of the functions previously
analyzed, which improved the convergence rates for problems with changes in upwind directions. In this work,
we develop a solver that considers the changes in the flux function along the Newton solution path in order
to apply the trust-region methodology to three-phase problems, as well as non-smooth relative permeability
curves. In addition, we present an approach for localizing the updates so that problems with multiple fronts
and different flow regions can be solved simultaneously without being limited by each other.

2 Model equations

2.1 Conservation equations

To study the behavior of the proposed nonlinear solver, we consider the conservation equations for m different
phases, where we assume that both the fluid phases and the rock surrounding the pores are incompressible.
The continuity equation for a given phase « is then

0Sa .
1) o +V Uy =¢qa, ac{l,..,m}, (1)
where S, is the phase saturation, ¢ the porosity and v, is the Darcy velocity,
— kra — —»
Vo = —Kﬂ (Vp = paVz - §) = =KXa(VD = paVz - g). (2)
(0%

The form of the Darcy velocity given here implies no capillary pressure and as such it is a balance between
the viscous forces and the buoyancy term due to gravity.

2.2 Sequential formulation

For simplicity, we will study a sequential scheme based on a splitting of the equations into a pressure and a
transport part. This formulation is convenient in part because it isolates the local changes in the transported
variables from the near-global changes in pressures, and thereby makes it possible to analyze sources of
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Figure 1: The flux function is a balance between viscous and gravity forces, shown in green and red respec-
tively. Based on the magnitude of the total velocity, the resulting flux function can take on the shape of
either gravity or viscous flux, or something in between.

nonlinearity separately. We form a linear pressure equation from (1) by taking the sum over all phases and
use the closure relation ) S, =1 to obtain

Vebr=qr, Or=» T =Y qs (3)

This elliptic equation is solved for the pressure to obtain total velocities vy and source terms ¢r. By keeping
the total velocity term fixed during transport, we obtain the standard fractional-flow formulation commonly
seen in literature,

m
Vo = far + K Y As(pa — pp)gV2). (4)

B=1
The total velocity U is only present in the first term of (4), and from this we see that the behavior of the
flux function itself depends on the magnitude of ¢y relative to the gravity term. When v goes towards zero,
the flow is dominated by gravitational forces. Figure 1 demonstrates the transition between the different flow
regimes for a flux function with quadratic relative permeability. The fractional flow for a given phase is the

ratio of the mobility of the phase to the total mobility which both change during the transport step,
Aa(Sa)
fa(S1, s S) = =, Up = vg. (5)
5= ey =3

If we now discretize (1) using a standard first-order finite-volume scheme (omitting the subscript denoting

a specific phase) and thus transform the velocity into a discrete flux, we obtain an implicit residual equation
for each cell 7 that depends on the values in the cell itself and the set of neighboring cells N(4),

@ mn n n n -
Ri = _(51 o Sz ) + Z F”(SL +1,Sj +1) —(q; = 0V i€ {1, ...,nc}. (6)

At L
JEN(i)
The discrete fluxes use the standard two-point transmissibility approximation to the flux at the interface
between a cell pair 7,

Fij(8i,S5) = fa | Vij + Ti Y As(pa — pp)gzij | - (7)
B=1

The total velocity V;; is defined at the interfaces by solving the pressure equation. The phase mobilities used
in the fractional-flow and gravity fluxes are upwinded based on the sorting of phase fluxes as described by
Brenier and Jaffré [3]. Az;; is the depth difference between cells ¢ and j.
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2.3 Nonlinearity of the flux function

Solving the transport equations usually amounts to solving (6) for all cells and m — 1 phases. We define
residual equations for each phase and require that these equations are solved to some tolerance e,

DRl < e (8)
=1

To solve the nonlinear equations that appear by the implicit discretization of (6), the common choice is
to employ Newton’s method to find the root. Newton’s method applied to classical test problems gives
quadratic rate of convergence, but in practice the reduction in residuals can be slow or stagnate completely
as the solver jumps between successive iterates in a loop. It matters little that the implicit discretization is
unconditionally stable, if the solver is unable to find the solution.

2.4 DMotivation for trust region solvers

It has been observed that the difficulty of this nonlinear problem primarily depends on the nature of the flux
functions F'(S;, S;) [13]. If (6) is to be solved by a (quasi-)Newton solver, we are dependent on the problem
being either convex or concave to guarantee convergence. However, if we consider the residual for a single
cell with multiple faces, we easily see that if >, I%; is to be convex (concave) everywhere, all the individual
functions should likely also be convex (concave)!. Unfortunately, most flux functions encountered in practice
in Darcy flow are not uniquely convex or concave. As a consequence, the Newton solver will only converge
for problems where S"*1 ~ S™ or when the path taken by the solver from S™ to S™*! does not cross any
inflection points or discontinuities.

To motivate the development of our nonlinear solver, we will examine the convergence criterion for the
Newton solver for successive iterates. Assume that we have a scalar problem R(z) = 0, where the residual
function is twice differentiable and has a unique solution. Let G(z): R — R be one step of Newton’s method
applied to R(z),

- B2 (9)
R (z)

In order for Newton’s method to converge unconditionally, we require that for two arbitrary guesses z,y we

have the strict inequality

G(x) =

1G(2) = Gl < llz —yll. (10)
This is simply stating that Newton’s method should be contractive for all points in our solution space so that
applying Newton’s method brings the solution closer to convergence. We apply the mean value theorem to
the Newton operator to obtain that for some point & we must have,

1G(2) = G = G =yl < IG" )l —yll, €€ [2,y]. (11)
Inserting our definition (9) and rearranging, we obtain the convergence ratio,
|R"(E)R(&)]
—r <1 VE€E|x,y|. 12

If we set £ = 8™ and y = S"*!, we see that Newton’s method is not guaranteed to converge if R’ is zero
for some S between S™ and S™*! as (12) becomes unbounded. If we now consider our residual equation
(6), we can consider the second-order derivative for each term separately. The accumulation term is linear
with respect to the cell saturation, and thus has constant first-order derivatives for At # 0, while the second
derivatives always vanish,

0 P P 0? P
+1 _ +1 _ .
55T <E(5T - Si”)) = Ktaijv a5 <E(Sin - Sf)) =0V}
J J

From this, we see that (12) vanishes for the accumulation term by itself regardless of time-step length. The
remainder of (6) correspouding to the flux term is then the main source of nonlinearity as the derivative of
the residual function is proportional to the sum of the second derivatives of the flux functions. Clearly, we
must treat discontinuities and inflection points in (7) with great care if we are to obtain convergence.

