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Abstract—In this article we present a reformulation of the in-
variance and immersion speed observer of Astolfi et al. as applied
to mechanical systems with bounded inertia matrices. This is done
to explore the possibility of its practical implementation e.g. for
6 degrees-of-freedom industrial robots. The reformulation allows
us find an explicit expression for one of the bounds used in the
observer, and a constructive method for the second. We show that
the observer requires either analytically or numerically solving
at most 2n2 integrals, where n is the number of generalized
coordinates in the mechanical system.

I. INTRODUCTION

Industrial robots are typically equipped with encoders to
measure the angles of the joints. These give accurate and
steady measurements of the angles, but the speeds of these
angles are not always available. Some systems have a tachome-
ter, inertial sensors, or perform numerical differentiation of the
joint position. These methods can introduce high-frequency
noise or phase lag. An alternative method is to construct an
observer for the nonlinear system.

Speed observers have been an important topic in robotics.
One of the first references to a speed observer for mechanical
systems is [1], where an asymptotic observer was used in a
feedback situation with a trajectory tracking controller. In [2] a
semi-globally exponentially stable observer based on passivity
was presented. In [3] a globally exponentially convergent
observer was established for general Euler-Lagrange systems.
In [4] the observer was applied to systems with non-holonomic
constraints and the system written in port-Hamiltonian form.
In [5], a novel observer was presented with globally expo-
nentially stable properties given that the inertia matrix has
an upper bound. Speed observers are most notably featured
in the topic of output-feedback control, where there are two
main approaches: model-based approaches which utilize speed
observers [5], [6], and filter-based approaches which use filters
to replace speed observers [7]. In this article we are interested
in the speed observer of [3]. The usage of the invariance and
immersion observer for the output-feedback tracking scenario
is outside the scope of this article, however we refer the
reader to [8] where a globally exponentially stable trajectory

controller that uses the immersion and invariance observer for
a mechanical system in port-Hamiltonian form is presented.

In [9], Karagiannis et al. showed that a globally asymp-
totically convergent speed observer can be constructed for
2 degrees-of-freedom mechanical system if a certain partial
differential equation admits analytical solutions. In [10] Kara-
giannis et al. presents a method of approximating such a partial
differential equation using output filters and a dynamic scaling
parameter. The deviation between the partial derivative of the
approximated solution and the ideal solution is compensated
for by the dynamic scaling parameter. In [3], Astolfi et al.
applied this approximation method to general Euler-Lagrange
systems to create a globally exponentially convergent speed
observer. Astolfi et al. showed that there exist some bounds
on the disturbances introduced by the deviation from the
ideal partial differential equation. The speed observer was
to be considered a proof of existence rather than a directly
implementable method. The reason for this is that it requires
the solution of a set of integrals that may not have closed-form
solutions. To that end, they must be approximated numerically.
Future developments in computational power may allow us to
perform the necessary numerical integrations on-line. To that
effect this article establishes how many integrals are needed
at most. Given the Euler-Lagrange equations, the remaining
difficulty is then how to define the necessary bounds on our
deviation from the ideal partial differential equation.

In both [9] and [3], the speeds of the mechanical system
were transformed by the Cholesky factorization of the inertia
matrix, see the preliminary lemma of [3]. This transformation
gives rise to a skew-symmetric property that simplifies the
Lyapunov analysis. The basis of which stems from the skew-
symmetry of the derivative of the inertia matrix. A similar
transformation is performed on the port-Hamiltonian system
in [4]. In this paper we show that, given the property that
the inertia matrix has an upper bound, this transformation is
not necessary. This excludes us from applying the observer
to systems with an infinitely extending prismatic joint, but
allows us to make an explicit bound on one of the disturbances.
We give a constructive method of finding the other bound, a
method that can also be applied to the observer of Astolfi
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et al., and we show how a naively implemented observer
requires the evaluation of at most 2n2 integrals. This article
is an attempt to explore the possibility of using the invariance
and immersion globally exponentially convergent observer for
general mechanical robots with bounded inertia matrices.

