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Abstract 18 

In Norway, the final stage of front half chicken harvesting is still a manual operation due to a lack 19 

of automated systems that are suitably flexible with regard to production efficiency and raw 20 

material utilisation. This paper presents the ‘GRIBBOT’ – a novel 3D vision-guided robotic 21 

concept for front half chicken harvesting. It functions using a compliant multifunctional gripper 22 

tool that grasps and holds the fillet, scrapes the carcass, and releases the fillet using a downward 23 

pulling motion. The gripper has two main components; a beak and a supporting plate. The beak 24 

scrapes the fillet down the rib cage of the carcass following a path determined by the anatomical 25 

boundary between the meat and the bone of the rib cage. The supporting plate is actuated 26 

pneumatically in order to hold the fillet. A computer vision algorithm was developed to process 27 

images from an RGB-D camera (Kinect v2) and locate the grasping point in 3D as the initial 28 

contact point of the gripper with the chicken carcass for harvesting operation. Calibration of 29 

camera and robot was performed so that the grasping point was defined using 3D coordinates 30 

within the robot's base coordinate frame and tool centre point. A feed-forward Look-and-Move 31 

control algorithm was used to control the robot arm and generate the motion trajectories, based on 32 

the 3D coordinates of the grasping point as calculated from the computer vision algorithm. The 33 

results of an experimental proof-of-concept demonstration showed that GRIBBOT was successful 34 

both in scraping the carcass, grasping chicken fillets automatically and in completing the front 35 

half fillet harvesting process. It demonstrated a potential for the flexible robotic automation of the 36 

chicken fillet harvesting operation. Its commercial application, with further development, can 37 

result in automated fillet harvesting, while future research may also lead to optimal raw material 38 

utilisation. GRIBBOT shows that there is potential to automate even the most challenging 39 

processing operations currently carried out manually by human operators. 40 

Keywords: robot, harvesting, camera, Kinect v2, 3D vision-guided, flexible automation, 3D imaging, 41 

gripper, chicken, calibration, look-and-Move, visual servoing 42 
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1 Introduction 43 

The poultry processing industry is enjoying worldwide growth in spite of operating on small 44 

margins. Processors have faced challenges both in terms of the continued growth of the poultry 45 

market and increasing demands from retailers for new and higher quality products. One way of 46 

meeting these challenges has been to automate processing operations with the aim of achieving 47 

consistently high quality and reducing production costs. In comparison with the fish and some 48 

other processing industries, poultry processing is highly automated with the exception of certain 49 

challenging operations that are still carried out manually due to the absence of technologies that 50 

can compete with the effectiveness of human operators.   51 

Yield is crucial to most producers in the poultry processing industry (Itoh et al. 2009), but 52 

existing commercial systems continue to suffer from low product yield compared to established 53 

manual operations. A typical operation in poultry processing is the front half deboning of chicken 54 

breasts to produce fillets. Automation has been extremely difficult due to the complexity of the 55 

operation and the degree of dexterity required. Commercially available deboning systems (Zhou 56 

et al., 2007) consist of fixed mechanical technologies that are unable to cope with the wide 57 

variations in the sizes and shapes of birds, which consequently renders them unable to optimise 58 

raw material yield and utilisation.  59 

In Norway, poultry processing is a massive industry with a production volume of 63,762 metric 60 

tonnes and total revenues of NOK 5 billion (approx. USD 1 billion) (Flesland & Hansen 2015). 61 

Global annual production is estimated to be 92.7 million tonnes, generating revenues of USD 132 62 

billion. The USA is the industry leader with an annual production of 17.04 million tonnes and 63 

revenues of USD 24 billion (FAO, 2012). The industry is dissatisfied with current commercial 64 

automated chicken harvesting technologies because, despite of the advantages of these machines, 65 

they still cannot compete with the skill, flexibility and adaptability of human operators. Chicken 66 

fillets represent the highest-earning product from the entire bird and there is a pressing need from 67 



 4 

the processing industry to introduce an automated front half fillet harvesting technology that can 68 

adapt to anatomical variation, while at the same time optimising raw material utilisation. Norway, 69 

in particular, is a specific country given very high labours costs compared to other countries. For 70 

industry, a strong incentive for automation of harvesting operation is to make the processing 71 

plants more competitive and profitable. Recruitment of qualified labour force is also seen as one 72 

of the major challenges in food processing sector. Automation is, therefore, often seen as a 73 

measure that can contribute to compensate for the shortage of qualified labour force (Paluchowski 74 

et al. 2015).  75 

Traditionally, the harvesting of chicken fillets is based primarily on two methods: 76 

a) manual harvesting of fillets from the carcass preceded by a cutting operation using a knife or 77 

similar cutting tool. 78 

b) a fixed machine-based operation using a knife or similar cutting tool combined with a 79 

mechanical system designed to release the fillets from the carcass.  80 

Many poultry processors employ the manual approach today. Human operators use their visual, 81 

tactile and kinesthetic senses, as well as their learning abilities and cognitive skills, to make 82 

accurate calculations of the effort required to perform the chicken fillet harvesting operation.  83 

The main challenge facing the development of an efficient automated harvesting technology for 84 

chicken fillets is to design and build in adaptability to the variations in the size, shape and 85 

orientation of the fillets attached to the carcass. These variations require precise identification of 86 

the grasping point and adaptive harvesting by means of an effective grasp, scrape and release 87 

procedure. As in other food processing sectors (Balaban et al. 2015), the poultry processing 88 

industry is looking for flexible automated solutions that can both automate manual operations but 89 

also improve raw material utilization. 90 
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Robotic automation has been employed in the meat, chicken and seafood industries worldwide, 91 

and has included the development of specific gripper tools (Buckingham et al., 2001; Itoh et al., 92 

2009; Bondø et al., 2011; Caldwell, 2012; Purnell, 2013; Purnell, 2006; McMurray et al., 2013; 93 

Buljo et al., 2013; Hinrichsen, 2010 ). For example, robots have enabled increased speeds of meat 94 

processing operations, but have so far been unable to adapt to anatomical variations (Barbut 95 

2014). Guire et al. (2010) studied the feasibility of robot-based applications using vision or force 96 

control for cutting beef carcasses and the harvesting of pork hams. Firstly, they examined the 97 

expertise of human operators and studied their manual dexterity during the cutting operation. 98 

Subsequently, they tried to replicate this process using an industrial robot. The authors concluded 99 

that the main challenge lies in building-in adaptation to the high variability in the size of beef 100 

carcasses. As regards chicken, Zhou et al. (2007) reported a study designed to automate front half 101 

deboning to produce high-quality chicken fillets. The authors initially studied the structure of the 102 

chicken shoulder joint as a starting point for the specification of cutting locations and trajectories, 103 

and proposed a 2-DOF (Degrees of Freedom) cutting mechanism. In Zhou et al. (2009), the 104 

authors subsequently focused on the kinematics of this cutting mechanism and the accuracy of the 105 

actual cutting point location. Hu et al. (2012) describe ongoing work in the intelligent automation 106 

of bird deboning and conceptualised the operation in three parts; 1) a characterisation of non-107 

uniform bird anatomy using statistics and image processing, 2) the derivation of a nominal cutting 108 

path using image features correlated with internal anatomical structures and robot kinematics, and 109 