1Recall that a sum of functions will be convex (concave) if the individual functions are convex (concave).
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2.5 Relative permeability

As we have seen, the flux functions are the main source of difficult nonlinearities for Newton’s method, and
the discrete flux functions themselves are highly dependent on the mobility of the different phases. The
mobility depends on the relative permeability curves, which characterize the ability of a fluid phase to flow in
the presence of another phase in a specific type of porous media. The choice of relative permeability curves
is an essential tool when modeling flow in porous media and can be used to embed analytical knowledge,
experimental data, adjustments from history matching, and the effect of upscaling. With such a wide variety
of sources, the relative permeabilities can vary greatly between phases and different simulation models. A
robust nonlinear solver must be able to handle general relative permeability functions, regardless of their
origins.

2.5.1 Three-phase relative permeability

For a three-phase system, we define relative permeability for the water and gas phases as functions k., (Sy)
and k,,(S,) of the corresponding phase saturations. For the oil-phase, we define relative permeability for
two-phase states with oil and water, K, (S,), and oil and gas, k.o4(S,), respectively. There exist a number
of different possible choices for evaluating the three-phase relative permeability when all phases are present,
see for example the works by Stone [29, 30] and Baker [1]. The choice can impact the convergence rates of
the underlying scheme, see e.g. discussion in Lee and Efendiev [18]. For this work, we follow the default
setting of a commercial reservoir simulator [27], where the oil relative permeability is weighted according to
the gas and water saturations,

kro(Sw, Sos Sg) =k ow (S0) W (Sw, Sg) + kmg(SO)wg(Swv Sg) (13)
Sw - ch
Wi (Sw, S) =S, + S0 — Sue’ Wg(Sw, Sg) =1 = wy(Sw, S)- (14)

This choice ensures positive values and continuous derivatives provided that kyog, krow fulfill the same criterion
and that S,. < S, where S, is the connate water saturation. In principle, however, the proposed solver
can use any parametrization on the form ko (Sw, So,.595), as the exact expression of the relative permeability
takes no part in the algorithm. The solver acts directly on the simulator flux function and will determine
inflection points on the compound expression for the flux, not relative mobility or buoyancy related terms
directly.

2.5.2 Relative permeability systems used in numerical examples

The first class of relative permeabilities we consider in this paper consists of analytical relative permeabilities
given by a closed-form expression. We consider simple relative permeabilities given by Corey functions for a
pair of wetting and non-wetting fluids,

krw(Sw) = Suw> krg(sg) = S;, krow(SO) - krOg(SO) =5y (15)

where n € {2,3} in this paper.
We will also consider the form given by Brooks and Corey [4],

Koo (Sw) = S3 2P krow(Se) = krog(Se) = (S,)? (1 —(1- SO)HW) , (16)

with 8 € {1,2, 3,4}. Note that we have neglected endpoint scaling and residual saturation for these functions
to be consistent with the test case presented by Li and Tchelepi [20]. The six analytical relative permeability
functions under consideration are shown in Figure 2 along with the corresponding fractional-flow functions.

The second class of relative permeabilities to be considered consist of piecewise linear functions. While
analytical expressions may be easier to work with from a mathematical standpoint, most, if not all, com-
mercial simulators use piecewise linear functions internally. This format can approximate both analytical
functions and input functions based on experimental or upscaled data. While convenient for practitioners,
piecewise linear functions are more challenging than analytical functions for the purposes of designing ad-
vanced nonlinear solvers. In particular, the analysis required to determine inflection points is not well suited
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Figure 2: The six different analytical relative permeability curves (left) with their corresponding fractional
flow curves (right).

when the second-order derivatives are always zero along the line segments or ill-defined at the breakpoints
between segments.

We consider three different relative permeability curves given as piecewise linear functions. The first is
a modified version of the relative permeability system presented by Odeh [26]. A synthetic test problem for
gas injection, the water considered was immobile for all saturations values. Here, we assign the water phase
the same curve as the oil relative permeability to ensure that all three phases flow. The tables are otherwise
unmodified and the resulting functions can be seen plotted in Figure 3a. The second set of functions, shown
in Figure 3b are taken from the Ninth SPE Comparative Solution Project [15] which, in turn, were taken
from a real field study. The ninth and final relative permeability model is taken from the simulation model of
the Norne field, which has been released to the public [11, 31]. In the Norne model, the relative permeabilities
vary with rock type and herein we have chosen to use that of the first rock type without endpoint scaling,
as shown in Figure 3c. We emphasize that the relative permeability curves are used as-is. As the goal of
the paper is to develop a black-box approach, no information about breakpoints or analytical nature of the
curves is passed onto the nonlinear solvers themselves.
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Figure 3: The three different piecewise linear relative permeability functions used for the numerical examples.



2.6 Convergence criterion

To ensure reproducibility of our results, we will be explicit about the convergence criterion used for the solver.
If we rescale the residual equation for a single cell (6) by the ratio between the time-step length and the cell
pore volume we obtain,

Ry = (Spt - 81 ZFU SiS))—aqi | =0 ¥V ie{l,...,n.}. (17)

This scaling represents a saturation error, which means that |R|| is scaled between zero and one for all cells.
From this, we can establish a convergence criterion based on both the maximum and average values,

1R[]
1211

Cmax = ||R||oo S 1073, €avg = At S 1077; (18)

which is the same convergence criterion employed in a commercial simulator [27].

