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Abstract

We present a novel, deterministic, and efficient method to detect whether a given
rational space curve is symmetric. By using well-known differential invariants
of space curves, namely the curvature and torsion, the method is significantly
faster, simpler, and more general than an earlier method addressing a similar
problem [3]. To support this claim, we present an analysis of the arithmetic
complexity of the algorithm and timings from an implementation in Sage.

1. Introduction

The problem of detecting the symmetries of curves and surfaces has attracted
the attention of many researchers throughout the years, because of the interest
from fields like Pattern Recognition [10, 13, 21, 23, 24, 40, 41, 43, 45, 47],
Computer Graphics [8, 9, 27, 29, 31, 34, 36, 38], and Computer Vision [7, 11,
22, 25, 26, 28, 44, 42]. The introduction in [3] contains an extensive account of
the variety of approaches used in the above references.

A common characteristic in most of these papers is that the methods focus
on computing approximate symmetries more than exact symmetries, which is
perfectly reasonable in many applications, where curves and surfaces often serve
as merely approximate representations of a more complex shape. Some excep-
tions appear here: If the object to be considered is discrete (e.g. a polyhedron),
or is described by a discrete object, like for instance a control polygon or a con-
trol polyhedron, then the symmetries can be determined exactly [7, 11, 22, 25].
Examples of the second class are Bézier curves and tensor product surfaces. Fur-
thermore, in these cases the symmetries of the curve or surface follow from those
of the underlying discrete object. Another exception appears in [23], where the
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authors provide a deterministic method to detect rotation symmetry of an im-
plicitly defined algebraic plane curve and to find the exact rotation angle and
rotation center. The method uses a complex representation of the curve and is
generalized in [24] to detect mirror symmetry as well.

Rational curves are frequently used in Computer Aided Geometric Design
and are the building blocks of NURBS curves. Compared to implicit curves,
rational parametric curves are easier to manipulate and visualize. Space curves
appear in a natural way when intersecting two surfaces, and they play an im-
portant role when dealing with special types of surfaces, often used in geometric
modeling, like ruled surfaces, canal surfaces or surfaces of revolution, which are
generated from a directrix or profile curve. Furthermore, in geometric modeling
it is typical to use rational space curves as profile curves.

In this paper we address the problem of deterministically finding the sym-
metries of a rational space curve, defined by means of a proper parametrization.
Notice that since we deal with a global object, i.e., the set of all points in the
image of a rational parametrization, and not just a piece of it, the discrete ap-
proach from [7, 11, 22, 25] is not suitable here. Determining if a rational space
curve is symmetric or not is useful in order to properly describe the topology of
the curve [6]. Furthermore, if the space curve is to be used for generating, for
instance, a canal surface or a surface of revolution, certain symmetries of the
curve will be inherited by the generated surface. Hence, for modeling purposes
it can be interesting to know these symmetries in advance.

Recently, the problem of determining whether a rational plane or space curve
is symmetric has been addressed in [1, 2, 3] using a different approach. The
common denominator in these papers is the following observation: If a ra-
tional curve is symmetric, i.e., invariant under a nontrivial isometry f , then
this symmetry induces another parametrization of the curve, different from the
original parametrization. Assuming that the initial parametrization is proper
(definition below), the second parametrization is also proper. Since two proper
parametrizations of the same curve are related by a Möbius transformation [37],
determining the symmetries is reduced to finding this transformation, there-
fore translating the problem to the parameter space. This observation leads
to algorithms for determining the symmetries of plane curves with polynomial
parametrizations [1] and of plane and space curves with rational parametriza-
tions [3], although in the latter case of general space curves only involutions
were considered. The more general problem of determining whether two ratio-
nal plane curves are similar was considered in [2].

In this paper we again employ the above observation, but in addition we
now also use well-known differential invariants of space curves, namely the cur-
vature and the torsion. The improvement over the method in [3] is threefold:
First of all, we are now able to find all the symmetries of the curve instead of
just the involutions. Secondly, the new algorithm is considerably faster and can
efficiently handle even curves with high degrees and large coefficients in reason-
able timings. Finally, the method is simpler to implement and requires fewer
assumptions on the parametrization.

Some general facts on symmetries of rational curves are presented in Sec-
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tion 2. Section 3 provides an algorithm for checking whether a curve is symmet-
ric. The determination of the symmetries themselves is addressed in Section 4.
Finally, in Section 5 we report on the performance of the algorithm, by present-
ing a complexity analysis and providing timings for several examples, including
a comparison with the curves tested in [3].

2. Symmetries of rational curves

Throughout the paper, we consider a rational space curve C ⊂ R3, neither a line
nor a circle, parametrized by a rational map

x : R 99K C ⊂ R3, x(t) =
(
x(t), y(t), z(t)

)
. (1)

The components x(t), y(t), z(t) of x are rational functions of t with rational
coefficients, and they are defined for all but a finite number of values of t. Let
the (parametric) degree m of x be the maximal degree of the numerators and
denominators of the components x(t), y(t), z(t). Note that rational curves are
irreducible. We assume that the parametrization (1) is proper, i.e., birational
or, equivalently, injective except for perhaps finitely many values of t. This can
be assumed without loss of generality, since any rational curve can quickly be
properly reparametrized. For these claims and other results on properness, the
interested reader can consult [37] for plane curves and [5, §3.1] for space curves.

We recall some facts from Euclidean geometry [17]. An isometry of R3 is
a map f : R3 −→ R3 preserving Euclidean distances. Any isometry f of R3 is
linear affine, taking the form

f(x) = Qx + b, x ∈ R3, (2)

with b ∈ R3 and Q ∈ R3×3 an orthogonal matrix. In particular det(Q) = ±1.
Under composition, the isometries of R3 form the Euclidean group, which is
generated by reflections, i.e., symmetries with respect to a plane, or mirror
symmetries. An isometry is called direct when it preserves the orientation, and
opposite when it does not. In the former case det(Q) = 1, while in the latter
case det(Q) = −1. The identity map of R3 is called the trivial symmetry.

The classification of the nontrivial isometries of Euclidean space includes
reflections (in a plane), rotations (about an axis), and translations, and these
combine in commutative pairs to form twists, glide reflections, and rotatory re-
flections. Composing three reflections in mutually perpendicular planes through
a point p, yields a central inversion (also called central symmetry), with center
p, i.e., a symmetry with respect to the point p. The particular case of rota-
tion by an angle π is of special interest, and it is called a half-turn. Rotation
symmetries are direct, while mirror and central symmetries are opposite.