3) the making of corrections for deviations from the nominal cutting path. The authors concluded 110 

that while preliminary results showed that the deboning operation was effective, the cutting robot 111 

should be upgraded to incorporate more degrees-of-freedom in order to enable greater versatility 112 

in performing the various cuts required for complete bird deboning. 113 

One of the key reasons why the use of robotics for automated food handling and processing 114 

operations remains a challenge is the difficulty in replicating the complex manual dexterity of 115 
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skilled human operators. Consequently, one of the most challenging aspects of implementing 116 

robotic automation is the selection and design of the appropriate gripper and cutting tools used to 117 

manipulate the raw material. Seliger et al. (2007) and, more recently, Fantoni & Santochi (2014), 118 

have described the most commonly applied physical principles for the gripping of non-rigid 119 

objects. However, one thing remains clear: there is currently still no universal gripper system for 120 

manipulating food raw materials, and the most common approach remains to tailor an optimal 121 

system on a case-by-case basis. Pettersson et al. (2011) described a gripper system based on the 122 

two-finger principle with emphasis on the hygienic design of the driving mechanism and the force 123 

control of fingers against the surface of the food object. Lien & Gjerstad (2008) described a 124 

gripper based on the freeze-plate principle, whereby a Peltier element is used rapidly to freeze a 125 

gripper plate, thus enabling it to grip the object. By changing the direct current direction, the plate 126 

is then re-heated and the object released from the gripper. Gjerstad et al. (2006) designed a 127 

compact needle gripper that employed curved needles which penetrated the muscle tissue. This 128 

gripper is characterised by excellent grip and clamping force, and was tested on salmon, white 129 

and other fish, beef and pork meat with promising results.  Sam & Nefti (2010) demonstrated a 130 

flexible gripper designed to manipulate a variety of food products based on a combination of the 131 

Bernoulli-principle and finger concept. It was tested for the handling of strawberries with 132 

promising results. Alric et al. (2014) presented a robotic meat cutting system based on vision and 133 

the use of a knife held by one 6-DoF ADEPT Viper robot. A four-fingered gripper was attached 134 

to a second ADEPT robot which held the meat being cut. Hu et al. (2012) employed a knife 135 

equipped with a force sensor and attached to a 2-DoF robot arm for deboning chicken carcasses. 136 

Our focus in this paper is to present the research resulting in the “GRIBBOT”, a novel concept for 137 

the robotic harvesting of chicken fillets guided by 3D vision. The name is taken from “gribb”, the 138 

Norwegian term for vulture. The paper includes a proof-of-concept demonstration of a compliant 139 

gripper that grasps the fillet, scrapes the carcass, and finally releases the fillet from the carcass. 140 
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GRIBBOT is a completely novel concept for the robotic automated harvesting of front half 141 

chicken fillets. Commercial automation of this operation will not only increase production 142 

capacity and profitability in the poultry industry, but may also enable increased utilisation of the 143 

raw material at an early stage in production process. The results of this proof-of-concept exercise 144 

demonstrate that GRIBBOT has huge potential in terms of the robotic automation of chicken fillet 145 

harvesting, and similarly of other challenging food processing operations currently performed 146 

manually by human operators. GRIBBOT, with the current configuration, can harvest only one 147 

front half fillet at a time.  148 

2 Materials and methods 149 

GRIBBOT is a 3D vision-guided robotic concept for chicken fillet harvesting consisting of a 3D 150 

vision subsystem for the acquisition of RGB-D images, a robot arm for manipulation, a gripper 151 

for harvesting and a transport system used to present the chicken carcasses to the GRIBBOT. 152 

 153 

2.1 Raw material testing 154 

The chicken carcasses used for research and development of the GRIBBOT were purchased in 155 

batches from the Nortura processing plant (Nortura Hærland, Nortura SA) at Økern in Norway 156 

over the course of the GRIBBOT's development. The research and development trials of the 157 

GRIBBOT were carried out during a period of 15 months. For the final proof-of-concept 158 

demonstration, 20 skinless and mechanically-incised chicken carcasses were shipped to SINTEF's 159 

PIR (Processing, Imaging and Robotics) laboratory in Trondheim, Norway. Mechanical incision 160 

for initializing cut precedes the operation of manual harvesting in poultry processing plants in 161 

Norway. The temperature in the lab when performing the research trials was 20 degrees Celsius.  162 

 163 
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 164 

2.2 In-depth study of manual harvesting 165 

In Fig. 1 are shown the steps preceding the manual harvesting operation by skilled human 166 

operators. Firstly, the operators manually hang carcasses on the cone elements to fix them for the 167 

initializing cutting. Then carcasses go into a fileting machine, which makes an initializing cut on 168 

the tip of the front half fillet to release them a bit from a carcass. Carcasses coming out of the 169 

fileting machine have front half fillets in a slightly hanging position. Subsequently, human 170 

operators use their hands to grasp these fillets, and drag them downwards to harvest them.  171 

During this operation, human operators use their visual sense to identify and orientate the chicken 172 

fillet on the carcass, and the dexterity of their hands and fingers as actuators to fix, capture and 173 

harvest the fillet in accordance with the anatomical geometry of the carcass. Visual and tactile 174 

feedback allows humans to perform a harvesting operation that is fully adapted to the birds’ 175 

anatomical variations. The Nortura processing company in Norway employs between 8 and 12 176 

operators, working 8-hour shifts, to perform the manual harvesting operation. Using two shifts 177 

per day, Nortura’s production line processes approximately 50,000 carcasses a day. The weight 178 

and size of the carcasses can variate from batch to batch, but a typical average carcass weight is 179 

1180 gr, and a mean on weight standard deviation is 200 gr (Bleie 2015). For the sake of clarity, 180 

in Norway, a chicken fillet is a skinless and boneless chicken breast, and this terminology with be 181 

used throughout the paper.  182 
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 183 

Figure 1. Stages in the manual harvesting of front half chicken fillets, preceded by manual in-feed, mechanical incision for the 184 

initializing cut by a fileting machine, succeeded by manual harvesting. 185 

However, in order to develop a robust robotic system for chicken fillet harvesting, we first had to 186 

make an in-depth study of the way in which human operators carry out the same operation. We 187 

recorded and analysed the basic manual techniques used with an emphasis on motion paths and 188 

fillet grasping techniques.  The aim of this analysis was to enable us to translate the motion and 189 

grasping patterns used by humans into robotic motion trajectories as a basis for the design of an 190 

adaptive gripper tool. Studying human operators also allowed us to identify the constraint 191 

parameters linked to harvesting that had to be taken into consideration during research and 192 

development of the GRIBBOT. The combination of human arm motion and hand grasping 193 

patterns defined manual harvesting as a complex operation performed with almost rhythmic 194 

versatility. Human operators employed a similar pattern of movement during all harvesting 195 

operations. They would first gently approach the fillet and grasp it. Once they were sure that they 196 

had a firm grip, they would perform a determined downward tugging or dragging movement, 197 

following the contours of the rib cage. Our in-depth study revealed that we had to take the 198 

following major considerations into account as part of development of the GRIBBOT’s 199 
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functionality (Figure 2); 1) the grasping and holding of the fillet, 2) a scraping motion using the 200 

fingers down the rib cage of the carcass (to make sure that the inner part of the fillet is harvested), 201 

and 3) a downward dragging motion that finally releases the fillet from the carcass. Scraping the 202 

rib cage was identified as an essential part of the harvesting operation.  203 

 204 

Figure 2. Complete breakdown of the distinctive motion patterns employed by human operators during harvesting. 205 

2.3 Transport system 206 

In order to present a chicken carcass to the camera for imaging, and to the GRIBBOT for 207 

harvesting, a rotating transport system (TS) was designed and built in stainless steel. Figures 3a 208 

and 3b are schematic CAD drawings of the transport system, while the photos in Figures 3c and 209 

3d show how the system is used to present the carcass. Three cone elements were mounted on a 210 
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rotating plate, and were used to hook the carcass onto the plate and fix its position. The plate was 211 

actuated using an asynchronous low voltage IE1 type three-phase motor of IP55 protection grade 212 

(manufactured by Hoyer in Denmark), and a limit switch with rotary actuation (manufactured by 213 

Osiswitch, Schneider in Germany). Initially, a carcass was manually mounted and positioned onto 214 

the hook of one of the cone elements as shown in Figures 3c and 3b. A signal was then sent to 215 

actuate the plate causing the hook of the cone element to be rotated mechanically by 180 degrees, 216 

thus presenting the carcass to the GRIBBOT. After harvesting, the plate was again actuated and 217 

the cone element returned to its original position, after which the harvested carcass was removed 218 

manually from the hook on the cone element. This constituted one full rotation of a rotating plate 219 

fitted with three cone elements. 220 

 221 

Figure 3. Schematic CAD drawings of the transport system (a and b). Transport of chicken carcass by rotation (c), prior to 222 

presentation of the front half fillet to the GRIBBOT for image acquisition and manipulation (d). 223 