3 Trust-region solvers

3.1 The interface problem

We start by considering a single interface. Recall that the convergence criterion for Newton’s method implied
that the difficulty of the global problem is a result of the individual flux functions for each interface. As
the total velocity is fixed from the pressure update in the sequential implicit scheme under consideration,
we need only consider the dependence on transported values. Assume that we have computed the Newton
update for the saturation vector in the standard manner, i.e.,

AS = —JY(S)R(S), (19)

where J is the Jacobian matrix of the residual function R. We assume that the update is limited so that the
potential new saturation can be written as,

Srtl = 8n L ASP, SPelo,1], S'Meo,1]. (20)

The Newton update for all cells has both a direction and a magnitude. We seek to modify the magnitude
with a factor w € [0, 1] so that the line from F(S") — F(S"™1) = F(S" + wAS) does not cross beyond any
inflection lines or discontinuities. Since we only intend to modify the magnitude of the update, we can define
a one-dimensional space of points along the Newton path, which is the direction in the solution space where
the next Newton update is headed,

S, =8"+wAS", w e [0,1]. (21)
We introduce the directional derivative of F;; for a given interface,

2n ii
LOF; _ ASY
VaFy = VEy = [z 12 5s0 5 = asay (22)

where we have defined AS¥ as the vector of updates to the n, cell solution variables on either side of the

interface, -
ASY = [ASyiy ., ASn iy AS1j, s AS, 1T (23)

The gradient of F' could in principle depend on n, solution variables on each side of the interface. By
projecting the update onto on the directional derivative, we ensure that the problem is one-dimensional for
general problems. Figure 4 illustrates how the Newton update defines a one-dimensional subspace of the
residual and flux functions for a problem with two phases, two cells, and a single interface. Hereafter, we
shall, for simplicity, refer to the directional derivative evaluated at a point w along the Newton direction
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Figure 4: The convergence surface for a two-cell problem with gravity (left) and the flux function for the
interface between the cells (right). The saturations in the cells, denoted Sy, and Sg, define the two dimensional
solution space. The Newton update is shown in pink, the initial guess shown as a green dot, and is made
up of an update to the saturations in the left cell (shown in red) and the right cell (shown in blue). By
defining a one-dimensional space parametrized tangential to the Newton path, we can easily view the flux
and convergence functions as they change during the update (bottom).

using the shorthand VgF;;(S,) = F'(w) and regard the Newton direction as fixed for a given step. Any use
of F’(w) refers to a specific interface and so we neglect the ij subscript.

Inflection points for a given interface are determined by the second-order derivative of the flux function
along the Newton path in solution space, with similar notation as for the the first-order directional derivative
as V2F;;(S,) = F”(w). This second-order directional derivative requires the computation of the full Hessian
matrix for the flux function. Computing the full Hessian is expensive and ill-defined when the underlying data
is non-smooth, for instance when the relative permeability functions are given as piecewise linear functions
as noted earlier. In the following, we assume that we have some approximation F)(S,) =~ F"(S,,) that is
continuous and easy to evaluate, the details of which are given in the following sections.

3.2 The flux-search algorithm

Once the problem has been parametrized by a single value w, we can design an algorithm that determines
optimal relaxation factors. Define a sequence of updates along the line, wo,w,...,w,,. We assume that
wo = 0 and w,, = 1. We require that the sample count ny; > 2 so that there is at least one intermediate
point between the current state and the tentative new Newton update. We now have a series of intervals and
should attempt to determine the final relaxation factor w corresponding to a safe update. By keeping the
convergence criterion for Newton’s method in mind, we observe that a safe update would be one that does
not extend the new state far beyond any discontinuities or inflection points in the flux function. Ideally, an
update should end just on the other side of the such points in order for the next update to be valid.

To obtain a safe update, we apply a search strategy along the update path. Initially, we only have two
endpoints: wy was used for evaluation of the Jacobian, and w,_ which will be used in the next Jacobian if
no relaxation is needed. Recall that we defined the list of saturation updates in the different cells for a given
interface ij as AS™ in (23). The norm of the update for a given interface is ||AS;;||oc. Note that an interface
can be cither a connection between two cells, or the connection between the wellbore and the cell the well is
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perforated in. We divide the update into ng initial subintervals,
N :maX(HASUHOO/(sS,Z) i (24)

We have used dg to ensure that more intervals are added when the update is very large and may span many
discontinuities and inflection lines. All examples considered herein use g = 0.2, giving two initial subintervals
for most interfaces and time steps and up to five intervals for the largest updates. We then define the vector
of points in the unit interval to be sampled,

1
w = [0, hy), 2Rep, ..., 1], hy = T (25)
Ng —

Once the initial (sub)intervals have been found, we can apply the fluxsearch routine for each phase as
detailed in Algorithm 1. For detailed descriptions of the subroutines used in the algorithm, we refer to the
Appendix. The algorithm is a modified bisection method, which finds the relaxation factor based on a small
number of function evaluations. We note that it would be possible to choose the evaluated points in order to
minimize the error in the interpolated flux function based on error estimates for spline fitting. In this work,
however, we use the same set of evaluations to determine both inflection points and the discrete upwind
changes for which there is no known tailored sampling strategy. By considering different indicators where
the flux function has either inflection points or kinks separately, it is possible to find the optimal step length
for each interface. For immiscible flow, the two indicators used for each phase are the changes in upwind
direction for either phase and changes in sign for the second-order derivative of the flux function.

For changes in upwind direction, we define the indicator G= [w.,, Uo, u4], which for a given interface and
saturation update assigns unique values for each combination of upwind directions for the different phases.
For instance, the indicator for a interface where water and oil is co-current and the gas is counter-current
would be G = [1,1, 0], which will change to G = [1, 0, 0] if the oil-phase becomes counter-current. This means
that we only allow for a single change in phase upwind for any given interface during a nonlinear iteration.
Discrete indicators are easily evaluated and, although the examples here are limited to upwind changes due to
gravity, this approach has a natural extension to problems with phase changes along the Newton path. When
we consider the second-order derivative of the flux function, we use an approximation based on interpolation.
Since we have both F' and F” evaluated at all the sample points, we could have used a high-order approach such
as Hermitian polynomials or cubic splines for F'. However, since F” is not always well defined for piecewise
linear relative permeabilities, and because the flux functions can have large regions with zero values, we will
instead use a monotone interpolation scheme for F’. The interpolation scheme is a monotone cubic spline
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due to Fritsch and Carlson [6], where we interpolate F” directly and take the derivatives. Monotone splines
have the practical property that they avoid oscillations and overshoots near discontinuities and handle flat
regions without any problems, while still being in C'. The Fritsch-Carlson interpolation scheme is remarkably
robust, in that it can treat both piecewise linear and differentiable functions with second-order accuracy in
monotone regions.