The paper is organized as follows: Section II contains
two subsections, system and observer. The system subsection
describes the system discussed in this paper and the properties
assumed for it, and the observer subsection follows the proof
of stability of our observer, a parallel to the proof of [3],
and presents two lemmas for finding the bounds. Section III
contains two sections, system description and results. Finally,
Section IV contains the discussion and conclusion.

II. THEORY

A. System

In this paper we consider an n degrees-of-freedom robot
described by the differential equation

M(q)q̈ + C(q, q̇)q̇ +G(q) = u (1)

where q ∈ Rn are the generalized coordinates, M(q) ∈ Rn×n
is the inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis matrix,
G(q) ∈ Rn is a vector of potential forces, and u ∈ Rn is the
control input. For any q, x, y ∈ Rn and λi ∈ R we assume the
following properties hold
P1: kMI ≥M(q) ≥ kmI
P2: C(q, x)y = C(q, y)x
P3: C(q, λ1x1 + λ2x2)y = λ1C(q, x1)y + λ2C(q, x2)y
P4: ‖C(q, x)‖ ≤ kc ‖x‖
P5: Ṁ(q) = C(q, q̇) + C(q, q̇)

T .
with some known positive kM , km, and kc. The property P4
is not required for stability, but simplifies one of the bounds
as will be shown in Lemma 1. P5 is to cancel the Coriolis
matrices, for more information on applicability of P1 and P5
we refer the reader to [11]. The system admits the state-space
representation:

ẏ = x (2a)

ẋ = M(y)−1(u− C(y, x)x−G(y)) (2b)

with y the measured coordinates, and x being the unmeasured
speeds of the generalized coordinates.

B. Observer

For the system (2), we define the observer

ξ̇ = α1(ξ, sy, sx, y, u, r) (3a)
x̂ = ξ + β(y, sy, sx) (3b)
ṡy = α2(x̂, sy, sx, y, r) (3c)
ṡx = α3(x̂, sy, sx, y, u, r) (3d)
ṙ = α4(x̂, sy, sx, y, r) (3e)

where ξ, x̂, sy , sx and r are the internal states of the observer.
The output of the observer will be sx, a filtered version of x̂.

We will define the dynamics αi and mapping β will so that
the error

z = x̂− x (4)

has a globally exponentially stable origin. The proof of this
follows the proof in [3], except that we use P5 instead of the
preliminary lemma of [3], where x in (2b) is transformed by
the Cholesky factorization of the inertia matrix. For brevity
we will omit the arguments of αi when referred to in the
following proof.

The dynamics of the error is found from (4) and taking the
derivative of (3b) as

ż =α1 +
∂β

∂y
x+

∂β

∂sy
α2 +

∂β

∂sx
α3

−M(y)−1 (u− C(y, x)x−G(y)) (5)

choosing α1 as

α1 =M(y)−1 (u− C(y, x̂)x̂−G(y))

− ∂β

∂y
x̂− ∂β

∂sy
α2 −

∂β

∂sx
α3 (6)

the estimation error dynamics becomes

ż = M(y)−1 (C(y, x)x− C(y, x̂)x̂)− ∂β

∂y
z. (7)

From P2 and adding and subtracting C(y, x)x̂, we have

C(y, x)x− C(y, x̂)x̂ = −C(y, x)z − C(y, x̂)z (8)

giving the dynamics

ż = −M(y)
−1

(C(y, x) + C(y, x̂)) z − ∂β

∂y
z. (9)

With a Lyapunov function V (t, z) = 1
2z
TM(y)z, and using

P5, we can see that solving ∂β
∂y such that

∂β

∂y
= M(y)

−1
(k1I − C(y, x̂)) (10)

yields a globally exponentially convergent observer for k1 > 0.
But the partial differential equation is not always solvable, we
follow the proof of [3] and approximate (10).