 224 

 225 
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2.4 Robot Vision 226 

The visual subsystem of the GRIBBOT consisted of a Microsoft Kinect for Windows v2 RGB-D 227 

camera. Kinect v2 consists of an infrared/depth camera with an imaging resolution of 512 × 424 228 

(depth resolution of 3-5 mm and operating range of 0.5-4.5 m) and an HD (High Definition) 229 

colour camera with a resolution of 1920 × 1080. The Kinect v2 depth sensor is based on the time-230 

of-flight (ToF) measurement principle, by which strobed infrared light is reflected by obstacles 231 

and the ToF for each pixel recorded by the infrared camera. The depth, or distance (D), in ToF 232 

cameras is calculated from the time delay between the emission of a light pulse and its detection 233 

by a reflected light sensor: 234 

                                                          𝐷𝐷 = 𝑐𝑐∗∆𝑇𝑇
2

                                                                               (1) 235 

where c is the speed of light (constant) and ∆𝑇𝑇 the measured time delay between light emission 236 

and detection of the reflection by the sensor. Since the light pulse travels this distance twice, the 237 

product 𝑐𝑐 ∗ ∆𝑇𝑇 is divided by 2. The Kinect v2 sensor was fixed to an aluminium profile rod which 238 

was bolted onto the robot arm platform. The Kinect v2 camera was connected to a Windows PC 239 

via a USB 3.0 communication interface which was installed with the Kinect Software 240 

Development Kit (SDK) for Windows. The spatial positioning of the Kinect v2 sensor in relation 241 

to other subsystems of the GRIBBOT can be seen in Figures 4 and 5. Several positions of the 242 

Kinect v2 sensor were considered, and it was decided that the grasping point would be best 243 

determined from a position providing a lateral/perpendicular view of the chicken carcass (Figure 244 

4). The distance between the Kinect v2 sensor and the cone element holding the carcass was 110 245 

cm, while its position on the rod was 122 cm above ground level and 24 cm above the robot 246 

platform on which the rod was mounted. Illumination in the lab during research trials consisted of 247 

standard indoor fluorescent lighting and closed curtains to prevent direct exposure of the carcass 248 

to sunlight, so as to minimise any potential specular reflections from the carcass and cone 249 
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element. Initial trials were performed using a Microsoft Kinect v1 camera, but image quality was 250 

regarded as unsatisfactory and we employed a Kinect v2 instead. 251 

  252 

 253 

Figure 4. Spatial positioning of the GRIBBOT subsystems and GRIBBOT overview 254 

The chicken carcass RGB and depth (D) images were obtained from the Kinect v2 camera using a 255 

LabVIEW-based toolkit developed by SINTEF using the Kinect v2 .NET interface. LabVIEW is 256 

manufactured by National Instruments in Austin, Texas, USA.  257 

2.4.1 Camera and robot calibration 258 

Our Kinect camera was mounted at a fixed location in the workplace, and positioned on the robot 259 

platform so that it provided a direct view of the chicken carcass (Figure 4). The camera was used 260 

in the so-called ‘eye-to-hand configuration’ in which it adopts a fixed position and orientation in 261 

the workspace in relation to the base frame of the robot arm (Siciliano et al. 2007). In our eye-to-262 
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hand configuration, the camera’s field of view remained static during the harvesting operation. 263 

The coordinate frames of the eye-to-hand configuration are illustrated in Figure 5. 264 

In order to use features extracted from the Kinect v2 point clouds to control the robot, we decided 265 

to apply a coordinate transform approach so that the point clouds could be measured relative to 266 

the robot’s base frame. The numerous automatic methods used to estimate this unknown 267 

coordinate transform (Tsai and Lenz, 1989; Park, 1994; Dornaika and Horaud, 1998) are typically 268 

based on a series of measurements of a known calibration pattern. This process is commonly 269 

referred to as ‘hand-eye calibration’. In the case of our eye-to-hand configuration, once the 270 

camera and robot arm are calibrated, the transformation from the camera frame to the robot’s base 271 

frame remains constant. 272 

 273 

Figure 5. Coordinate frames in GRIBBOT for the eye-in-hand configuration and calibration based on 𝑨𝑨𝒊𝒊𝑿𝑿 = 𝒁𝒁𝑩𝑩𝒊𝒊 equation. X-274 

is a transform from Tool Center Point (TCP) to Chessboard frame. A is a transform from chessboard frame to camera frame, 275 

B is a transform from TCP to base frame, and Z is a transform from base frame to camera frame. 276 
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Our system was calibrated based on the method described in Tsai and Lenz (1989). A planar 277 

calibration board fitted with a printed chessboard pattern was attached to the robot’s end-effector 278 

flange and a series of images are captured using the Kinect v2 RGB camera (Figure 6). The 279 

calibration board defines a coordinate (chessboard) frame in which the X- and Y-axes run 280 

horizontally and vertically along the squares, respectively, with the Z-axis oriented perpendicular 281 

to the plane of the board (Figure 6). The Kinect v2 camera was assumed to be located at a fixed, 282 

but unknown, position with respect to the robot’s base frame. 283 

   
Figure 6. Examples of images of the calibration board used for eye-to-hand calibration of the Kinect v2 284 

The following equation forms the basis for the hand-eye calibration: 285 

                                                               𝑨𝑨𝒊𝒊𝑿𝑿 = 𝒁𝒁𝑩𝑩𝒊𝒊                                                                      (2) 286 

On the left hand side of this equation, 𝑿𝑿 corresponds to transformation from the robot’s tool 287 

centre point (TCP) to the chessboard frame, and 𝑨𝑨𝒊𝒊 to the transformation from the chessboard 288 

frame to the camera frame. On the right hand side, 𝑩𝑩𝒊𝒊 corresponds to the transformation from the 289 

TCP to the robot’s base frame, and 𝒁𝒁 to the transformation from the robot’s base frame to the 290 

camera frame. All the transformations can be expressed as 4x4 matrices describing rigid body 291 

transformations, i.e. a rotation followed by a translation. 𝑿𝑿 and 𝒁𝒁 are fixed, unknown 292 

transformations, while 𝑨𝑨𝒊𝒊 and 𝑩𝑩𝒊𝒊 are contingent on the position and orientation of the robot’s 293 

TCP. All homogeneous matrices in equation (2) are, therefore, of the same form: 294 

                                                                                �𝐑𝐑 𝐓𝐓
𝟎𝟎 𝟏𝟏�                                                         (3) 295 
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where R is a 3x3 rotation matrix and T is a translation vector. 296 

𝑨𝑨𝒊𝒊  can be estimated by capturing a set of images and applying standard camera calibration theory 297 

to estimate the extrinsic parameters of the Kinect v2 camera. 𝑩𝑩𝒊𝒊 is usually obtained from the 298 

forward kinematics of the robot or by reading the position (X, Y, Z) and orientation (Rx, Ry, Rz) 299 

of the TCP in robot base coordinates using the DENSO teaching pendant. In our approach, we 300 

used the latter.  301 

The equation (2) can be solved by passing in a number of known matrices 𝑨𝑨𝒊𝒊 and 𝑩𝑩𝒊𝒊 (typically 10 302 

or more) and solving simultaneously for 𝑿𝑿 and 𝒁𝒁. Alternatively, 𝑿𝑿 can be eliminated by setting up 303 

equation 𝑨𝑨𝒊𝒊𝑿𝑿 = 𝒁𝒁𝑩𝑩𝒊𝒊 in the following form: 304 

 309 

                                              𝑿𝑿 = 𝑨𝑨𝒊𝒊−𝟏𝟏𝒁𝒁𝑩𝑩𝒊𝒊                                                                                 (4) 305 

                                               𝑨𝑨𝒊𝒊+𝟏𝟏𝑿𝑿 = 𝒁𝒁𝑩𝑩𝒊𝒊+𝟏𝟏                                                                             (5) 306 

                                              𝑨𝑨𝒊𝒊+𝟏𝟏𝑨𝑨𝒊𝒊−𝟏𝟏𝒁𝒁𝑩𝑩𝒊𝒊 = 𝒁𝒁𝑩𝑩𝒊𝒊+𝟏𝟏                                                                  (6) 307 