The algorithm is visualized for three levels in Figure 5, applied to a periodic function with an inflection
point at z = 0.55. In each step, the true value of F” is plotted in orange, with the estimated F! shown
as a dashed line. As the sign-change in F"” is estimated to lie between 0.25 and 0.75, the second level adds
additional sample points in the vicinity, improving the estimate of F”. Finally, the third level gives a final
trust region shown in green, which is very close to the true inflection point, plotted as a red star. More levels
can be added to more accurately determine the trust region, but for all the examples considered herein, we
use a maximum of three levels. Adding a third level does not significantly impact the iteration counts for the
numerical examples based on gravity segregation. As the objective of this paper is to discuss unconditional
convergence, we err on the side of caution and add an additional level.

Algorithm 1 The fluxsearch algorithm determines the suggested relaxation factor for a given phase flux
function. The subroutines for the different relaxation factors are explained in the Appendix.

procedure FLUXSEARCH(w, F,F' G, S, AS, wy,c¢, 1)
wG,WTCfmt + computeGravityRelaxation(G,w)
wY,wY, . < computeViscousRelaxation(F,F’ w)
if | = l,,.x then > We are at the max level
wy + min(w®, w")
else
F,F' G + evaluatePhaseFlux(S, AS, W,cut) > Update with additional fluxes
if W& < w" then
wy ¢ fluxsearch(w,F,F’,G,S,AS,w& ,, [ +1) > Limited by upwind indicator
else
wy ¢ fluxsearch(w,F,F’,G,S,AS,w} ., [ +1) > Limited by viscous indicator
end if
end if
return wy

end procedure

3.3 Local and global chopping

Once we have obtained relaxation factors w;; for each interface ¢j, we can update the solution variables with
the appropriate increments. If we want the update to follow the Newton-path and not modify the direction,
we should limit the update by the smallest relaxation factor present,

Sntl —gn 4 11};11(wij)ASn. (26)

This is the global chopping used in the existing literature on trust-region solvers and is the only approach
guaranteed to not modify the direction of the update. Using a single relaxation for all cells in the domain
may lead to unconditional convergence, but it may also be overly conservative for larger models where
multiple fronts are present. The transport equation (1) is a hyperbolic partial differential equation, a class
of equations that are characterized by finite speed of information propagation. For example, a problem with
multiple injector wells will have multiple fronts propagating from the different wells, and these fronts will
not interact until a late stage in the simulation. Likewise, the updates in the Newton solver itself may
converge faster in certain regions than in others. The unidirectional propagation of Newton updates along
flow paths has previously been used to create nonlinear solvers that use topological sorting to decouple the
global Newton update into a sequence of local updates [25]. To exploit this locality in the saturation updates,
we devise a strategy that computes the relaxation factor locally so that the update is on the form

St = 8" +w/ ,AS", (27)
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where w,,; is some vector of cellwise relaxation factors. Assume that we have computed relaxation factors
for all interfaces in a given Newton update. A natural starting point is to define a connectivity matrix Cas
which connects cells that are strongly dependent on each other,

(28)

1, if \JZAS;‘\ > €|J;;AS¥| for any primary variable Sy,
(Cas)ij = .
0, otherwise.

The connection matrix uses the scaled Jacobians (17) of the m — 1 equations that were solved to obtain the
saturation updates. The connection from cell i to j is strong if the saturation update in cell j has a relative
impact on the saturation error in cell ¢ which is larger than some threshold e. A natural choice for € here is
to set it equal to e,,44, sO that we neglect any changes having impacts that are smaller in magnitude than
the convergence criterion.

For purely viscous problems discretized with a linear two-point scheme for the flux, the graph of (28) is
a directed graph with no cycles, as the flux between two cells only depends on the upstream cell because of
the upwinding of mobility. If the interface has flux due to gravity, the connection will form a cycle between
the cells, as the gravity flux is proportional to the density differences between the two cells. The process for
finding the relaxation factor is as follows:

1. Find all (if any) cycles in (28) and combine the nodes in each cycle into a single node.

2. Assign a tentative relaxation factor to each cell. Cells are assigned the minimum relaxation value from
all interfaces connected to that cell having nonzero flux. Cells belonging to a cycle are then assigned
the minimum value for all cells in that cycle.

3. Perform a topological sort of the modified connection matrix where cycles have been removed.

4. Traverse the graph so that each cell is assigned the minimum relaxation of itself and all cells that are
upstream to it.

After the traversal, all cells have a relaxation factor that is bounded by any cells that are upstream by the
strong connections.

3.4 Computational cost

The determination of the relaxation factors require a number of additional function evaluations. In order to
assess this cost, we will both report the actual number of residual evaluations and consider the theoretical
complexity of the algorithms. In this section, it is natural to compare with the line-search, which also uses
additional function evaluations to improve convergence rates.

The global line-search with backtracking evaluates the full residual at n;;—1 points where n;, is the number
of iterations required to find a global reduction in the residual (the final evaluated residual corresponds to the
next nonlinear iteration, we can subtract the cost). If we write the cost in terms of individual cell evaluations
of the residual, the total cost is n.(n;s — 1).

The flux-search is active for the n, interfaces which correspond to saturation updates larger than the
convergence criterion. For each of these interfaces, we require at least one additional residual evaluation at
the midpoint between the current and next states. If a interface does not appear to have upwind changes
or inflection points, the algorithm terminates and no additional cost is required. For faces that require
estimation of the flux function, 2l,,,, additional points are added. The number of function evaluations are
shown in Table 1.

We note that the main difference between a flux-search and a line-search is that the flux-search is local to
cach interface. In terms of evaluations, the flux-search does not require a full evaluation of the residual as no
accumulation terms, well terms or divergence is required, but it does require the derivatives with respect to
the primary variables. In the following numerical examples, we assume a flux evaluation on a single interface
to be equal in cost to evaluating the residual locally in two cells.

4 Numerical results

We validate the approach on a wide variety of numerical tests. Example 1 demonstrates the applicability of
the solver to a two-phase gravity-segregation problem from the literature, before extending the same problem
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Table 1: Comparison of different solver strategies in terms of cell-wise function evaluations.