Lemma 1. A rational space curve C ⊂ R3 different from a line cannot be
invariant under a translation, glide reflection, or twist.
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Proof. If C were invariant under translation by a vector b, then, for any point x
on C, the line L = {x + tb : t ∈ R} would intersect C in infinitely many points,
implying that L ⊂ C and contradicting that C is an irreducible curve different
from a line. Since applying a glide reflection twice yields a translation, C cannot
be invariant under a glide reflection either. Suppose C is invariant under a twist
f with axis A and angle α, and let π : R3 −→ Π be the orthogonal projection
onto a plane Π ⊥ A. Then the projection C′ := π(C) is a plane algebraic curve
invariant under the rotation π ◦ f by the angle α about the point A ∩ Π. By
Lemma 1 in [3], α = 2π/k with k ≤ deg(C′). But then C is invariant under the
translation fk, which is a contradiction.

Therefore, the rotations, reflections, and their combinations (like central
inversions) are the only isometries leaving an irreducible algebraic space curve,
different from a line, invariant. We say that an irreducible algebraic space curve
is symmetric, if it is invariant under one of these (nontrivial) isometries. In that
case, we distinguish between a mirror symmetry, rotation symmetry and central
symmetry. If the curve is neither a line nor a circle, it has a finite number of
symmetries [3].

We recall the following result from [3]. For this purpose, let us recall first
that a Möbius transformation (of the affine real line) is a rational function

ϕ : R 99K R, ϕ(t) =
at+ b

ct+ d
, ∆ := ad− bc 6= 0. (3)

In particular, we refer to ϕ(t) = t as the trivial transformation. It is well known
that the birational functions on the real line are the Möbius transformations [37].

Theorem 2. Let x : R 99K C ⊂ R3 be a proper parametric curve as in (1).
The curve C is symmetric if and only if there exists a nontrivial isometry f and
nontrivial Möbius transformation ϕ for which we have a commutative diagram

C
f
// C

R

x

OO

ϕ
// R

x

OO (4)

Moreover, for each isometry f there exists a unique Möbius transformation ϕ
that makes this diagram commute.

Note that ϕ(t) is the parameter value corresponding to the image under the
symmetry f of the point on C with parameter t.

Lemma 3. Let ϕ be a Möbius transformation associated to a parametrization x
and isometry f in the sense of Theorem 2. Then its coefficients a, b, c, d can be
assumed to be real, by dividing by a common complex number if necessary.
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Proof. For any proper parametrization x and isometry f the associated Möbius
transformation ϕ = x−1 ◦ f ◦ x maps the real line to itself. In particular, since

0 = ϕ(t)− ϕ(t) =
(ac− ac)t2 + (bc− bc+ ad− ad)t+ (bd− bd)

(ct+ d)(ct+ d)

for any t for which ϕ(t) is defined, ac and bd are real, so that arg(a) = arg(c)
and arg(b) = arg(d). A similar argument for ϕ−1 yields that −dc/|ad− bc|2 and
−ba/|ad − bc|2 are real, implying that arg(c) = arg(d) and arg(a) = arg(b). It
follows that all coefficients of ϕ have a common argument θ. Therefore, after
dividing the coefficients of ϕ by exp(iθ), the coefficients of ϕ can be assumed to
be real.

Let the curvature κ and torsion τ of a parametric curve x be the functions

κ = κx :=
‖x′ × x′′‖
‖x′‖3

, τ = τx :=
〈x′ × x′′,x′′′〉
‖x′ × x′′‖2

of the parameter t. Note that κ is non-negative. The functions κ2 and τ2 are
well-known rational differential invariants of the parametrization x, in the sense
that

κf◦x = κx, τf◦x = det(Q) · τx (5)

for any isometry f(x) = Qx + b. This follows immediately from Q being
orthogonal and the identity

(Ma)× (Mb) = det(M)M−T(a× b), (6)

which holds for any invertible matrix M and follows from a straightforward
calculation. Although τx and κ2x are rational for any rational parametrization x,
the curvature κx is in general not rational.

The following lemma describes the behavior of the curvature and torsion
under reparametrization, for instance by a Möbius transformation.

Lemma 4. Let x be the rational parametrization (1) and let φ ∈ C3(U), with
U ⊂ R open. Then

κx◦φ = κx ◦ φ, τx◦φ = τx ◦ φ,

whenever both sides are defined.

Proof. Writing x̃ := x ◦ φ and using the chain rule, one finds

x̃′(t) = x′
(
φ(t)

)
· φ′(t),

x̃′′(t) = x′′
(
φ(t)

)
·
(
φ′(t)

)2
+ x′

(
φ(t)

)
· φ′′(t),

x̃′′′(t) = x′′′
(
φ(t)

)
·
(
φ′(t)

)3
+ 3x′′

(
φ(t)

)
· φ′(t) · φ′′(t) + x′

(
φ(t)

)
· φ′′′(t),

whenever t ∈ U and x is defined at φ(t). Therefore

κx◦φ(t) =

∥∥x̃′(t)× x̃′′(t)
∥∥∥∥x̃′(t)∥∥3 =

∥∥x′(φ(t)
)
× x′′

(
φ(t)

)∥∥ · |φ′(t)|3∥∥x′(φ(t)
)∥∥3 · |φ′(t)|3 =

(
κx ◦ φ

)
(t),

and similarly one finds τx◦φ = τx ◦ φ.
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3. Symmetry detection

In this section we derive a criterion for the presence of nontrivial symmetries
f(x) = Qx+b of curves of type (1), together with an efficient method for check-
ing this criterion. The cases det(Q) = ±1 need to be checked separately, but are
considered simultaneously using linked ± and ∓ signs consistently throughout
the paper. The resulting method is summarized in Algorithm Symm±.

3.1. A criterion for the presence of symmetries

For any parametric curve x as in (1), write

κ2x(t) =:
A(t)

B(t)
, τx(t) =:

C(t)

D(t)
,

with (A,B) and (C,D) pairs of coprime polynomials. Let

G±x := gcd
(
Kx, T

±
x

)
, (7)

with

Kx(t, s) := A(t)B(s)−A(s)B(t), T±x (t, s) := C(t)D(s)∓ C(s)D(t) (8)

the result of clearing denominators in the equations

κ2x(t)− κ2x(s) = 0, τx(t)∓ τx(s) = 0. (9)

Similarly, associate to any Möbius transformation ϕ the Möbius-like polynomial

F (t, s) := (ct+ d)s− (at+ b), ad− bc 6= 0, (10)

as the result of clearing denominators in s − ϕ(t) = 0. We call F trivial when
F (t, s) = s− t, i.e., when the associated Möbius transformation is the identity.
Note that F is irreducible since ad− bc 6= 0.