We define

H(y, x̂) ..= M(y)
−1

(k1I − C(y, x̂)) (11)

as the ideal we want. Then following step 2 in [3], which uses
a method from Karagiannis et al. in [10], we choose to model
β as the sum of n integrals

β(y, sy, sx) ..=

∫ y1(t)

0

H1([y1, sy2, . . . , syn], sx)dy1 + . . .

+

∫ yn(t)

0

Hn([sy1, . . . , syn−1, yn], sx)dyn (12)

where the subscript i of Hi is the ith column of the matrix H ,
and syi, yi refers to the ith element of the vectors. Note that
we are substituting x̂ for the filtered state sx, and y for the
filtered state sy for all but the integrated elements yi. We will



denote this as the column Hi being a function of yi, sy1:n\i,
and sx. This gives us the partial differential equation

∂β

∂y
= [H1([y1, . . . , syn], sx) . . . Hn([sy1, . . . , yn], sx)] .

(13)
We can now also find the partial derivatives needed for α1,

starting with

∂β

∂syi
=

n∑
j=0,j 6=i

∫ yj(t)

0

∂Hj

∂syi
(yj , sy1:n\j , sx)dyj (14)

which requires at most we n(n − 1) integrals. Secondly we
have

∂β

∂sxi
=

n∑
j=0

∫ yj(t)

0

∂Hj

∂sxi
(yj , sy1:n\j , sx)dyj (15)

similarly to (14), it requires evaluating n2 integrals.
We define the deviation of our modeled β from the ideal as

Hi(y, x̂)−Hi(yi, sy1:n\i, sx) =

Hi(y, x̂)−Hi(y, sx) +Hi(y, sx)−Hi(yi, sy1:n\i, sx)

= ∆x,i(y, sx, ex) + ∆y,i(y, sx, ey) (16)

where i refers to the column vector of the matrices ∆x and
∆y , and we have defined the errors

ey ..= sy − y (17)
ex ..= sx − x̂ (18)

which, from (13) and (16), gives us

∂β

∂y
= H(y, x̂)−∆x(y, sx, ex)−∆y(y, sy, ey). (19)

As (13) is the same as (11) when y = sy and x̂ = sx, we
see that when ey = 0 and ex = 0 then ∆x = 0 and ∆y = 0. In
combination with the fact that the mappings are smooth this
ensures that there exists some mappings ∆̄x, ∆̄y such that

∆x(y, sx, ex) = ∆̄x(y, sx, ex)ex (20a)
∆y(y, sy, ey) = ∆̄y(y, sy, ey)ey. (20b)

Theoretically we can see that ∆̄x and ∆̄y can be found
by taking the Taylor series around ex = 0 and ey = 0
and factoring out ex or ey . But as many systems contain
trigonometric expressions, this is potentially an infinite series
that is not easy to implement. The following lemma gives a
constructive method of finding ‖∆x‖ related to ‖ex‖.

Lemma 1. Given a matrix ∆x(y, sx, ex) as defined in (16),
and the properties P1, P3, and P4, then

‖∆x(y, sx, ex)‖ ≤ kc
km
‖ex‖ (21)

Proof. From (16) we have

∆x(y, sx, ex) = H(y, sx − ex)−H(y, sx)

= M(y)
−1

(−C(y, sx − ex) + C(y, sx))

= M(y)
−1

(C(y, ex)) (22)

where we have used P3 to arrive at the last line. And thus

‖∆x(y, sx, ex)‖ ≤
∥∥M(y)−1

∥∥ ‖C(y, ex)‖ (23)

which, given P1 and P4 becomes (21).

When P4 is available, Lemma 1 gives an explicit bound on
∆x. For ∆y the partial substitution of sy for y for all but
element yi complicates matters. The following lemma is more
general and is used to find bounds that relate ‖∆x‖ or ‖∆y‖
to ‖ex‖ or ‖ey‖.