Solver | Residual evaluations Additional costs
Flux-search 2nq (1 4+ 290na2) Ng X lmas spline updates
Flux-search (local) 2n4 (1 4+ 29lmaz) + Topological sort
Line-search ne(nis — 1)

to three phases in Example 2. A sloped injection problem in Example 3 demonstrates the behavior of the
solver on a problem with both viscous and buoyancy forces. Example 4 benchmarks the solvers on a problem
with multiple wells and strongly anisotropic permeability. Finally, Example 5 is a time-step study performed
on a field model from the Norwegian Sea, which contains a large number of vertical and horizontal wells,
faults, eroded cells, and anisotropic permeability.

The five solvers that will be used throughout the examples are the standard, unmodified Newton solver;
the modified Newton, which corresponds to a maximal saturation update (AS,,q = 0.1); the Newton solver
with a linesearch and maximal saturation update; the flux-search solver based on global chopping; and the
flux-search solver with local chopping based on topological sorting.

4.1 Example 1: A single-cell, three-phase problem

We will demonstrate the different solvers on a very simple test problem. We consider a a single cell with
an injection source term and a single outflow boundary face. The injected fluid composition contains an
equal volumetric mixture of oil, gas and water. The phases considered have equal viscosity and the densities
are 1000, 500 and 250 kg/m3 for water, oil and gas respectively. The three phases have quadratic relative
permeabilities. The saturation distribution on the other side of the boundary condition interface is equal to the
injected composition. Since Newton without saturation chopping does not converge due to the inflection lines
in the flux functions, we will limit the discussion to the line search, flux search and Newton with saturation
chopping. A solution with AS,,., = 0.001 is also included as a reference that closely approximates the true
Newton path.

We first consider the problem without gravity present. For a sufficiently long time-step, the saturations
in the cell should be equal to the injection composition. Figure 6 plots the normalized convergence surface
for this problem together with the path taken by different nonlinear solvers for six initial guesses to the true
solution at Sy, = S, = S5 = 1/3. We observe that the solver with AS,,,, = 0.1 approximates the Newton
path with fixed step lengths. The magnitude of the update is limited for all but the last step, giving a steady
convergence rate. The flux search solver takes steps of varying step lengths, keeping the updates as large
as possible without crossing inflection lines for the gas and oil flux functions. Finally, the line search with
backtracking is generally similar to the flux search as it also takes variable step lengths. However, it may
take steps far beyond the true solution, as only a sufficient decrease in residual is required for a step to be
accepted.

The same problem is repeated with gravity in Figure 7. Note that the modified surface contains three
different flow regimes: At S, = 1, all phases are co-current, while on the opposite end of the diagram
only water is co-current. We observe that the flux search algorithm correctly identifies these regions, giving
large updates inside each region where applicable. The AS,,., = 0.1 solver again follows the Newton path
with steady updates. The line search takes large updates initially as the required reduction in residual is
easy to achieve, cutting the updates only when fairly close to the solution. Although line search converges
unconditionally, this can lead to slow convergence when the initial guess has a large residual value due to a
long time-step. For this reason, we combine the line search with a chopping value of AS,,4, = 0.1 in the
remaining examples.

4.2 Example 2: Two-phase gravity segregation

For our second numerical example, we consider the problem of gravity segregation in a one-dimensional
column. The starting point is the two-phase case posed in Li and Tchelepi [20]. We will perform a systematic
test with all the nine different relative permeability curves introduced above to not only test the solver, but
also estimate the nonlinearity introduced by the various fluid systems used in later examples. The standard
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(a) ASmaz = 0.001 (b) ASyae = 0.1 (c) Flux-search (d) Linesearch

Figure 6: Four different updating strategies plotted on the normalized residual surface for a three-phase
single-cell problem without gravity. The lack of symmetry for the convergence surface is due to the solution
of the transport equations for oil and gas only.

(a) ASmaz = 0.001 (b) ASpaz = 0.1 (c) Flux-search (d) Line-search

Figure 7: Four different updating strategies plotted on the normalized residual surface for a three-phase
single-cell problem with gravity. Note that black lines correspond to changes in upwind direction for the
interface.

Newton solver is compared with the global flux-search solver as well as the modified Newton solver. We do
not include the local flux-search solver, as a single column with gravity will always form a strong cycle and
result in a global chopping. The grid and problem can be seen in Figure 8 along with the saturations at
equilibrium in Figure 9.

We define a column of height H with 80 cells. The model has homogeneous permeability and porosity,
with initial water saturation of one in the top 40 cells and zero in the bottom 40. The oil phase is set to have
half the density of the water phase, and both phases are assumed to be incompressible. This initial fluid
distribution is unstable because of the density difference, and the phases will switch places due to buoyancy
forces. We normalize the time steps by the time it takes to reach complete segregation when the relative
permeabilities are linear functions of saturation k,.(S) = S. A time step of At = 1 then corresponds to the
point in time when both phases have switched places in the linear case and is referred to as the characteristic
time. The problem is visualized in the left part of Figure 8. The viscosities are equal for both phases.

We simulate the problem for a wide range of time steps, ranging from the very short, which are far from
equilibrium after time integration (At = 0.01), to the very long (At = 10000). The results are reported in
Figure 10. If we first consider the regular Newton method, we observe that it only converges consistently for
small to moderate time steps. By introducing maximum saturation changes per nonlinear iteration, however,
we see that the convergence is greatly improved and the method eventually converges for all time steps and
relative permeability combines except for the SPE 9 fluid model. The flux-search solver converges for all
time-step and relative permeability pairs. The convergence is similar to the modified Newton for short time
steps, but for the truly long time steps At > 50 we see that the number of iterations is greatly reduced. The
line search is comparable to the trust region solver for steps up to about 1, after which a few time-steps use
more than the prescribed 500 iterations to converge. Generally, the flux-search solver has a smoother response
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Figure 8: The two-phase and three-phase gravity segregation scenarios demonstrated. Fluids with different
densities are arranged layered by density so that the system is unstable.