Theorem 5. Consider the curve C defined by x in (1) and let G±x be as above.
Then C has a nontrivial symmetry f(x) = Qx + b, with det(Q) = ±1, if and
only if there exists a nontrivial polynomial F of type (10), associated with a
Möbius transformation ϕ, such that F divides G±x and the parametrizations x
and x ◦ ϕ have identical speed,

‖x′‖ = ‖(x ◦ ϕ)′‖. (11)

The zeroset of F is the graph of ϕ, which is either a rectangular hyperbola
with horizontal and vertical asymptotes when c 6= 0, or a line with nonzero and
finite slope a/d when c = 0. Whenever F is a factor of G±x , the corresponding
hyperbola or line is contained in the zeroset of G±x ; see Figure 1.
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Proof of Theorem 5. “=⇒”: If C is invariant under a nontrivial isometry f(x) =
Qx+b, with det(Q) = ±1, by Theorem 2 there exists a Möbius transformation
ϕ such that f ◦x = x ◦ϕ. Let F be the Möbius-like polynomial associated with
ϕ. The points (t, s) for which Kx(t, s) = T±x (t, s) = 0 are the points satisfying
κx(s) = κx(t) and τx(s) = ±τx(t). This includes the zeroset

{(
t, s
)

: s = ϕ(t)
}

of F (t, s), since

κx ◦ ϕ = κx◦ϕ = κf◦x = κx, τx ◦ ϕ = τx◦ϕ = τf◦x = det(Q)τx = ±τx

by Lemma 4 and (5). Since F is irreducible, Bézout’s theorem implies that
F divides Kx and T±x , and therefore G±x as well. Furthermore, since Q is
orthogonal, the parametrizations have equal speed,

‖(x ◦ ϕ)′‖ = ‖(f ◦ x)′‖ = ‖(Qx + b)′‖ = ‖Qx′‖ = ‖x′‖.

“⇐=”: Let ϕ be the nontrivial transformation associated to F . Let t0 ∈ I ⊂
R be such that x(t) is a regular point on C for every t ∈ I, and consider the arc
length function

s = s(t) :=

∫ t

t0

‖x′(t)‖dt, t ∈ I,

which (locally) has an infinitely differentiable inverse t = t(s). By (11),∥∥∥∥ d

ds

(
x ◦ t

)∥∥∥∥ =

∥∥∥∥dx

dt

dt

ds

∥∥∥∥ = 1 =

∥∥∥∥ d

dt

(
x ◦ ϕ

) dt

ds

∥∥∥∥ =

∥∥∥∥ d

ds

(
x ◦ ϕ ◦ t

)∥∥∥∥ ,
so that x ◦ t and x ◦ ϕ ◦ t are parametrized by arc length. Since F divides G±x ,
any zero

(
t, ϕ(t)

)
of F is also a zero of Kx and T±x , implying that κx = κx ◦ ϕ

and τx = ±τx ◦ ϕ. Then, by repeatedly applying Lemma 4,

κx◦t = κx ◦ t = κx◦ϕ ◦ t = κx◦ϕ◦t, τx◦t = τx ◦ t = ±τx◦ϕ ◦ t = ±τx◦ϕ◦t. (12)

The Fundamental Theorem of Space Curves [19, p. 19] then implies that x ◦ t
and x◦ϕ◦t coincide on s(I) up to an isometry f(x) = Qx+b with det(Q) = ±1.
Therefore C and f(C) have infinitely many points in common. Since C and f(C)
are irreducible algebraic curves, it follows that C = f(C) and therefore f is a
symmetry of C.

Note that the polynomial G±x cannot be identically 0. Indeed, G±x is identi-
cally 0 if and only if Kx and T±x are both identically 0, which happens precisely
when κx and τx are both constant. If κx = 0 then C is a line, if τx = 0 and
κx is a nonzero constant then C is a circle, and if κx, τx are both constant but
nonzero then C is a circular helix, which is non-algebraic. All of these cases are
excluded by hypothesis.

3.2. Finding the Möbius-like factors F of G±x
The criterion in Theorem 5 requires to check if a bivariate polynomial G = G±x
has real factors of the form F (t, s) = (ct + d)s − (at + b), with ad − bc 6= 0.
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However, a, b, c, d need not be rational numbers, so that we need to factor over
the algebraic or real numbers. This problem has been studied by several authors
[14, 15, 16, 20]. However, since in our case we are looking for factors of a specific
form, we develop an ad hoc method to check the condition.

Let G be the curve in the (t, s)-plane defined by G(t, s). Let t0 be such that
the vertical line L at t = t0 does not contain any zero of G where the partial
derivative Gs := ∂G

∂s vanishes; see Figure 1. These are the points t0 for which
the discriminant of g(s) := G(t0, s) does not vanish, which is up to a factor equal
to the Sylvester resultant Ress(G,Gs) and has degree at most (2ms − 1)mt in
t0, with (mt,ms) the bidegree of G. Therefore one can always find an integer
abscissa t0 with this property by checking for at most (2ms − 1)mt + 1 points
t0 whether the gcd of g(s) and Gs(t0, s) is trivial.

If G has a Möbius-like factor F as in (10), then the zeroset of F intersects
L in a single point p0 = (t0, ξ) satisfying

(ct0 + d)ξ − (at0 + b) = 0. (13)

Since Gs(p0) 6= 0, the equation F (t, s) = 0 implicitly defines a function s = s(t)
in a neighborhood of p0. Moreover, by differentiating the identity F

(
t, s(t)

)
= 0

once and twice with respect to t, and evaluating at p0, we find the relations

−a+ ds′0 + c · (ξ + t0s
′
0) = 0, (14)

ds′′0 + c · (2s′0 + t0s
′′
0) = 0, (15)

where ξ = s(t0), s′0 := s′(t0), and s′′0 := s′′(t0). In order to find expressions for
s′0, s′′0 , we now use that the function s(t) is also implicitly defined by G(t, s) = 0,
because F is a factor of G and Gs(p0) 6= 0. Differentiating once and twice the
identity G

(
t, s(t)

)
= 0 with respect to t gives

s′ = −Gt(t, s)
Gs(t, s)

, s′′ = −
Gtt(t, s) + 2Gts(t, s)s

′ +Gss(t, s)
(
s′
)2

Gs(t, s)
. (16)

Evaluating these expressions at p0 yields expressions s′0 = s′0(ξ) and s′′0 = s′′0(ξ).
Now we distinguish the cases d 6= 0 and d = 0. In the first case, we may

assume d = 1 by dividing all coefficients in the Möbius transformation by d. In
that case 2s′0+t0s

′′
0 = 2∆/(ct0+1)3 6= 0 and (13)–(15) yield rational expressions

c1(ξ) :=
−s′′0

2s′0 + t0s′′0
, a1(ξ) := s′0+c1(ξ)(ξ+t0s

′
0), b1(ξ) := −a1(ξ)t0+ξ+c1(ξ)t0ξ.