Lemma 2. Given a function ∆ : Rn×Rn×Rn → Rn×n that
is continuously differentiable, where

∆(x, y, e) = 0 (24)

if
e = 0 (25)

and ∥∥∥∥ sup
e∈Rn

∂∆ij(x, y, e)

∂e

∥∥∥∥
2

= ∆̄ij(x, y, e) (26)

where the subscript ij refers to an element in the matrix. Then

‖∆(x, y, e)‖2 ≤
∥∥∆̄(x, y, e)

∥∥
F
‖e‖2 (27)

Proof. From the definition of the matrix 2 norm and Frobenius
norm we have

‖∆(x, y, e)‖2 ≤ ‖∆(x, y, e)‖F ..= (28)

sqrt

m∑
i=1

m∑
j=1

∆ij(x, y, e)
2 (29)

from (26), there exists a supremum such that

|∆ij(x, y, e)| ≤
∣∣∣∣( sup

e∈Rn

∂∆ij(x, y, e)

∂e

)
e

∣∣∣∣
≤ ∆̄ij(x, y, e) ‖e‖2 (30)

and putting this into the (29) gives

‖∆(x, y, e)‖2 ≤

√√√√ m∑
i=1

m∑
j=1

∆̄ij(x, y, e)2 ‖e‖2 (31)

which is equal to (27).

Continuing on the stability proof, we substitute (19) in (9)

ż =−M(y)
−1

(C(y, x) + C(y, x̂)) z

−H(y, x̂)z + (∆y + ∆x)z (32)

and using (11) we get

ż = −M(y)−1 (k1I + C(y, x)) z + (∆y + ∆y)z (33)

The matrices ∆x and ∆y act as disturbances on z that we will
dominate with a dynamic scaling r. We define a new scaled
variable as

η =
z

r
(34)

with the derivative
η̇ =

ż

r
− ṙ

r
η. (35)



We define the Lyapunov function V1(t, η) = 1
2η
TM(y)η so

as to cancel the Coriolis matrices. Using (33), (35), and P5,
we get

V̇1 = −k1 ‖η‖2 + ηTM(y)(∆y + ∆x)η − ṙ

r
ηTM(y)η (36)

using P1

V̇1 ≤ −k1 ‖η‖2 + ‖M(y)(∆y + ∆x)‖ ‖η‖2 − ṙ

r
km ‖η‖2

≤ −
(
k1

2
+ km

ṙ

r
− 1

2k1
‖M(y)(∆y + ∆x)‖2

)
‖η‖2

≤ −
(
k1

2
+ km

ṙ

r
− 1

k1
(‖M(y)∆y‖2 + ‖M(y)∆x‖2

)
‖η‖2

(37)

where the second inequality is found using Young’s inequality
with factor k1. Choosing the dynamics of r as

ṙ = − k1

4km
(r − cr) +

r

k1km

(
‖M(y)∆y‖2 + ‖M(y)∆x‖2

)
(38)

with r(t0) > cr > 0 and r(t) > cr > 0 gives

V̇1 ≤ −
(
k1

2
− k1

4

r − cr
r

)
‖η‖2 ≤ −k1

4
‖η‖2 . (39)

This gives global exponential stability of η(t), and in turn we
need boundedness of r(t) to ensure global exponential stability
of z(t). The choice of placing a parameter cr as a lower bound
on r is inspired by [5].

We are going to create the Lyapunov functions

V2(t, η, ey, ex) = V1(t, η) +
1

2
(eTy ey + eTx ex) (40)

V3(t, η, ey, ex, r) = V2(t, η, ey, ex) +
1

2
(r − cr)2

. (41)

From the definition of the errors (17) and (18), and taking the
derivative of (3b), we have

ėy = α2 − x (42)

ėx = α3 − α1 +
∂β

∂y
x+

∂β

∂sy
α2 +

∂β

∂sx
α3 (43)

choosing

α2 = x̂− ψ1ey (44)

α3 = M(y)−1 (u− C(y, x̂)x̂−G(y))− ψ2ex (45)

where ψ1 and ψ2 are scalar gain functions, with our chosen
α1, (6), we have

ėy = z − ψ1ey (46)