                                                𝑨𝑨𝒊𝒊+𝟏𝟏𝑨𝑨𝒊𝒊−𝟏𝟏𝒁𝒁 = 𝒁𝒁𝑩𝑩𝒊𝒊+𝟏𝟏𝑩𝑩𝒊𝒊−𝟏𝟏                                                                (7) 308 

This is an equation of the form  𝑨𝑨𝒊𝒊∗𝒁𝒁 = 𝒁𝒁𝑩𝑩𝒊𝒊
∗, where 𝑨𝑨𝒊𝒊∗ = 𝑨𝑨𝒊𝒊+𝟏𝟏𝑨𝑨𝒊𝒊−𝟏𝟏 and 𝑩𝑩𝒊𝒊

∗ = 𝑩𝑩𝒊𝒊+𝟏𝟏𝑩𝑩𝒊𝒊−𝟏𝟏.  310 

The calibration procedure we used was as follows: 311 

1. Attach a planar calibration plate to the robot’s end-effector. The plate consists of a 312 

10mm-thick KAPA Fix® board with a printed chessboard comprising a 10 by 7 pattern 313 

of 30x30 mm black and white squares. 314 

2. Move the robot’s end-effector to occupy a set of 10 or more fixed positions and 315 

orientations. 316 

3. Construct a set of known matrices 𝑩𝑩𝒊𝒊 with the help of the forward kinematics of the 317 

robot. In our approach, we used readings from the DENSO teaching pendant. 318 
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4. For each position of the robot’s end-effector, capture an image of the calibration plate 319 

using the Kinect v2 RGB camera. We used the RGB camera for calibration because it 320 

produced better images and resolution than the depth camera. 321 

5. Calibrate the intrinsic parameters of the Kinect v2 camera by passing in all the images of 322 

the chessboard pattern and using standard camera calibration functions from the OpenCV 323 

library (Zhang 2000, Bouguet MCT). 324 

6. Estimate the position and orientation of the calibration plate in each position and 325 

construct the matrices  𝑨𝑨𝒊𝒊 using the solvePnP() function from the OpenCV library. 326 

7. Construct the matrices 𝑨𝑨𝒊𝒊∗ = 𝑨𝑨𝒊𝒊+𝟏𝟏𝑨𝑨𝒊𝒊−𝟏𝟏 and 𝑩𝑩𝒊𝒊
∗ = 𝑩𝑩𝒊𝒊+𝟏𝟏𝑩𝑩𝒊𝒊

−𝟏𝟏 and use the set of equations 327 

𝑨𝑨𝒊𝒊∗𝒁𝒁 = 𝒁𝒁𝑩𝑩𝒊𝒊
∗ to estimate 𝒁𝒁 based on the calibrationTsai() function in the VISP library. 328 

This function is based on the algorithm described in Tsai and Lenz (1989). 329 

Matrix 𝒁𝒁−𝟏𝟏 corresponds to the transformation from the Kinect v2 RGB camera to the robot’s base 330 

frame.  331 

It should be noted that the origin of the Kinect v2 coordinate frame (camera space) is located in 332 

the centre of the D-depth camera (the red frame in Figure 7). This is because the point clouds 333 

from the Kinect v2 are measured relative to the D-depth, and not the RGB, camera frame. We 334 

have compensated for this by measuring the fixed distance (5 cm) between the D-depth and the 335 

RGB camera (Kinect calibration) along the X-axis, which conforms to the findings reported by 336 

Yang et al. (2015). In addition, it appeared that the CoordinateMapper() utility in the Kinect v2 337 

SDK provides points with coordinates that have their origin "inside" the D-depth camera. 338 

Empirically, we realised that it was necessary to compensate for this using additional offsets 339 

along the X- and Z-axes, and we found that an offset of 5 cm along the X-axis and -1 cm along 340 

the Z-axis seemed to work well. We believe that this is due either to an offset in the positions of 341 

the in-built cameras or a difference in their focal lengths.   342 
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The original images taken directly from Kinect v2 are mirror images. For this reason, the X-axis 343 

should be viewed from the opposite direction to the depth image. Thus, to ensure that our work 344 

was carried out using correct, and not mirror, images, we transformed the point cloud coordinates 345 

before they were sent to the CoordinateMapper() utility. The transformation was achieved by 346 

rotating the original frame 180o about the camera's Z-axis. The result for the Kinect v2 is the blue 347 

coordinate frame in Figure 7 – the implication being that the point coordinates from the Kinect v2 348 

camera along the X and Y-axes must change sign before multiplication with the transformation 349 

matrix 𝑻𝑻 = 𝒁𝒁−𝟏𝟏: 350 

                                                        �
𝑿𝑿𝑪𝑪
𝒀𝒀𝑪𝑪
𝒁𝒁𝑪𝑪
𝟏𝟏

�                                                                                     (8) 351 

are the coordinates of the point from the Kinect v2 camera as given by CoordinateMapper() in 352 

metres (m) 353 
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�                                                             (9) 354 

where, 𝑃𝑃𝐺𝐺𝐶𝐶  is the so-called grasping point in camera coordinate frame. The 3D coordinates of the 355 

point in space (8) are further adjusted in (9) to reflect the compensation carried out for the relative 356 

positions of the RGB and D-depth cameras as described above. The grasping point 𝑃𝑃𝐺𝐺  is then 357 

defined within the robot coordinate base frame by multiplication with the transformation matrix 358 

T: 359 

 360 

                                                             𝑷𝑷𝑮𝑮 = 𝑻𝑻𝑷𝑷𝑮𝑮𝑪𝑪                                                       (10) 361 
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 362 

Figure 7. Illustration of the coordinate systems for the Kinect v2 RGB and D-depth cameras. In this paper, we used the blue-363 

coloured coordinate frame to compensate for mirror imaging. 364 

2.4.2 Computer vision algorithm and calculation of the grasping point 365 

Figure 8a shows a schematic diagram illustrating the computer vision operations leading to 366 

calculation of the grasping point, which is the initial contact point of the gripper with the chicken 367 

carcass. Both Kinect v2 RGB and D-depth images were used during these operations. Firstly, the 368 

rectangular ROI-tool in LabVIEW was employed to select the region of interest within which the 369 

chicken carcass could appear in the depth image. This enabled image analysis to be focused only 370 

on the carcass. The ROI size was selected to be large enough to accommodate anticipated 371 

variations in carcass size, and small enough to exclude extraneous elements in the 3D image 372 

workspace, such as transport system or other object in the field of view of Kinect v2, that might 373 

interfere with the analysis. It was an advantage here that the carcass occupied a fixed location, 374 

mounted on the cone elements of the transport system. The rectangular ROI was set manually and 375 

could not be changed while the program was running. The depth image taken from the ROI image 376 

was then range-thresholded, using the IMAQ Threshold function in LabView, in order to obtain a 377 
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binary mask to be used for segmentation of the carcass and the cone element from the 378 

background. Since the accurate segmentation of only chicken carcass required combination of 379 

colour RGB image and D-depth image (segmentation from the cone element), the generated 380 

rectangular ROI depth image was then enriched with colour information using pixels from the 381 

RGB image in the same ROI range. The binary mask, generated from B-blue channel, was 382 

applied to the now combined colour and depth image, in order to segment only the carcass. The 383 

image was then subjected to shape analysis, first by identifying the width of the carcass i.e. the 384 

leftmost and rightmost point of the carcass by width analysis of the carcass, which are marked 385 

with red lines by the algorithm in Fig. 8a.  Subsequently, we extracted a shape feature from three 386 

vertical depth profiles selected along the column dimension of the carcass image. A depth profile 387 

here consists of depth values found along one column dimension of the depth image. These three 388 

profiles were then used to calculate a single average profile and from this, the maximum depth 389 

along the Z-axis in the camera frame was found (see Fig. 8a), i.e. the furthest point from the 390 

camera in Z-direction. Mathematically, if D(Z) is a profile function with Z-depth as a variable 391 

then: 392 

                                 𝑃𝑃𝐺𝐺𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�����
𝑍𝑍

 𝐷𝐷(𝑍𝑍) = {Z: D(𝑍𝑍) = Max}                                           (11) 393 

where 𝑃𝑃𝐺𝐺𝐶𝐶 is the grasping point (initial contact point) in camera frame coordinates (see Fig. 8a). 394 