(17)
The polynomial F is a factor of G if and only if the resultant Ress(F,G) is
identically 0. Substituting a1(ξ), b1(ξ), c1(ξ), and d = 1 into this resultant
yields a polynomial P1(t), whose coefficients are rational functions of ξ. Let
R1(ξ) be the gcd of the numerators of these coefficients and of g(ξ). The real
roots ξ of R1(ξ) for which a1(ξ), b1(ξ), c1(ξ) are well defined and ∆1(ξ) :=
a1(ξ) − b1(ξ)c1(ξ) 6= 0 correspond to the Möbius-like factors F of G as in (10)
with d = 1.
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Figure 1: The zeroset (solid) of the polynomial G = G±x intersects the vertical
line L (dashed) in the points (2,±

√
8) and (2,±1/

√
12) in Example 1.

On the other hand, when d = 0 we may assume c = 1, and (13)–(15) yield
rational expressions

a0(ξ) := ξ + t0s
′
0, b0(ξ) := −a0(ξ)t0 + t0ξ. (18)

Substituting a0(ξ), b0(ξ), c = 1, and d = 0 into the resultant Ress(F,G) yields
a polynomial P0(t), whose coefficients are rational functions of ξ. Let R0(ξ) be
the gcd of the numerators of these coefficients and g(ξ). The real roots ξ of
R0(ξ) for which a0(ξ) and b0(ξ) are well defined and ∆0(ξ) := −b0(ξ) is nonzero
correspond to the Möbius-like factors F of G as in (10) with d = 0. We obtain
the following theorem.

Theorem 6. The polynomial G has a real Möbius-like factor F as in (10)
with d 6= 0 (resp. d = 0) if and only if R1(ξ) (resp. R0(ξ)) has a real root.
Furthermore, every such real root provides a factor of this form.

Note that the cases d = 0 and d 6= 0 can be computed in parallel.

Example 1. Consider the bivariate polynomial

G(t, s) = 3s4t4 − 6s4t3 + 3s4t2 − 6s2t4 − s2t2 + 2s2t− s2 + 2t2.

The vertical line L := {t = t0 := 2} does not intersect the zeroset of G in a point
where Gs vanishes, since the discriminant of g(ξ) := G(t0, ξ) = 12ξ4 − 97ξ2 + 8
is nonzero (see Figure 1). Evaluating (16) at p0 = (2, ξ) yields

s′0 = −18ξ4 − 97ξ2 + 4

ξ(24ξ2 − 97)
,

s′′0 =
16416ξ10 − 206316ξ8 + 879669ξ6 − 1387682ξ4 + 55302ξ2 + 1552

ξ3(24ξ2 − 97)3
.

9



When d 6= 0, we may assume d = 1 and Equations (17) yield

c1(ξ) = −1

2

16416ξ10 − 206316ξ8 + 879669ξ6 − 1387682ξ4 + 55302ξ2 + 1552

6048ξ10 − 66636ξ8 + 256371ξ6 − 456385ξ4 + 17666ξ2 + 1552
,

a1(ξ) = −1

2

ξ(72ξ8 + 2019ξ6 − 21192ξ4 + 40138ξ2 − 4656)

504ξ8 − 5511ξ6 + 20905ξ4 − 36290ξ2 − 1552
,

b1(ξ) = − (9504ξ10 − 163836ξ8 + 879621ξ6 − 1434145ξ4 + 133646ξ2 − 4656)ξ

(504ξ8 − 5511ξ6 + 20905ξ4 − 36290ξ2 − 1552)(12ξ2 − 1)
.

Substituting these expressions into the resultant Ress(F,G) and taking the gcd
of the numerators of its coefficients and g yields a polynomial R1(ξ) = ξ2 − 8.
We find F1(t, s) = −st+

√
2t+ s for ξ =

√
8 and F2(t, s) = −st−

√
2t+ s for

ξ = −
√

8 as factors of G. In the case d = 0, we may assume c = 1 and we get

a0(ξ) = − (ξ2 − 8)(12ξ2 − 1)

ξ(24ξ2 − 97)
, b0(ξ) = 4

18ξ4 − 97ξ2 + 4

ξ(24ξ2 − 97)
.

Here R0(ξ) = 12ξ2 − 1 and we obtain F3(t, s) = st − 1
3

√
3 for ξ = 1/

√
12 and

F4(t, s) = st + 1
3

√
3 for ξ = −1/

√
12. The entire computation takes a fraction

of a second when implemented in Sage on a modern laptop. For more details
we refer to the worksheet accompanying this paper [32].

Algorithm Symm±

Require: A proper parametrization x of a space curve C, not a line or a circle.
Ensure: The number of symmetries f(x) = Qx + b, with det(Q) = ±1, of C.

1: Find the bivariate polynomials K,T±, and G± from (7) and (8).
2: Find the resultant Ress(F,G

±), with F as in (10).
3: Let t0 be such that the discriminant of g±(ξ) := G±(t0, ξ) does not vanish.
4: Find the gcd R1(ξ) of g± and the numerators of the coefficients of the

polynomial P1(t) obtained by substituting d = 1 and (17) into Ress(F,G
±).

5: Find the real roots of R1(ξ) for which (9) is well defined, each defining a
Möbius transformation by substituting (17) and d = 1 in (3).

6: Let n1 be the number of these Möbius transformations satisfying (11).
7: Find the gcd R0(ξ) of g± and the numerators of the coefficients of the poly-

nomial P0(t) obtained by substituting c = 1, d = 0, (18) into Ress(F,G
±).