ėx =
∂β

∂y
z − ψ2ex. (47)

The time derivative of V2 is therefore

V̇2 = V̇1 + reTy η + reTx
∂β

∂y
η − ψ1e

T
y ey − ψ2e

T
x ex (48)

≤ −
(
k1

4
− 1

)
‖η‖2 −

(
ψ1 −

r2

2

)
‖ey‖2

−

(
ψ2 −

r2

2

∥∥∥∥∂β∂y
∥∥∥∥2
)
‖ex‖2 (49)

where we have used Young’s inequality. From (38), we get
the time derivative of V3 as

V̇3 = V̇2 −
k1

4km
(r − cr)2

+
r(r − cr)
k1km

(
‖M(y)∆y‖2 + ‖M(y)∆x‖2

)
. (50)

As we have established (20a) and (20b), or similarly appro-
priate bounds through Lemma 1 and Lemma 2, we arrive at
the inequality

V̇3 ≤V̇2 −
k1

4km
(r − cr)2

+
r2k2

M

k1km

(∥∥∆̄y

∥∥2 ‖ey‖2 +
∥∥∆̄x

∥∥2 ‖ex‖2
)

(51)

where we have used the fact that r2 > r(r−cr) for r > cr > 0.
Collecting the terms from (49) we get

V̇3 ≤ −
(
k1

4
− 1

)
‖η‖2 −

(
ψ1 −

r2

2
− r2k2

M

k1km

∥∥∆̄y

∥∥2
)
‖ey‖2

−

(
ψ2 −

r2

2

∥∥∥∥∂β∂y
∥∥∥∥2

− r2k2
M

k1km

∥∥∆̄x

∥∥2

)
‖ex‖2

− k1

4km
(r − cr)2 (52)

we can see that if we choose

ψ1 = k2 +
r2

2
+
r2k2

M

k1km

∥∥∆̄y

∥∥2
(53)

ψ2 = k3 +
r2

2

∥∥∥∥∂β∂y
∥∥∥∥2

+
r2k2

M

k1km

∥∥∆̄x

∥∥2
(54)

we get

V̇3 ≤−
(
k1

4
− 1

)
‖η‖2 − k2 ‖ey‖2 − k3 ‖ex‖2

− k1

4km
(r − cr)2 (55)

where we choose k1 > 4. This gives V̇3 ≤ 0, which ensures
that r(t) is bounded. This in turn gives us global exponential
convergence of z(t).

As shown in [9], the difference between the solution to the
ideal partial differential equation (10) and our approximation
(12) is such that the states from the output filters, sy and
sx give the best estimates of the system states from the
“perspective” of our observer. One way to think of this is to see
that ξ would have been the states of our ideal observer, with
output defined by x̂. We cannot solve the differential equation
required to render β of the output function as we want it. So we
give it dynamics sx and sy that filter the states to compensate
for the disturbances introduced by the approximation. This
means that sy , and sx are the output of our observer.

III. SIMULATION

A. System description

We consider the 2 degrees-of-freedom system used in [3],
with y1 and y2 defined as illustrated in Fig.1. We define



y1

y2

Fig. 1. Two-link manipulator with revolute joints.

c(x, y) = cos(x − y), s(x, y) = sin(x − y), D(x, y) =
c1c2 − c23c(x, y)2, and the system is described by

M(y) =

[
c1 c3c(y1, y2)

c3c(y1, y2) c2

]
(56a)

C(y, x) =

[
0 −c3s(y1, y2)x1

c3s(y1, y2)x2 0

]
(56b)

G(y) = g

[
c4 cos(y1)
c5 cos(y2)

]
(56c)

with

c1 = I1 + I2 +m1L
2
c1 +m2(L2

1 + L2
c2) (57a)

c2 = 2m2Lc2L1, c3 = m2L
2
c2 + I2 (57b)

c4 = g(Lc1(m1 +M1) + L1(m2 +M2))g (57c)
c5 = gLc2(m2 +M2) (57d)

where the links are of length Li, with link masses Mi at Lci ,
and masses mi at the joints. We have

km = λmin(M0)), kM = λmax(M0), kc = c3 (58)

where km and kM stem from the eigenvalues λ of M0, the
inertia matrix M at the origin [y1, y2] = [0, 0], and using the
method of [12] we get kC .