Having calibrated the camera and robot, the grasping point 𝑃𝑃𝐺𝐺 in robot frame coordinates was 395 

calculated according to equation (10). 396 
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 397 

Figure 8. a) RGB-D images of a chicken carcass and the sequence of image processing operations in the computer vision 398 

algorithm leading to calculation of the grasping point PGC in camera frame; b) the Look-and-Move control scheme for robotic 399 

harvesting.  400 

2.5 Robot arm and control algorithm 401 

The GRIBBOT manipulation subsystem consisted of a base-mounted 6-DoF Denso VS 087 robot 402 

arm with industrial protection class IP67. The subsystem is mounted on a steel platform 403 

positioned 98 cm above ground level (Figure 4). The arm consisted of 6 revolute joints with a 404 

maximum reach of 905 mm and payload of 7 kg, permitting a spherical workplace approximately 405 

1810 mm in diameter. The robot arm control software was written in LabVIEW using functions 406 

taken from the relevant library (LabVIEW, Robotics Library for Denso, NI) developed by 407 

ImagingLab/Digimetrix (www.imaginglab.it; www.digimetrics.com ). All the LabVIEW robot 408 

http://www.imaginglab.it/
http://www.digimetrics.com/
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commands were sent over an Ethernet connection to the RC7M robot controller. One important 409 

function in the robotic library enabled the setting of two different robot speeds (external and 410 

internal) within LabVIEW. The key external speed mode enabled us to set different speeds for 411 

robot movements in different parts of the motion path. All GRIBBOT subsystems were woven 412 

into the LabVIEW environment and controlled from a main program also written in LabVIEW. 413 

2.5.1 Control scheme and trajectory generation 414 

For eye-to-hand configurations, information provided by the camera about the object to be 415 

manipulated, such as its environment, 3D localisation and 3D geometry, can be used both for task 416 

planning and sensor feedback control (visual servoing, Siciliano et al., 2009). There are two main 417 

categories of vision-based control schemes: a) position-based visual servoing (PBVS) and b) 418 

image-based visual servoing (IBVS). The main difference is that PBVS schemes use visual 419 

measurements to calculate the pose (position and orientation) of the object to be manipulated with 420 

respect to the robot arm, while in IBVS schemes the object’s image feature parameters are used to 421 

compare the current with the desired pose. Both control schemes are used extensively in practical 422 

applications (Chaumette & Hutchinson, 2006 and 2007; Lippiello et al., 2007).  423 

A diagram of the control scheme is shown in Figure 8b. Our scheme can be best described as a 424 

Look-and-Move approach (Weiss et al. 1987) in which visual measurements are used as part of a 425 

feed-forward process (Pieters et al. 2012). We selected this scheme because it enabled us to 426 

optimise the gripper and scrape procedure according to rib cage anatomy. This meant that we 427 

didn't have to rely on visual feedback once the grasping point was calculated. Visual feedback 428 

was no longer necessary once we had established that eye-to-hand calibration was accurate, and 429 

that the carcass was robustly positioned and did not move during manipulation 430 

Firstly, shape features were extracted from the camera images, and the coordinates of the 431 

grasping point in camera frame were calculated. These coordinates were then converted to robot 432 
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base frame coordinates according to equation (10). Starting from its ‘Home’ position, the arm was 433 

then commanded to move the end-effector to the grasping point. The ‘Home’ position is defined 434 

as a default starting position and orientation prior to harvesting. The movement of the arm along 435 

the robot’s motion path between the Home position PH(X, Y, Z) and the grasping point PG(X, Y, 436 

Z) was achieved according to Cartesian Law using the Move by Coordinates VI function in 437 

LabVIEW. In order to specify the interpolation path of the end-effector between the Home 438 

position and the grasping point, one could choose between a default setting (the most efficient 439 

path to the next location) and a linear interpolation. We selected a linear approach which exists as 440 

an option in the Move by Coordinates VI parameter cluster together with the pass motion and 441 

move options within the Cartesian coordinate frame. Linear interpolation was selected because it 442 

provided greater predictability for point-to-point movement, which was more relevant to our 443 

application. The motion path for the entire harvesting procedure can be described by breaking it 444 

down into the following segments:  445 

1. The aforementioned motion path segment from Home position to the grasping point PG was 446 

called the Approach path.  447 

2. The trajectory for the combined scraping, grasping and holding segments was semi-predefined 448 

on the basis of trial and error while manually controlling the robot using a DualShock®3 wireless 449 

controller, manufactured by Sony computer entertainment in Minato, Tokyo. This trajectory was 450 

then used as a template for the control program. The initial contact point of the robot arm motion 451 

with the carcass is given by the grasping point PG, calculated from the Kinect v2 image according 452 

to Eq (10). This point was then compared to the first point in the predefined trajectory (Pt1) by 453 

calculating the difference (PDiff): 454 

                                                    𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑃𝑃𝐺𝐺 − 𝑃𝑃𝑡𝑡1                                                               (12) 455 
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PDiff was then used as an offset value by which to move the coordinates of the points in the 456 

predefined trajectory to match the grasping point calculated by the 3D computer vision. However, 457 

since the carcass was presented at the same height each time, the Z-values during the motion 458 

followed the Z-values of the pre-determined trajectory for the remaining points constituting the 459 

scraping and grasping trajectory (Eq. 14). The new trajectory (Pt) was then as follows: 460 

                                     𝑃𝑃𝑡𝑡1 = 𝑃𝑃𝐺𝐺 ,       𝑓𝑓𝑓𝑓𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡 (𝑓𝑓 = 1)                                           (13) 461 

             𝑃𝑃𝑡𝑡𝑖𝑖 = �
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� ,    𝑓𝑓 > 1 𝑓𝑓𝑓𝑓𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑓𝑓𝑝𝑝𝑓𝑓𝑝𝑝𝑎𝑎 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡𝑓𝑓 𝑓𝑓𝑝𝑝 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑎𝑎𝑎𝑎𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡𝑓𝑓𝑎𝑎𝑗𝑗      (14) 462 

The control algorithms made no changes to tool orientation during the trajectory, and the angles 463 

from the predefined trajectory were retained. Thus the same tool orientation (Rx = -148°; Ry = 464 

29°; Rz = -87°) was used for the entire scraping motion path. After completion the tool rose 465 

towards the centre of the carcass and turned to adopt a position that made it easier to grasp and 466 

hold the fillet (Rx = -94°; Ry = 43°; Rz = -50°). The fillet was then grasped by actuating the 467 

supporting fillet element on the gripper (Figure 9). The tool then turned back towards its initial 468 

position, with the final orientation being Rx = -124°; Ry = 38°; Rz = -67°. These segments of the 469 

motion path were called Scrape and Grasp&Hold.  470 

3. Motion paths for the subsequent Pulldown (a downward pulling motion once the gripper has 471 

grasped and clamped the fillet) and Release (release of the fillet from the gripper) operations, 472 

followed by return to Home position, were completed according to the predefined motion 473 

trajectories. 474 

The external speed of the robot arm during movement along these trajectories was set at 60% of 475 

maximum speed. The maximum composite speed of the DENSO VS 087 was reported to be 476 

11000 mm/s.  477 

2.6 Gripper  478 
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2.6.1 Gripper design and actuation 479 

In many robot-based food handling and processing applications, the gripper is an important 480 

component and its effective function can be critical to the success or failure of an automated  food 481 

handling process. The design and development of the GRIBBOT gripper required several 482 

iterations. Our key design approach was led by the following principles: a) the gripper should 483 

replicate human hand motion patterns used during harvesting, b) the gripper should have a scraper 484 

function in order to optimise raw material utilisation and c) the gripper should be equipped with a 485 

clamp to hold the fillet and thus facilitate harvesting during the Pulldown operation. 486 

The GRIBBOT’s gripper is a pneumatic tool equipped with both scraper and clamping functions. 487 