8: Find the real roots of R0(ξ) for which (9) is well defined, each defining a
Möbius transformation by substituting (18), c = 1 and d = 0 in (3).

9: Let n0 be the number of these Möbius transformations satisfying (11).
10: Return “The curve has n0 + n1 symmetries with det(Q) = ±1”.

10



3.3. The complete algorithm

Let x : R 99K C as in (1) be a parametric curve of degree m. Distinguishing the
cases d = 0, 1, each tentative Möbius transformation can be written as

ϕξ(t) =
ad(ξ)t+ bd(ξ)

cd(ξ)t+ d
,

with ξ a root of Rd and ad, bd, cd as in (17), (18). Condition (11) can be checked
as follows. Squaring and clearing denominators yields an equivalent polynomial
condition

Wξ(t) = wn(ξ)tn + wn−1(ξ)tn−1 + · · ·+ w0(ξ) ≡ 0 (19)

of degree n ≤ 24m−4. By Theorem 5, a root ξ of Rd corresponds to a symmetry
of C precisely when Wξ(t) vanishes identically. In other words, every root ξ of

gcd(Rd, w0, . . . , wn) (20)

defines a Möbius transformation ϕξ corresponding to a symmetry fξ := x ◦ϕξ ◦
x−1 as in Theorem 2. We thus arrive at Algorithm Symm± for determining the
number of symmetries of the curve C.

4. Determining the symmetries

Algorithm Symm± detects whether the parametric curve x from (1) has nontrivial
symmetries. In the affirmative case we would like to determine these symmetries.
By Theorem 2, every such symmetry corresponds to a Möbius transformation
ϕ = (at+b)/(ct+d), which corresponds to a Möbius-like factor F of G computed
by Algorithm Symm±. In this section we shall see how the symmetry f(x) =
Qx + b can be computed from ϕ.

The commutative diagram in Theorem 2 describes the identity

Qx(t) + b = x
(
ϕ(t)

)
. (21)

Let us distinguish the cases d 6= 0 and d = 0. In the latter case, (21) becomes

Qx(t) + b = x
(
ϕ(t)

)
= x

(
ã/t+ b̃

)
, ã := b/c, b̃ := a/c.

Applying the change of variables t 7−→ 1/t and writing x̃(t) := x(1/t), we obtain

Qx(t) + b = x̃
(
ãt+ b̃

)
. (22)

Without loss of generality, we assume that x(t) (respectively x̃(t)), and therefore
any of its derivatives, is well defined at t = b̃ (respectively t = 0), and that
x′(0),x′′(0) are well defined, nonzero, and not parallel. The latter statement
is equivalent to requiring that the curvature κx(t) at t = 0 is well defined and
distinct from 0. This can always be achieved by applying a change of parameter
of the type t 7−→ t + α. Observe that ϕ(t) can be determined before applying
this change, because afterwards the new Möbius transformation is just ϕ(t+α).

11



Evaluating (22) at t = 0 yields

Qx(0) + b = x̃(b̃), (23)

while differentiating once and twice and evaluating at t = 0 yields

Qx′(0) = ã · x̃′(b̃), Qx′′(0) = ã2 · x̃′′(b̃). (24)

Using (6) and that Q is orthogonal, taking the cross product in (24) yields

Q
(
x′(0)× x′′(0)

)
= det(Q) · ã3 · x̃′(b̃)× x̃′′(b̃). (25)

Multiplying Q by the matrix B := [x′(0), x′′(0), x′(0)×x′′(0)] therefore gives

C :=
[
ã · x̃′(b̃), ã2 · x̃′′(b̃), det(Q) · ã3 · x̃′(b̃)× x̃′′(b̃)

]
and Q = CB−1. One sets det(Q) = 1 to find the orientation-preserving sym-
metries, and det(Q) = −1 to find the orientation-reversing symmetries. One
finds b from (23).

Next we address the case d 6= 0. After dividing the coefficients of ϕ by d,
we may assume d = 1. As before, we assume that x(t) is well defined at t = 0,
and we again assume that the curvature κx(0) is well defined and nonzero.
Differentiating (21) once and twice,

Qx′(t) = x′
(
ϕ(t)

)
· ϕ′(t) = x′

(
at+ b

ct+ 1

)
∆

(ct+ 1)2
, (26)

Qx′′(t) = x′′
(
ϕ(t)

)(
ϕ′(t)

)2
+ x′

(
ϕ(t)

)
ϕ′′(t) (27)

= x′′
(
at+ b

ct+ 1

)
∆2

(ct+ 1)4
− 2x′

(
at+ b

ct+ 1

)
c∆

(ct+ 1)3
.

Evaluating (26) and (27) at t = 0 yields

Qx′(0) = x′(b) ·∆, Qx′′(0) = x′′(b) ·∆2 − 2x′(b) · c∆. (28)

Using (6) and that Q is orthogonal, taking the cross product in (28) yields

Q
(
x′(0)× x′′(0)

)
= det(Q) ·∆3 · x′(b)× x′′(b). (29)

Since ϕ is known, the matrix Q can again be determined from its action on
x′(0),x′′(0), and x′(0)×x′′(0), which is given by Equations (28) and (29). One
finds b by evaluating (21) at t = 0.

Once Q and b are found, one can compute the set of fixed points of f(x) =
Qx + b to determine the elements of the symmetry, i.e., the symmetry center,
axis, or plane.

Example 2. Let C ⊂ R3 be the crunode space curve parametrized by

x : t 7−→
(

t

t4 + 1
,

t2

t4 + 1
,

t3

t4 + 1

)
.

12



Applying Algorithm Symm+ we get G+(t, s) = (t − s)(t + s). The first factor
corresponds to the identity map ϕ1(t) = t and the trivial symmetry f1(x) = x.
The second factor corresponds to the Möbius transformation ϕ2(t) = −t. Clearly
ϕ2 satisfies Condition (11), so that Theorem 5 implies that C has a nontrivial,
direct symmetry f2(x) = Q2x + b2. With a = −1, b = 0, c = 0, d = 1, and
using that det(Q) = 1,

B =

 1 0 0
0 2 0
0 0 2

 , C =

 −1 0 0
0 2 0
0 0 −2

 , Q2 := CB−1 =

 −1 0 0
0 1 0
0 0 −1

 .
Evaluating (21) at t = 0 gives b2 = (I −Q2)x(0) = 0, so that C is invariant
under f2(x) = Q2x, which is a half-turn about the y-axis. Since there are no
other factors in G+, there are no direct symmetries corresponding to a Möbius
transformation with d = 0.