= Quadratic
Cubic
Brooks-Corey (i = 1

Brooks-Corey (7 = 2
Brooks-Corey (/=3
Brooks-Corey (7 = 4)

= Nomne

— SPET

=— SPE9

)
)
)
)

o
o
o

Saturation
o o o
P
Saturation
o o o
= o
Saturation
o o 9o
2 @

02f . m==2=2===="""5 ] 02f  mm===== 222 ===, B
1 1
0.1 ! 04t ' 0.1
o = . . . . 0 < . 0 =T
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Cell depth Cell depth Cell depth
(a) Final water saturation, two-phase (b) Final water saturation, three-phase (c) Final gas saturation, three-phase

Figure 9: Saturation distributions for the two and three-phase gravity segregation problems at normalized
time ¢ = 10* for the different relative permeability curves considered. Whole lines correspond to analytical
relative permeability functions, while dashed lines are given on piecewise linear form.

surface than the line-search. This is due to the systematic chopping at changes in upwind direction which will
be the same number of cuts for all relative permeability curves, as all cells will switch from their initial state.
For all the solvers capable of taking long time steps, the problems with analytic relative permeability curves
generally converge more rapidly than with piecewise linear curves, likely due to their continuous derivatives
with respect to S.

Li and Tchelepi [20] reported iteration counts for the same six analytical relative permeability curves,
and their maximum observed iteration count was 123. Our solver converges in a maximum of 84 iterations,
which is close to the number of cells in the problem. Even for the highly challenging SPE 9 fluid model, our
new solver has no problems converging, aside from a somewhat higher number of iterations compared to the
other problems with piecewise linear curves. From this, we can conclude that the approximate trust regions
produced by the flux-search algorithm accurately capture inflection points and kinks in the flux function,
giving unconditional convergence for this relatively simple test problem. In terms of computational cost, the
number of residual evaluations correlates strongly with the number of iterations. Any differences between the
local evaluations for the flux-search solvers and the global line-search approach are not significant compared
to the effect of additional iterations.

4.3 Example 3: Three-phase gravity segregation

The natural next step is to consider a three-phase gravity segregation problem. We introduce an additional
gas phase, which is lighter than the oil phase by a factor 2. We now have three phases, with densities 1000
kg/m?3, 500 kg/m?, and 250 kg/m?, respectively. The initial model is layered so that the different phases will
move to another layer as shown in the right part of Figure 8. Aside from the additional phase present, the
problem is analogous to the two-phase version.

14



SPE9 SPE9
SPE1* o SPE1* o
147 147
Norne Norne
_ 30 _ 30
BC (5 =4) BC (3=4)
) 43 ) 43
BC (3=3) b BC (5=23) b
BC (3=2) - BC (5=2) -
BC(4=1) . BC(8=1) .
Cubic Cubic
< 4 < i 4
Quadratic 2 Quadratic | 5
o o
S8-8Quille_gwv_ 003838388 S8-8Quille_gwv_ 003838388
SSScCeseT<-"P-n2cbal SSScCeseT<-"P-n2cbal
(a) Iterations: Newton’s method (b) Iterations: Newton’s method (ASpax = 0.1)
500 1740
SPE9 SPE9
SPE1* s SPE1* i
147 423
Norne Norne
80 209
BC (5=4) 43 DoE=4) 103
BC (3=3) oy BC (6=23) 51
BC (3=2) - BC (3=2) o5
BC (6=1) . BC@E=1) o
Cubic Cubic
5 4 ; 7
Quadratic 2 Quadratic .
o o
S8-8Quille_gwv_ 003838388 S8-8Quille_gwv_ 003838388
SSScCeseT<-"P-n2cbal SSScCeseT<-"P-n2cbal
(c) Iterations: Line search (d) Residual evaluations: Line search
SPES P SPES
v 27
SPE1* [ I e SPE1*
Norne - Norne
BC (3=4) BC (3=4)
43
BC (3=3) b BC (5=23)
BC (3=2) - BC (5=2)
BC(4=1) . BC(5=1)
Cubic Cubic
< 4 <
Quadratic 2 Quadratic
SN W0 W o ooy cooog
SdSacacT -0 2RS8ESS o238 R8g
(e) Iterations: Global flux search (f) Residual evaluations: Global flux search

Figure 10: Iterations until convergence for the two-phase gravity segregation problem. Note that the colormap
is the same for all figures, and white squares represent time-step and relative permeability combinations for
which the solver did not converge within 500 iterations.

The convergence plots shown in Figure 11 clearly show that the problem is significantly more challenging
than the two-phase version. As all phases are present in a large number of cells during the simulation,
problems that were trivial in the two-phase case now require a larger number of iterations. For instance,
quadratic relative permeabilities were not a problem for any solver in the two-phase case, but in the three-
phase version this problem has the slowest convergence of any of the analytical functions. This is especially
evident for the line-search, which uses almost 500 iterations near the characteristic time of the system.
Qualitatively, the relative convergence rates seem comparable to the two-phase case as the piecewise linear
functions are still significantly harder than the analytical curves and standard Newton struggles with the
longer time steps. The flux-search solver outperforms the modified Newton’s method for long time steps
and gives unconditional convergence. For shorter time steps, the convergence rates are comparable, but we
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Figure 11: Iteration results for the three-phase gravity segregation problem for a wide variety of different
time steps and relative permeability curves.

observe that the trust-region solver uses slightly more iterations to converge for the analytical models. This
likely occurs because the chopping strategy can be overly conservative, especially when multiple inflection
lines and upwind changes can be present in three-phase flow.

4.4 Example 4: Sloped injection problem

In the previous example, we demonstrated the ability to take long time steps for gravity segregation. While
challenging, such problems are missing part of the nonlinearity inherent in transport problems. Notably, the
total velocity v was zero for the gravity column, and the only contribution to the flux (4) is due to gravity.
Most simulation problems of interest contain a mixture of both viscous and gravity fluxes, and in this example
we therefore consider a sloped injection problem where both forces are present. The next example has been
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designed to create a highly challenging problem with competing forces.

Producer

Figure 12: Sloped injection problem

The domain of the problem, the wells, and the injected fluids after 0.4 pore volumes injected (PVI) in the
simulation for linear relative permeability curves are shown in Figure 12. The domain is a rectangular grid
with size 1000 m x 10 m uniformly discretized into 1000 x 10 fine cells. This is a very thin model where the force
of gravity is strong due to the small vertical scale, making the injection scenario intentionally challenging for
any transport solver. We consider the same density ratios as in the three-phase gravity example and inject a
mixture of equal volumes of gas and water at the left edge of the domain using a standard well model. Fluids
are produced by a well with a single perforation in the lower right corner at the opposite end of the domain,
and the domain is tilted with respect to the z-axis by 22.5 degrees. By tilting the domain, we let the lighter
gas front sweep against the direction of the buoyancy force, whereas water is flowing with the buoyancy force,
giving the potential for circulations near the front. We let the injector well be rate controlled and normalize
the time step so that At = 1 is the same as one PVI. For a variety of time steps ranging from At = 107 to
At = 10, we simulate injection with the nine different relative permeability curves.