The model used in the proof-of-concept demonstration is shown in Figure 9. The gripper was 488 

actuated using a cylindrical pneumatic actuator supplied with compressed air at a pressure of 6 489 

bar. The actuator was opened and closed using in-built DENSO robot solenoids controlled via an 490 

on/off 24 V signal. A CAD drawing of the gripper is shown in Figure 9c, illustrating its main 491 

components including the beak and fillet supporter. Both of these components were 3D-printed in 492 

PLA plastic (polyactic acid) at SINTEF’s laboratories using a Prusa i3 3D printer, manufactured 493 

by RepRap Core Developer Prusajr. Figure 9d is a photograph of the gripper with its 3D printed 494 

beak and fillet supporter. We should point out that hygienic design and food safety considerations 495 

of the GRIBBOT and its gripper were outside the scope of this study. 496 
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          497 

Figure 9. CAD model of a pneumatic gripper with scraper function; a) closed state, b) open state, c) gripper components, and 498 

d) an image of the gripper working in open state. 499 

 The beak’s main function was to make first contact with the chicken carcass at the fillet grasping 500 

point localised on the basis of 3D computer vision, and to scrape the fillet along the rib cage of 501 

the carcass in a way that optimises yield by leaving as little residual meat on the carcass as 502 

possible. The beak design was intended to replicate a human thumb and to scrape the fillet meat 503 

down the rib cage and release it from its tendon attachments. A spring coil component was fitted 504 

in the beak with the following functions: 1) to make the beak compliant during the scraping 505 
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action of harvesting by enabling it to follow the path defined anatomically by the boundary 506 

between the meat and the bone of the rib cage, 2) to compensate for possible minor deviations in 507 

the Z (depth) direction from the 3D computer vision-calculated grasping point, and 3) to ensure 508 

that the initial contact with the meat is gentle. Both the beak and fillet supporter were designed 509 

with a curved profile to minimise excessive squeezing during harvesting. As shown in Figure 10, 510 

both gripper components are equipped with flaps to increase the area of surface contact with the 511 

fillet and thus facilitate gentle handling. The surface areas of the beak and fillet supporter 512 

(without flaps) were 59.96 cm2 and 56.5 cm2 respectively. The corresponding arch angles were 513 

25.2 and 18.73 degrees. Both the beak and fillet supporter were printed with corrugations on their 514 

contact surfaces in order to enhance friction and grip during harvesting.  515 

 516 
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Figure 10. CAD drawings showing the dimensions of the beak (a) and fillet supporter (b) components of the GRIBBOT 517 

gripper. Curvature of the gripper plates is designed to facilitate gentle handling of the chicken fillet, the flaps are attached to 518 

increase the area of surface contact with the meat. The corrugations on the contact surfaces are intended to enhance friction 519 

and grip during harvesting. 520 

2.6.2 Calculation and measurements of gripper impact forces 521 

In order to evaluate the grasping and holding functions performed by the gripper throughout the 522 

harvesting operation, it is necessary to calculate and measure the forces exerted on the fillet. This 523 

is also essential during assessments of the gripper’s impact on the quality of the fillet after 524 

harvesting. Calculations and measurements were performed using decomposition of the force 525 

exerted onto a piston rod (FP) into Fx and Fy components along the X and Y directions, 526 

respectively. Figure 11 illustrates some important parameters and the geometrical positioning 527 

necessary to calculate the gripping force. The piston rod diameter of the pneumatic actuator was 528 

measured at 1 cm. 529 

 530 

Figure 11. Geometrical illustration of pneumatic actuator positioning and force decomposition, where FP is the force along the 531 

piston rod axis, and Fx and Fy the decomposition forces in the X (between the gripper plates) and Y directions. 532 
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Measurements of the force applied to the chicken fillet between the two gripper components were 533 

performed using a Futek FSH00095 miniature force sensor manufactured by FUTEK in 534 

California, USA, which has a capacity range of up to 4.536 kg. 535 

2.6.3 Gripper offset 536 

The eye-to-hand calibration procedure described in section 2.4.1 was carried out according to 537 

equation (2), in which 𝑩𝑩 denoted the transformation from the mechanical interface system 538 

(flange) to the robot’s base coordinate system. When no tool (end-effector) is attached to the 539 

flange, this is actually the Tool Centre Point (TOOL0) given in base frame coordinates (the 540 

DENSO TCP, by definition). Whenever a new tool is added, an offset is introduced. The offset 541 

must be calculated from the origin of the TOOL0, and this is referred to as the Tool Centre Point. 542 

When we mounted the gripper (Figure 9) on the mechanical interface of the robot arm, the TCP 543 

requiring calculation was defined as the gripper’s ‘active point’, which in our case was the tip of 544 

the gripper’s beak. Since there was no difference in orientation (Rx=Ry=Rz=0) between the 545 

mechanical interface system frame (TOOL0) and the gripper frame, the TCP could be established 546 

simply by calculating the offset by means of translation in the Z-direction (since the gripper is 547 

pointing in the Z-direction): 548 

                                                    𝑃𝑃𝑂𝑂𝐷𝐷𝐷𝐷 = �
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Thus, the offset in the Z-direction was 29 cm=290mm. This was calculated using the DENSO 550 

teaching pendant, in which we simply defined the gripper as a new tool by setting the measured 551 

offset values in the X, Y, and Z directions (Rx=Ry=Rz=0). 552 

3 Results and Discussion 553 

3.1 3D vision and eye-to-hand calibration results 554 
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The intrinsic parameters of the Kinect v2 camera can be summarised as follows: 555 

                             𝐾𝐾 =  �
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�                                (16) 556 

where K is the camera matrix with focal lengths in pixels (in both directions), and 𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦 are the 557 

principal point components.  558 

The radial and tangential distortion coefficients were as follows: 559 

[ 𝑘𝑘1 𝑘𝑘2  𝑝𝑝1  𝑝𝑝2 𝑘𝑘3] = [ 0.038290 − 0.019621 − 0.000011 0.000378 − 0.031097 ]        (17) 560 

The accuracy of the camera calibration was evaluated by computing the root mean squared error 561 

(RMSE), whose average in pixels was 0.2468. Table 1 provides a summary of the parameters of 562 

the Kinect v2 camera.  563 

Table 1. Results showing the extrinsic parameters of the Kinect v2 camera, where rx, ry and rz are rotational vectors, and Tx, 564 

Ty and Tz are translational vectors characterising the pose (position and orientation) of the camera frame with respect to the 565 

base frame. 566 

Calibration 
Image # 

rx ry rz Tx Ty Tz 

1 0.639 0.23 -2.89 -0.227 0.0472 0.719 

2 0.455 -0.563 2.73 0.251 0.0323 0.754 

3 -0.701 0.34 -3.04 0.0845 0.103 0.678 

4 1.17 0.291 -2.78 0.0287 0.101 0.801 

5 -0.116 0.929 2.81 0.184 -0.0186 0.452 

6 0.045 1.17 -2.9 0.104 0.0159 0.931 

7 0.0913 0.184 -3.01 0.255 0.102 0.39 

8 0.108 0.175 -3.02 -0.174 0.338 0.865 

9 0.0384 -0.287 2.56 0.116 0.154 0.792 

10 0.386 0.55 2.57 0.0509 -0.0544 0.537 
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Figure 8a displays both RGB and D-depth images, as well as the image resulting from shape 567 

analysis of the chicken carcass and the calculation of the grasping point PGC in camera frame. The 568 

figure also illustrates how the computer vision algorithm calculated and displayed the carcass 569 

boundaries (red vertical lines). The grasping point (PGC), calculated according to equation (11), is 570 

marked on the carcass-coloured depth image using a cross symbol. The corresponding resulting 571 

transformation matrix  𝑻𝑻 = 𝒁𝒁−𝟏𝟏, used for the eye-to-hand calibration, is summarised in Table 2. 572 

Table 2. The T-transformation matrix describing the transformation from the Kinect v2 camera frame to the robot's base 573 

frame 574 

0.969591 0.00418 0.244695 0.609527 
-0.24458 -0.01844 0.969454 -0.39838 
0.008563 -0.99982 -0.01685 0.325573 
0 0 0 1 