As for the opposite symmetries, applying Algorithm Symm− yields G−(t, s) =
(st−1)(st+1), whose factors correspond to the Möbius transformations ϕ3(t) =
1/t and ϕ4(t) = −1/t. A direct computation shows that ϕ3 and ϕ4 satisfy
Condition (11), and that they correspond to symmetries f3(x) = Q3x and
f4(x) = Q4x, with

Q3 =

 0 0 1
0 1 0
1 0 0

 , Q4 =

 0 0 −1
0 1 0
−1 0 0

 .
The sets of fixed points of these isometries are the planes Π3 : z − x = 0 and
Π4 : z + x = 0, which intersect in the symmetry axis of the half-turn; see
Figure 2.

Example 3. Consider the family of daisies of increasing degree m = 4j + 4,
which are given parametrically by

x(t) =

(
u

j∑
i=0

(−1)i
(

2j

2i

)
u2j−2iv2i, v

j∑
i=0

(−1)i
(

2j

2i

)
u2j−2iv2i,

1− t4j+4

1 + t4j+4

)
,

(30)
with

u =
1− t2

1 + t2
, v =

2t

1 + t2
, j = 0, 1, . . .

Applying Algorithm Symm+ for the case j = 1, we get G+(t, s) = (t− s)(st− 1).
The first factor again corresponds to the trivial symmetry f1(x) = x. The
second factor corresponds to the Möbius transformation ϕ2(t) = 1/t. Clearly
ϕ2 satisfies Condition (11), so that Theorem 5 implies that C has a nontrivial,
direct symmetry f2(x) = Q2x + b2. With a = 0, b = 1, c = 1, d = 0, and using
that det(Q) = 1,

B =

 0 −20 0
2 0 0
0 0 40

 , C =

 0 20 0
2 0 0
0 0 −40

 , Q2 := CB−1 =

 −1 0 0
0 1 0
0 0 −1

 .
13



Figure 2: Left: The crunode curve from Example 2, together with the fixed
points of the half-turn and mirror symmetries. Right: The daisy of degree 8
from Example 3, together with the fixed points of the central inversion, half-
turn, and mirror symmetries.

Equation (23) gives b2 = x̃(b̃) − Q2x(0) = 0, so that C is invariant under
f2(x) = Q2x, which is a half-turn about the y-axis.

Similarly applying Algorithm Symm−, we get G−(t, s) = (s+ t)(st+1), whose
factors correspond to the Möbius transformations ϕ3(t) = −t and ϕ4(t) = −1/t.
A direct computation shows that ϕ3 and ϕ4 satisfy Condition (11), and that
they correspond to symmetries

f3(x) =

1 0 0
0 −1 0
0 0 1

x, f4(x) =

−1 0 0
0 −1 0
0 0 −1

x,

which are a reflection in the plane Π3 : y = 0 and a central inversion about the
point (0, 0, 0), respectively; see Figure 2.

5. Performance

5.1. Complexity

Let us determine the arithmetic complexity of Algorithm Symm±, i.e., the number
of integer operations needed. In addition to using the standard Big O notation
O for the space- and time-complexity analysis, we use the Soft O notation Õ
to ignore any logarithmic factors in the time-complexity analysis. The bitsize
τ of an integer k is defined as τ = dlog2 ke + 1; the bitsize of a parametriza-
tion x (taken with integer coefficients) is the maximum bitsize of the coefficients
of the numerators and denominators of the components. The following theo-
rem presents the arithmetic complexity of Algorithm Symm± when applied to
parametric curves of varying degree m and of fixed bitsize.

14



Theorem 7. For a parametric curve x as in (1) with degree m, Algorithm
Symm± finishes in Õ(m5) integer operations.

Proof. Step 1. Using the Schönhage-Strassen algorithm, two polynomials of de-
gree m with integer coefficients can be multiplied in Õ(m) operations [46, Table
8.7]. Therefore the computation of κ2 and τ can be carried out in Õ(m) opera-
tions as well, resulting in rational functions whose numerators and denominators
have degree O(m). As a consequence, K and T = T± can also be computed
in Õ(m) operations, and have degrees O(m) in t and s. The bivariate gcd
G = G± can be computed in Õ(m5) operations using the ‘half-gcd algorithm’
[35], and has degree O(m) in both variables. Step 1 therefore takes at most
Õ(m5) operations.

Step 2. Since F (t, s) = (ct + d)s − (at + b), the resultant Ress(F,G) is
the polynomial in t obtained by replacing s by (at + b)/(ct + d) and clearing
denominators. Writing G(t, s) =

∑m0

k=0Gk(t)sk as a sum of m0 + 1 = O(m)
terms, with each Gk(t) a polynomial of degree O(m), gives

Ress(F,G) =

m0∑
k=0

Gk(t)(at+ b)k(ct+ 1)m0−k, (31)

which is a polynomial of degree O(m) in a, b, c, and t.
Step 3. For any integer t0, the two polynomials G(t0, s), Gs(t0, s) have degree

O(m), so that their (univariate) gcd can be computed in Õ(m) operations [46,
Corollary 11.6]. Since we need to consider at most O(m2) values of t0, Step 3
takes Õ(m3) operations.

Step 4. For any integer t0 and unknown ξ, evaluating (16) at (t0, ξ) takes
O(m2) operations, yielding rational functions s′0(ξ) and s′′0(ξ) whose numerator
and denominator have degree O(m). Substituting these rational functions into
(17) takes Õ(m) operations and yields rational functions

a(ξ) =
a1(ξ)

a2(ξ)
, b(ξ) =

b1(ξ)

b2(ξ)
, c(ξ) =

c1(ξ)

c2(ξ)
, (32)

whose numerator and denominator have degree O(m). Substituting these ra-
tional functions into (31) followed by binomial expansion, i.e., computing

k∑
n=0

(
k

n

)
an1 b

m0−k+n
2 bk−n1 am0−n

2 tn

am0
2 bm0

2

,

m0−k∑
n=0

(
m0 − k
n

)
cn1 c

m0−n
2 tn

cm0
2

, (33)

involves raising polynomials of degree O(m) to the power O(m), which can be
computed in Õ(m2) operations using repeated squaring, i.e., O(logm) multi-
plications of polynomials of degree O(m2). All powers ali, b