The convergence is plotted in Figure 13. We immediately see that standard Newton struggles with time
steps larger than 5-10~* for most fluid models due to the strong nonlinearity of the problem. By introducing
saturation chopping, however, long time steps can be taken for the analytical relative permeability curves.
Occasionally, the solver based on standard chopping will fail to solve certain steps, even though both larger
and smaller time steps may converge, which is a behavior often seen when the true solution in specific cells
lies close to some inflection point or kink. The flux-search solver based on global chopping is able to converge
unconditionally, but it uses significantly more iterations for some of the analytical relative permeability curves
than modified Newton with saturation chopping. This happens as the solver will always cross inflection lines
and upwind changes in a step-wise fashion, which may be needlessly conservative if the true solution is
nowhere near the problematic regions. By using the graph-based local chopping strategy, we significantly
reduce the number of iterations required until convergence for most cases. Even though only a single front is
progressing through the domain, there are still a large number of updates that can be performed independently
of each other. Comparing with the line-search solver, we observe that the flux-search solver uses less or a
comparable amount iterations for the short and intermediate time-steps. For the longer time-steps, the line-
search performs uses generally less iterations, except for the SPE9 fluid model where line-search does not
converge in 2000 iterations for 0.75 PVI and in general requires a large number of iterations.

4.5 Example 5: Gas and water injection in anisotropic medium

The next problem is an anisotropic test case with a highly irregular flow field. The petrophysical parameters
are taken from a subset of the SPE10, Model 2 benchmark problem [5]. The permeability and porosity
fields were originally intended as a benchmark for upscaling methods, and as such the contrasts are highly
challenging. We take the top 35 layers, corresponding to the Tarbert formation and extract a vertical slice
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Figure 13: Iterations and residual evaluations requitg8d to achieve convergence for the three-phase sloped
injection problem. The time scale represents the number of pore volumes injected.
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Figure 14: The model setup for the vertical SPE10 Model 2 slice.

along the middle of the model. The resulting grid has 220 x 35 cells as shown in Figure 14, and is in some
ways more difficult to solve than a 3D subset, as the lateral connections around the impermeable and low-
permeable zones have been removed when considering a single vertical slice. We place water injectors in
the upper corners of the model as well as gas injectors at the deepest corners, with a single producer in the
middle of the grid. By letting the injection rate be relatively slow at one pore volume injected over 50 years,
we get both the effects of gravity segregation, in which gas flows up and water flows down, as well as viscous
flow when the fluids volumes are swept towards the producer. Parts of the model contain nearly impermeable
vertical connections, forcing the fluids to follow the layered structure until it reaches a permeable zone. Once
again, we use the same fluid models as in the previous three-phase examples and simulate for a wide variety
of time steps and relative permeability curves.

The results for the different configurations are shown in Figure 15. We can see that the standard Newton
solver only converges for the smallest time step, while the Newton with saturation chopping performs fairly
well for analytical fluid models. As in previous examples, we observe that the piecewise linear relative
permeability curves from SPE1 and SPE9 are clearly the hardest to solve, as even the modified Newton does
not improve significantly upon the results from standard Newton. When focusing on the two flux-search
solvers, we see that both converge for all time-step and fluid combinations, with the exception of certain
time-steps around one PVI for the SPE 9 fluid model. It is not known if the convergence failure is due to
limitations in the trust-region approach or if the solvers would eventually converge slowly after more than
the allotted 2000 iterations, but it is clear that the SPE 9 fluid model represents a highly challenging system,
which may not be well posed for long time steps. The larger time steps can often result in initial Newton
updates to cells being on the order of several thousands, far beyond the neatly scaled unit values allowable for
saturations. The line-search performs comparably to both flux-search solvers, although more iterations are
required for the very small time-steps. As in the previous examples, the piecewise linear relative permeability
curves are in general more difficult to converge regardless of solver choice.

The local flux-search strategy performs comparably or better than the global strategy for modifying the
Newton update. The results clearly show that the localized approach outperforms the global reduction, while
still being competitive with Newton with saturation chopping. To quantify the behavior of the local and
global solvers, we take the modified SPE1 fluid and simulate 1 PVI with different number of time steps. The
finest schedule uses 300 equal steps and the coarsest uses a single step. The results are shown in Figure 16,
where the local reduction in general outperforms the global solver with a factor 1.48 to 2.44.

4.6 Example 5: Water and gas injection in the Norne field

The simulation model of the Norne oil field located in the Norwegian Sea has recently been released as a open
data set. The simulation grid contains 44,420 active cells after processing and is complex in the sense that it
has a number of faults, eroded cells, and non-neighboring connections. We extract a representative subset of
six vertical injectors and seven horizontal producers from the large number of wells present in the full historical
model. The injectors are modified to inject an equal volume mixture of gas and water, and are together
assigned fixed rates corresponding to one pore volume injected over 50 years for the entire model. This gives
a time-averaged water-alternating-gas (WAQG) or simultaneous water-alternating-gas (SWAG) scenario. The
initial model is equilibrated with all three phases present. We set the water phase to have a density of 1000
kg/m3, the oil phase to 500 kg/m3, and the gas phase to 10 kg/m? to give vastly different impact from gravity
to the phases. The phase viscosities are 1, 5, and 0.1 cP for water, oil, and gas, respectively.
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Model 2. The time scale represents the number of pore volumes injected.
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Figure 16: Time-step study for the vertical SPE10 cross section. The model is given the modified SPE1
relative permeabilities and 1 PVI is simulated for several different number of time steps ranging from 300
relatively small steps, to one big step. The numbers above the graph shows the relative increase in iterations
when going from the local to the global flux-search solver.
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Figure 17: Permeability, grid, well configurations and saturations for the Norne example.