 575 

The accuracy of the eye-to-hand calibration was evaluated by taking the difference of both sides 576 

of the equation 𝑨𝑨𝒊𝒊∗𝒁𝒁 = 𝒁𝒁𝑩𝑩𝒊𝒊
∗ for each image of the calibration plate and summarising the positional 577 

and rotational residuals (Table 3). The positional residuals are calculated from the translation part 578 

of the matrix (column 4, rows 1 to 3), while the rotational residuals are calculated by converting 579 

the 3x3 rotational part of the matrix to a rotation vector using Rodrigues' rotation formula 580 

(Wolfram, Mathworld). The first column displays the root mean square error (RMSE) in position 581 

AZ=ZB, while the second column shows the error in orientation or rotational vector expressed in 582 

degrees. The maximum error in position was found to be 13 mm, while the mean error was 6.4 583 

mm, and standard deviation 3.8 mm. We performed an additional evaluation of the eye-to-hand 584 

calibration by directing the robot arm to move the tip of the gripper (beak tip) to several points 585 

calculated using equations (9) and (10). The results of this additional validation revealed a mean 586 

accuracy similar to that reported in Table 3. A combination of factors, such as the reported Kinect 587 

v2 camera resolution accuracy of 3-5 mm (section 2.4), noise on the depth image due to specular 588 

reflections from the chicken fillet and carcass, and the error in the eye-to-hand calibration, all 589 
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contributed to the mean accuracy of the gripper position at the grasping point. Our experience 590 

was that the chicken fillet was an optically challenging object to measure because of specular 591 

reflections generated by meat texture and slime. This concurs with Lachat et al. (2015) who 592 

assessed the effects of different material properties on the distance (depth) measurement, and 593 

showed that for highly reflective materials distances measured with the Kinect v2 camera can 594 

vary by up to 6 cm. 595 

Table 3: Summary of results of the evaluation of eye-to-hand calibration performed by calculating the AZ=ZB positional (T) 596 

and rotational (r) residuals (root mean square error). 597 

 

           T 
(mm) 

         r 
(degrees) 

1 4.4 0.49 
2 3.9 0.34 
3 3.2 0.19 
4 8.6 0.72 
5 13.0 0.9 
6 11.6 0.93 
7 5.4 0.65 
8 2.0 0.22 
9 5.7 0.61 
Mean 6.4 0.56 
Std.dev. 3.8 0.27 
   

3.2 Robotic grasping and harvesting of chicken fillets 598 

Figure 12a provides an illustration of gripper motion paths in the OXZ plane for three different 599 

examples of grasping point locations PG1, PG2 and PG3, in robot base frame coordinates, which 600 

were calculated using the 3D computer vision algorithm shown in Figure 8a and equations (10) 601 

and (11). The figure shows that all specific paths are linear (as described in section 2.5.1) from 602 

the starting point PH which is the Home position of the robot arm/tip of the gripper. All segments 603 

of the motion path are numbered, and the main difference between the segments is that segment 5 604 

(black line) represents a predefined motion path, while the other segments were influenced by 605 

computer vision localisation of grasping points for different chicken carcasses, as described at the 606 
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end of section 2.5.1. It should be noted that, although the scrape segments traced by the gripper 607 

(denoted as 2 in the figure) are linear, due to the compliancy of the gripper facilitated by the 608 

spring coil component, the critical scraping part of the motion path is actually non-linear because 609 

the tip of the gripper followed the path determined by the anatomical structure of the rib cage 610 

(Figure 12b). This meant that the tip of the gripper followed the boundary between the fillet meat 611 

on the one hand, and the ligaments and bones of the rib cage on the other.  Thus, while we 612 

maintained high levels of predictability for our motion path by using linear interpolation between 613 

specific points along the trajectory, we also managed to ensure that the gripper followed the 614 

optimal path during the scraping operation, i.e. the path determined by chicken carcass anatomy.  615 

 616 

Figure 12. The gripper motion path in the OXZ plane during harvesting for different grasping point positions PGi (referenced 617 

to the base frame). Segments of the motion path are numbered as follows: 1-Approach, 2-Scrape, 3-Grasp&Hold, 4-Pulldown, 618 

5-Release. Segment 5 (Release) is predefined and not affected by 3D computer vision calculations of grasping points. 619 
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Timelines for the position trajectory (X, Y and Z coordinates) of the DENSO robot arm are 620 

shown in Figure 13. Timelines for the orientation components (Rx, Ry and Rz) are not reported 621 

here. The Approach phase is completed after about 0.6 seconds. Prior to this phase, while 622 

GRIBBOT is in its Home position, the 3D computer algorithm is calculating the grasping point. 623 

During the Approach phase, the GRIBBOT moved towards the localised grasping point and 624 

descended vertically in the Z direction from 36 to 35 cm (PG1) where it assumed the grasping 625 

pose. When this pose was achieved (PG1), the scraping phase began and was completed before 1 626 

second had elapsed. The subsequent Grasp&Hold phase thus began at approximately 1 second 627 

and was completed after 3.2 seconds. During this phase the pneumatic actuator pushed the 628 

supporting element of the gripper upwards and the gripper was closed. Next, the Pulldown phase 629 

began and was completed after 4 seconds had elapsed. We observed that during Pulldown, when 630 

the GRIBBOT pulled the fillet downwards, the robot arm lowers the gripper from 32 to 16 cm in 631 

the Z direction, while the X and Y positions remain virtually unchanged. The final Release phase, 632 

during which the pneumatic gripper was opened and the fillet released, began at 4 seconds and 633 

ended at 4.75 seconds. 634 

 635 

Figure 13. Gripper trajectories during the robotic harvesting of front half chicken fillets from the carcass 636 



 35 

Figure 14 displays a sequence of images showing the complete robotic harvesting operation of a 637 

front half chicken fillet. The Approach phase, during which the gripper descends towards the 638 

localised grasping point PG where the tip of the beak makes the initial contact with the fillet, is 639 

shown in Figures 14a and 14b. Figures 14c, 14d and 14e show the Scraping of the fillet from the 640 

rib cage, following the path determined by the anatomical boundary between the meat and bone. 641 

Figure 14f illustrates how the robot arm changes its orientation as the pneumatic gripper is 642 

actuated to close and thus grasp and hold the fillet between its beak and supporting plate (Figures 643 

14g, 14h and 14i). Figure 14i also shows how the robot arm again changes its orientation to 644 

initiate the Pulldown phase during which the fillet is dragged downwards. The end of this phase 645 

marks the completion of the harvesting operation during which the fillet, including the tenderloin, 646 

is separated from the carcass. This figure also shows how the robot arm changes orientation to 647 

prepare for initiation of the Release phase during which the pneumatic actuator opens the gripper 648 

plates and the fillet is released. Figure 15a shows the result after harvesting operation of a front 649 

half fillet with GRIBBOT. It can be seen that also tenderloin is harvested along with the fillet. 650 
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 651 

Figure 14. The complete sequence of a robotic harvesting operation of a front half chicken fillet. The entire harvesting 652 

operation, from Approach (a) to Release (l) is completed in about 4.75 seconds. 653 

3.3 Gripper impact force on the fillet  654 

For a pneumatic actuator piston rod diameter (d) of 1 cm, and air pressure (P) of 6 bars, the 655 

resulting force along the piston rod was calculated as: 656 

                     𝐹𝐹𝑃𝑃 = 𝑃𝑃 ∗ 𝐴𝐴 = 6 𝑏𝑏𝑎𝑎𝑎𝑎 ∗ 𝜋𝜋𝑎𝑎2 = 600 000 𝑁𝑁
𝑚𝑚2 ∗ 0.0000785𝑎𝑎2 = 47.1𝑁𝑁                  (18) 657 

The angle (β) was 53.97o (see Figure 11). Thus the gripper force exerted on the fillet between the 658 

gripper plates was: 659 

                                             𝐹𝐹𝑥𝑥 = 𝑓𝑓𝑓𝑓𝑝𝑝𝑠𝑠 ∗ 𝐹𝐹𝑃𝑃 = 38.09𝑁𝑁                                                              (19) 660 
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The force exerted on the fillet between the gripper plates measured using a force sensor, as 661 

described in section 2.6.2, was 39.5 N.  662 

We observe that the calculated force exerted on the fillet is within the range of, and in accordance 663 

with, the force measured using the force sensor. During the harvesting operation, the gripper was 664 

able to grasp and hold the chicken fillet without causing damage or any degradation in quality. 665 