l
i, c

l
i, with i = 1, 2

and l = 0, . . . ,m0, in the above expression can therefore be computed in Õ(m3)
operations, resulting in polynomials of degree O(m2) in ξ. All remaining prod-
ucts can be computed in Õ(m3) operations, resulting in polynomials of degree
O(m2).
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Now the rational functions in (33) are determined, the product of their
numerators can be carried out in Õ(m) ring operations, the ring now being the
polynomials in ξ. Since these polynomials have degree O(m2), the product of
Gk(t) and the rational functions in (33) takes Õ(m2) integer operations, and
yields the terms in the sum (31). After factoring out the common denominator
(a2b2c2)m0 , this sum involves O(m) polynomials of degree O(m) in t, which
requires O(m2) additions of polynomials of degree O(m2) in ξ. This involves
O(m4) integer operations and yields a polynomial of degree O(m) in t, whose
coefficients Pi(ξ) are polynomials of degree O(m2). The gcd of g(ξ) with the
Pi(ξ) can be computed in Õ(m3) operations, resulting in a polynomial R1(ξ)
of degree O(m), since g(ξ) has degree O(m). Step 4 therefore takes O(m4)
operations.

Step 5. One determines whether R1(ξ) has real roots using root isolation,
which takes Õ(m) operations using Pan’s algorithm for root isolation [33, 30].

Step 6. Writing x = (x, y, z) = (x1/x2, y1/y2, z1/z2), we find that

‖x′‖2 =
(x2x

′
1 − x1x′2)2y42z

4
2 + (y2y

′
1 − y1y′2)2x42z

4
2 + (z2z

′
1 − z1z′2)2x42y

4
2

x42y
4
2z

4
2

can be computed in O(m) operations. From Step 3 we already know the ex-
pansions of the powers (at+ b)l, (ct+ d)l and their products, thus determining
x ◦ ϕ. Taking the derivative of x ◦ ϕ and then squaring involves multiplying
and adding polynomials of degree O(m) in t and O(m2) in ξ, which requires
Õ(m2) operations. Similarly we determine [(y ◦ ϕ)′]2 and [(z ◦ ϕ)′]2 in Õ(m2)
operations. The resulting rational functions have numerator and denominator
of degree O(m) in t and O(m2) in ξ, and can be added in Õ(m2) operations.
Clearing denominators again takes Õ(m2) operations and results in the poly-
nomial Wξ(t) from (19) of degree O(m) in t and of degree O(m2) in ξ. To
compute (20), we need to compute O(m) times the univariate gcd of polynomi-
als of degree O(m) and degree O(m2), which requires Õ(m3) operations. Step 6
therefore requires Õ(m3) operations.

Steps 7–10. These steps have the same complexity as Steps 4–6.

Note that resorting to probabilistic algorithms, the bivariate gcd G in Step 1
can be computed in Õ(m2) operations using the ‘small primes modular gcd al-
gorithm’ and fast polynomial arithmetic [46, Corollary 11.9.(i)]. Thus a proba-
bilistic version of Algorithm Symm± uses O(m4) operations.

5.2. Experimentation

Algorithm Symm± was implemented in the computer algebra system Sage [39],
using Singular [18] as a back-end, and was tested on a Dell XPS 15 laptop,
with 2.4 GHz i5-2430M processor and 6 GB RAM. Additional technical details
are provided in the Sage worksheet, which can be downloaded from the third
author’s website [32] and can be tried out online by visiting SageMathCloud [4].

We present tables with timings corresponding to different groups of exam-
ples. Table 1 corresponds to the set of examples in [3], making it possible to
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curve degree told tnew

twisted cubic 3 0.26 0.15
cusp 4 0.52 0.16
half-turn 1 4 2.22 0.14
crunode 4 39.60 0.42
inversion 1 7 6.80 0.19
space rose 8 57.60 0.25
inversion 2 11 75.60 0.22

Table 1: Average CPU time (seconds) of the algorithm in [3] (told) and Algo-
rithm Symm± (tnew) for parametric curves given in [3].

degree 8 12 16 20 24
tnew 0.66 0.92 1.47 2.30 4.38

degree 28 32 36 40 44
tnew 5.33 6.53 8.77 15.88 18.11

Table 2: Average CPU time tnew (seconds) of Algorithm Symm± for daisies of
various degrees.
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tnew τ = 4 τ = 8 τ = 16 τ = 32 τ = 64 τ = 128 τ = 256

m = 4 0.61 0.62 0.66 0.73 0.83 1.14 1.88
m = 6 1.65 1.76 1.72 1.89 2.13 2.80 4.55
m = 8 3.50 3.54 3.55 3.84 4.27 5.36 8.59
m = 10 7.53 7.47 7.30 7.98 8.42 9.76 15.35
m = 12 14.46 14.35 14.30 14.84 15.98 18.35 25.87
m = 14 22.31 23.24 22.39 22.71 24.93 27.35 38.36
m = 16 34.86 35.60 35.38 35.27 38.14 41.91 55.74
m = 18 53.03 52.78 52.78 51.16 54.49 60.44 78.27

Table 3: CPU times tnew (seconds) for random dense rational parametrizations
of various degrees m and coefficients with bitsize bounded by τ .

tnew τ = 4 τ = 8 τ = 16 τ = 32 τ = 64 τ = 128 τ = 256

m = 4 0.85 0.89 0.91 0.97 1.12 1.51 2.39
m = 6 1.89 2.02 1.99 2.21 2.57 3.36 5.40
m = 8 4.08 4.24 4.52 5.16 5.45 7.42 10.41
m = 10 8.29 8.80 8.88 9.30 10.74 12.64 19.87
m = 12 17.47 18.20 17.96 17.12 18.49 25.19 34.11
m = 14 28.54 28.72 29.55 28.54 31.87 34.71 44.19
m = 16 41.20 41.53 42.02 43.07 45.55 51.36 65.58
m = 18 58.42 58.91 59.54 61.08 64.31 71.89 94.33

Table 4: CPU times tnew (seconds) for random dense rational parametriza-
tions with a central inversion of various degrees m and coefficients with bitsize
bounded by τ .

compare the timing tnew of Algorithm Symm± to the timing told of the algorithm
in [3]. It is clear from the table that the algorithm introduced in this paper is
considerably faster for each curve.

To test Algorithm Symm± for symmetric curves with higher degree, Table 2
lists the timings for a family of daisies of increasing degree m = 4j + 4, para-
metrically given by (30). The algorithm quickly finds the symmetries of these
symmetric curves, also for high degree.