We use the same Norne relative permeability system as in the earlier examples and simulate until one pore
volume has been injected. By simulating a full scenario, we will expose the nonlinear solvers to many of the
situations present in a real reservoir simulation. Five different time-step schedules were created, ranging from
100 time steps of moderate length, to one long step encompassing the entire scenario. The grid, permeability
and saturations at ¢ = 0 and ¢ = 50 years can be seen in Figure 17.

Due to the strong nonlinearities of the injection process, neither Newton nor modified Newton were able to
solve the scenario without halving the time steps more times than allowed by the simulator. The trust-region
solvers were able complete all scenarios without any time-step failures. Visualization of the iterations as a
function of the number of time steps can be seen in Figure 18, where we see that the global solver on average
seems to use between 20 and 50 % more iterations to converge than to the local solver. For the extreme case
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of a single 50-year time step, we observe that the difference between the solvers is smaller as the local solver
uses 313 iterations and the global solver uses 380 iterations. As the time step becomes longer, information

from the different parts
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of the reservoir will interact and make it more difficult to localize the updates.
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Figure 18: Time-step study for the Norne field model. The model uses a subset of the real wells, and 1 PVI
is simulated for several different number of time steps ranging from 100 moderate steps, to one big step. The
numbers above the graph report the relative increase in iterations when going from the local to the global

flux-search solver.
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Figure 19: Bottom-hole pressure for the injectors and water, oil, and gas rates for the producers for a wide
variety of different time-step lengths for the Norne model.

In the previous examples, we only considered the iterations until convergence for the different time steps.
Systematic tests have value in that they show the convergence behavior of the different solvers, but in practice
the results from the simulation are more important. When long time steps are taken, the time truncation
error increases and the accuracy of the simulation results will suffer. The degree to which large errors in
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Figure 20: The produced volumes and time-averaged injector bottom-hole pressures for different time-step
lengths applied to the Norne model

the results are acceptable varies depending upon the purpose of the simulation. If the goal is to resolve
fine-scale fluid behavior and correctly predict water or gas breakthrough within days, small time steps should
be taken. For optimization and ballpark estimates, however, long time steps can be sufficiently predictive,
especially when uncertainty in the underlying data can be large. It is outside the scope of this paper to
determine the optimal time-step length to balance error and convergence rates. Nevertheless, we report well
curves for the different time-stepping strategies in Figure 19. From the figure, we see that the quantitative
details of each curve deteriorates much faster than the qualitative behavior. The total produced volumes
for each well in Figure 20 indicate that even with only 10 time steps, the lifetime prediction is relatively
accurately reproduced. Not surprisingly, the single long time step gives well curves that are far off for most
wells, and this simulation is only included as a proof-of-concept for the improved convergence achieved by
the trust-region solver with flux-search.

5 Conclusion

For implicit schemes, time-step restrictions on the transport in porous media are more often than not limited
by the capability of the nonlinear solver rather than stability restrictions in temporal discretization. This
happens in part because the parameters used to simulate specific physical phenomena result in highly coupled
non-linear equations. In this work, we have extended the trust-region approach to significantly more complex
problems by the way of three key innovations. Firstly, we have built a trust-region solver capable of solving
for three (or more) fluid phases by projecting the updates along the Newton path and applying a flux-search
algorithm. Secondly, we have introduced the ability to handle general flux functions, where the underlying
parameters are not necessarily smooth by using a monotone interpolation scheme. And finally, we have
introduced a local update strategy based on the flow of information in the hyperbolic problems with gravity,
where the graph of the Jacobian is decomposed into strong and weak connections.

The numerical examples, while limited to immiscible and incompressible flow, are highly nonlinear due
to the combination of anisotropic permeability, semi-unstructured grids, non-smooth relative permeability
curves, and strong coupling between gravity and viscous forces. Our new flux-search, trust-region solver
compared favorably with standard Newton and modified Newton with saturation chopping and Newton with
saturation chopping and a residual line-search with backtracking. Generally, the results indicate that the flux-
search performs better than the line-search for small time-steps that always converge. For longer time-steps,
the flux-search is comparable or slightly slower to converge than the line-search due to systematic cutting
of all inflection points and upwind changes. For problems considering piecewise linear relative permeability
curves from standard benchmark datasets, the flux-search generally performed better than the line-search.
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Appendix

Algorithm 2 Algorithm for a global line search with backtracking.

procedure LINESEARCH(Zg, AT)
a1
for i < i,,4, do
T Tp + aAZ
if |Z]|00 < |Z0]/co then
return 7
else
o af2
end if
end for
end procedure

Algorithm 3 The algorithm for selecting the optimal viscous relaxation factor.
procedure COMPUTEVISCOUSRELAXATION(F/, w)
F/ + evaluateApproximateDerivative(F', w)
11
wY 1
for i < numel(F/) do
if sign(¥7/[i]) # sign(F?[1]) & F/[i] # 0 then
WY« wli]
break
end if
end for
if w¥ <1 then
w) ., + addSamplePoints(w,1)
else

return w' w)_ .
end procedure
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Algorithm 4 The algorithm for selecting the optimal relaxation factor based on changes in the upwind
direction.
procedure COMPUTEGRAVITYRELAXATION(G, w)
1+ 1
w1
for i < numel(G) do
if G[i] # G[i — 1] then
WG «— wi]
break
end if
end for
if w¥ <1 then
w( . <+ addSamplePoints(w,1)
else

return w® w& _,

end procedure

Algorithm 5 Evaluation of second derivative using a spline at the midpoints of each interval.

procedure EVALUATEAPPROXIMATEDERIVATIVE(F’, w)
p(w) <+ spline(F', w)
g(w) < 52
for i < numel(w) do
if i =1 then
F!'[i] + g(w[1]) > Evaluate at w =0
else
FI'li] + g(wli — 1] + M) > Evaluate at interval midpoint
end if
end for
end procedure

Algorithm 6 Procedure for adding additional sample points given the index ¢ of the first relaxation factor
to be outside the trust region.
procedure ADDSAMPLEPOINTS(w, ¢)

if i = 2 then

Whest < {W[Z — 1] =+ W}
else

Whext < {W[Z — 2] + W,W[Z _ 1] + M}
end if

return w, ..+
end procedure
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