Figure 15 shows the effects on a fillet of the grasping and holding phases. At first we see that the 666 

corrugations on the inside surfaces of the gripper plates, designed to enhance grip between the 667 

plates during harvesting, created visible elastic pattern marks in the front part of the fillet (Figure 668 

15c). These marks were reversible and disappeared after 1 minute (Figure 15d), leaving the fillet 669 

entirely without any physical damage or degradation in quality. 670 
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 671 

Figure 15. Result of the harvesting operation with GRIBBOT and effects of the grasping and holding phases on a chicken fillet 672 

using a gripper actuated pneumatically by compressed air at 6 bar: a) result of the harvesting with GRIBBOT, b) fillet 673 

between the gripper plates in Hold position, c) fillet after release from the gripper showing visible corrugation marks on the 674 

surface, d) corrugation marks are reversible and disappear after 1 minute. 675 

3.4 General observations and relevance for industrial applications  676 

Further optimisation of harvesting motion trajectories will mean that it is likely that the current 677 

time (4.75 sec) it takes to complete the operation can be reduced. This applies specifically to the 678 

Grasp&Hold (currently 2.2 sec) and Pulldown segments, and also to the Release process after 679 

harvesting. Additional time savings may be achieved by increasing the robot arm’s speed from 60 680 

to 100 per cent of maximum, but this is something that needs to be investigated in future research; 681 

specifically, how increase of robot speed affects the deformation of chicken meat during the 682 
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scraping and pulldown phase, as the most critical segments of harvesting operation. More 683 

investigations are needed to establish knowledge on how much force the chicken fillet can be 684 

exerted to during harvesting stages before quality degradation. Gjerstad (2012) calculated the 685 

robot arm cycle time needed for packaging of salmon fillet portions taking into consideration the 686 

industrial requirements and acceleration limit. The cycle time was found to depend on the force 687 

added to the raw material and the quality of the raw material, both of which are reflected in the 688 

acceleration limit. Gjerstad (2012) concluded that it is necessary to adjust acceleration levels 689 

upon appearance of degradation in texture quality in salmon fillet portions. 690 

The mean error and standard deviation (Table 3) in positioning of the gripper, as reported in 691 

Section 3.1, did not pose any problems during harvesting. The compliancy of the gripper, 692 

facilitated by its spring coil component, was designed to compensate for these small positioning 693 

errors (Table 3), and this functioned satisfactorily during our trials.  694 

Since the harvesting of front half chicken fillets from the carcass was done in normal indoor 695 

ambient light, it is important to point out that the ambient light did not have any significant effect 696 

on the computer vision system and detection of the grasping point with Kinect v2 camera. The IR 697 

(Infra Red) Kinect v2 camera is very robust regarding the illumination conditions, but the RGB 698 

camera is less robust to these variations and specular reflections. We tested this by illuminating 699 

the chicken carcass with two powerful halogen lights. While the depth image quality was 700 

uninfluenced, we saw that is was necessary to change the threshold value for color segmentation. 701 

In addition, we variated illumination from dark to very bright to see the effect in segmentation of 702 

the chicken from the cone element. We noted that, compared to RGB channels, Hue channel from 703 

HSV (Hue, Saturation, Value) color space, was a robust channel for segmentation of the carcass 704 

from the cone element in the image. It is known that, in HSV color space, the brightness 705 

(intensity information) is separated from the chrominance (color information) leading to reduction 706 

in the effect of uneven illumination (Premaratne 2014). Therefore, Hue channel can be more 707 
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efficient for segmentation than channels in RGB space when objects are subjected to non-even or 708 

varying illumination conditions (Cheng et al. 2001). 709 

The main advantage of GRIBBOT's gripper is that it is designed to follow the non-linear path 710 

determined by the anatomical boundary between the chicken meat and rib cage bone. The 711 

gripping force is spread over a large surface area comprising the gripper beak and fillet supporter, 712 

thus ensuring no quality degradation of the fillet after harvesting. Further optimisation of the 713 

gripper can be achieved by printing the gripper plates in an FDA-approved food processing 714 

material such as PEEK (PolyEtherEtherKetone, OPM, USA). It could also be coated in a thin 715 

layer of compliant elastomer to increase flexibility during the Grasp&Hold operation. Greater 716 

flexibility may also be achieved by mounting tactile elements onto the inner surfaces of the 717 

gripper plates to regulate the force exerted on the fillet. Important aspects to address in the future 718 

research are the mechanical, optical, textural properties and behaviour of chicken meat in 719 

different conditions and temperatures, and investigate the influence of these aspects on the 720 

harvesting operation. Investigation of these aspects was outside of the scope of the current study. 721 

Harvesting using the GRIBBOT and its constituent components as described in this paper is a 722 

strong argument for the benefits of both the eye-to-hand configuration and the Look-and-Move 723 

control scheme when compared with other approaches. The use of the Kinect v2 camera ruled out 724 

the potential use of Kinect in a hand-in-eye configuration because the minimum distance from the 725 

object required to acquire depth images using Kinect v2 is 60 cm. An overall evaluation suggests 726 

that our approach is close to optimal, given the following results; a) good eye-to-hand calibration, 727 

b) robust positioning of the carcass on the transport system’s cone elements, and c) an optimal 728 

compliant gripper that is directed by anatomy along the rib cage at adequate manipulation speed. 729 

Given the trade-off required between accuracy and speed, the Look-and-Move scheme provided 730 

satisfactory results.  731 
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We believe that the GRIBBOT has huge potential for the commercial automation of front half 732 

chicken fillet harvesting, and may have a potential for improving efficiency in chicken meat 733 

utilisation with further development. There are several reasons why the GRIBBOT, with further 734 

development, can be easily integrated into existing production machinery. Firstly, the RGB-D 735 

camera used in this application is mass-produced and highly cost-efficient. Secondly, the robot 736 

arm has already been assigned an IP protection degree that satisfies food industry applications 737 

characterised by periodic equipment washings. Additional developmental steps required to bring 738 

the GRIBBOT closer to full commercial use include the issues already described in this Section, 739 

combined with close collaboration with a capable technology vendor that can move current 740 

development status to a higher Technology Readiness Level.  741 

4 Conclusions 742 

In this paper, we have presented a concept named ‘GRIBBOT’, designed to carry out the robotic 743 

harvesting of front half chicken fillets. Harvesting is a challenging operation and is predominantly 744 

carried out manually. The GRIBBOT combines a 3D vision algorithm for calculation and 745 

localisation of the grasping point (initial contact point of the gripper with the carcass) using a 746 

RGB-D camera (Kinect v2), with a robotic arm fitted with a specially designed compliant gripper. 747 

The GRIBBOT succeeded in correctly calculating the 3D coordinates and location of the fillet’s 748 

grasping point. The motion paths controlling the robot arm, combined with the compliancy of the 749 

gripper, enabled the GRIBBOT to scrape the fillet following the path determined by the 750 

anatomical boundary between the meat and the carcass’ rib cage bone. The result was the 751 

successful harvesting of front half fillets, including the tenderloin, from the carcass. The paper 752 

includes a proof-of-concept demonstration showing that the entire robot-based harvesting 753 

procedure for a single fillet was carried out in less than 4.75 seconds. GRIBBOT is an example of 754 

research and technology development with potential for flexible and adaptive robot-based 755 
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automation in food processing. This is due to adaptivity both with respect to the localisation of 756 

the grasping point enabled by a 3D vision algorithm, and in relation to the potential for 757 

optimisation of raw material utilisation. We believe that the GRIBBOT has significant 758 

commercial potential both in the poultry industry and other food industry applications where 759 

flexible robotic automation can contribute to higher levels of production sustainability and bio-760 

resource efficiency. The GRIBBOT demonstrates that there is scope for automating even the most 761 

challenging food processing operations. 762 
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