Table 3 lists average timings for random dense rational parametrizations with
various degrees m and coefficients with bitsizes at most τ . To study the effect of
an additional nontrivial symmetry, we consider random parametrizations x =
(x1, x2, x3) with antisymmetric numerators and symmetric denominators of the
same degree m and with bitsize at most τ , i.e., of the form

xi(t) =
ci,0 + ci,1t+ · · · − ci,1tm−1 − ci,0tm

di,0 + di,1t+ · · ·+ di,1tm−1 + di,0tm
, i = 1, 2, 3,

with dlog2 |ci,j |e, dlog2 |di,j |e ≤ τ − 1. Since x(1/t) = −x(t), such parametric
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Figure 3: Left: The average CPU time tnew (seconds) versus the degree m for
daisies and random dense rational parametrizations with bitsize τ = 4 and with
only the trivial symmetry (random) and with an additional central inversion
(central), fitted by the power laws (34)–(36) (dotted). Right: The average CPU
time tnew (seconds) versus the coefficient bitsizes for degree m = 4. The symbols
indicate the average CPU times, and the error bars show the interval of CPU
times.

curves have a central inversion about x(1) = 0. Table 4 lists average timings
for these curves with various degrees m and bitsizes at most τ .

For very large coefficient bitsizes (> 256, i.e., coefficients with more than
77 digits) and high degrees (> 20) the machine runs out of memory. We have
therefore analyzed separately the regime with high degree and the regime with
large coefficient bitsize.

Figure 3 presents log-log plots of the CPU times against the degree (left)
and against the coefficient bitsizes (right). The (eventually) linear nature of
these data suggests the existence of an underlying power law. Least squares
approximation yields that, as a function of the degree m, the average CPU time
tnew satisfies

tnew ∼ αmβ , α ≈ 6.7 · 10−3, β ≈ 3.2 (34)

in case of random dense rational parametrizations with coefficient bitsize at
most τ = 4,

tnew ∼ αmβ , α ≈ 4.7 · 10−3, β ≈ 3.3, (35)

in case of random dense rational parametrizations with a central inversion and
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with coefficient bitsize at most τ = 4, and

tnew ∼ αmβ , α ≈ 7.9 · 10−5, β ≈ 3.2 (36)

for the daisies. Note that these timings are close to the Õ(m3) operations needed
by Brown’s modular gcd algorithm [12], which is used in the implementation
in Sage for bivariate gcd computations. The reason is that in the analyzed
examples almost all time is spent computing the bivariate gcd in Step 1, which
then typically has low degree, so that the remaining calculations take relatively
little time.

5.3. An observation on plane curves

If C is planar, then τ and T± are identically zero, so that G± = K. Although
Algorithm Symm± is still valid for such curves, we have observed a very poor
performance in this case. The reason is that, for non-planar curves, the degree
of G± is typically small compared to the degrees of K and T±. However,
for plane curves the degree of G± is equal to the degree of K, and then the
computation takes a very long time. Therefore, for plane curves, the algorithms
in [2] and [3] are preferable.

5.4. Comparison to previous method

Table 1 indicates a dramatic improvement of the CPU time of Symm± over the
method described in [3]. In that paper the symmetry f(x) = Qx+b and Möbius
transformation ϕ(t) = (at+b)/(ct+d) are first expressed polynomially in terms
of some (yet unknown) algebraic number β. By far the most CPU time is spent
after that, on substituting a(β), b(β), c(β), Q(β) and b(β) into the relation

f
(
x(t)

)
− x

(
ϕ(t)

)
≡ 0.

Since the degrees can get very high in this relation, this substitution can take
a long time. Then the algebraic numbers β, and therefore the symmetry and
Möbius transformation, are found by requiring that this relation holds identi-
cally.

Furthermore, the method described in [3] requires that the parametrization
x satisfies rather strict conditions. Quite often, a reparametrization is needed
in order to achieve these conditions, which can result in destroying sparseness
and increasing the coefficient size. This, in turn, has an impact on the time
taken by the substitution step.

By contrast, in Algorithm Symm± we use additional information provided by
the curvature and torsion of the curve to compute G±x = gcd(Kx, T

±
x ), whose

degree is generally low. The Möbius transformations are then computed in just
one step as factors of G±x . As a consequence, no substitution step is needed.
Moreover, unless x is not proper, no reparametrization is required.
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6. Conclusion

We have presented a new, deterministic, and efficient method for detecting
whether a rational space curve is symmetric. The method combines ideas in
[1, 3] with the use of the curvature and torsion as differential invariants of space
curves. The complexity analysis and experiments show a good theoretical and
practical performance, clearly beating the performance obtained in [3]. The
algorithm also improves in scope on the algorithm of [3], which can only be
applied to find the symmetries for Pythagorean-hodograph curves and involu-
tions of other curves. Finally Algorithm Symm± is simpler than the algorithm
in [3], which imposes certain conditions on the parametrization that often lead
to a reparametrized, non-sparse curve whose coefficients have a large bitsize.
By contrast, the algorithm in this paper has fewer requirements and is efficient
even with high degrees.

Note that Algorithm Symm± is based on two conditions in Theorem 5, one
involving the curvature and torsion of the curve and the other one involving
the arc length. One might wonder whether these two conditions really are
independent for the case of rational curves. We included both conditions because
we did not succeed in proving that they are dependent, but neither did we find
an example of a tentative Möbius transformation not satisfying Condition (11).
The relation between the conditions is therefore undetermined, and we pose the
question here as an open problem. In any case, in the complexity analysis and
experiments we observed that the cost of checking (11) is small compared to the
rest of the algorithm.

The implementation in Sage can be improved in several ways. First, several
of the methods named in the complexity section are not included in Sage, which
carries out the corresponding tasks by using other algorithms. Furthermore, al-
most all space curves are asymmetric, and these cases can be identified faster.
In order to do this, one can first remove all factors s− t from Kx and T±x , and
then check whether the remaining polynomials are coprime using modular arith-
metic. In the affirmative case, the conclusion that the curve has no nontrivial
symmetries could be obtained at very little computational cost.

As a final remark, as this paper sets forth a method for computing exact sym-
metries of parametric curves with rational coefficients, one could ask whether
a similar development could yield a method for computing approximate sym-
metries of parametric curves with floating point coefficients. This is an open
question that we would like to address in the future.
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