Using (11) we have:

H(y, x) = c2k1+
c23x2

2 s(2y1,2y2)

D(y1,y2)
c3(c2x1s(y1,y2)−k1c(y1,y2))

D(y1,y2)

− c3(c1x2s(y1,y2)+k1c(y1,y2))
D(y1,y2)

c1k1−
c23x1

2 s(2y1,2y2)

D(y1,y2)


(59)

from which ∆x, and ∆y can be constructed using (16). A
simple albeit overestimating method of finding ∆̄ij from a
symbolically calculated ∂∆ij

∂e is the sum of the supremum of
the terms of the expression. E.g. if ∂∆ij

∂e = f1 − f2 + f3 then
we choose ∆̄ij = ‖f1‖∞+‖f2‖∞+‖f3‖∞. The initial states
of the robot and the observer are given in Table I, and the
robot parameters are given in Table II. The initial states of the
robot and the initial estimate sx were chosen so as to coincide
with the initial states in [3].

B. Results

The graphs show the observer of this paper with parameters
specified in Table II as well as that of [3] with k1 = 10. In
Fig.2 we see that the filtered angles sy converge to the actual

TABLE I
INITIAL STATES OF OBSERVER AND ROBOT

y(0) x(0) ξ(0) sy(0) sx(0) r(0)

[0, 0]T [−0.29, 6.66]T [−8.45, 68.33]T [1, 2]T [10, 20]T 0.1

TABLE II
ROBOT AND OBSERVER PARAMETERS

c1 c2 c3 c4 c5 k1 k2 k3 cr
0.9698 0.1575 0.264 1.74 0.44 40 8 2.5 0.001

trajectories y over time. In Fig.3 we can see that the filtered
speeds sx converge to the actual speeds x over time. Note
that with the same gains as in [3] our observer takes a longer
time to converge. It appears that we require larger gains to
achieve the same effect as in [3]. In Fig.5 we attempt to show
our reasoning for choosing a small initial r(t0), and using cr
to allow an r lower than 1. The graph shows the norm of
[ξ̇, ṡy, ṡx, ṙ] evaluated for varying r at the initial state. With
larger r the observer differential equation is stiffer, requiring
a small timestep to remain accurate. This trend was observed
for many states other than the initial state as well. To simplify
simulation, we chose a sufficiently small r(t0) so as to remain
in the region where r < 10−1.

−1
0
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d]

0.00 0.05 0.10 0.15 0.20
t [s]

−1
0
1
2

q 1
[ra

d]

Fig. 2. Joint angles over time. The blue line is the actual angles, the dashed
green line is sy , and the dotted red line is the filtered angles from the observer
in [3]. Note that this is shown for the timeframe 0 to 0.2 s.
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[ra
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80

q̇ 1
[ra

d/
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Fig. 3. Joint speeds over time. The blue line is the actual speeds, the dashed
green line is sx, and the dotted red line is the estimated speeds of the observer
in [3].
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Fig. 4. ‖sx − x‖2 over time.
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Fig. 5. The norm of [ξ̇T , ṡTy , ṡ
T
x , ṙ]

T with respect to r. Evaluated at the
initial state of the observer described in Table I.

IV. DISCUSSION AND CONCLUSION

A. Discussion

Our alternative formulation of the observer does not come
for free, we use a Lyapunov function V1 that depends on the
inertia matrix. This means that unlike [3] we require an upper
bound on the inertia matrix, a property that does not hold for
mechanical systems with inifinitely extending prismatic joints.
Further work into relating the observer presented in this article
to that of [3] may give explicit bounds for the disturbances.
Lemma 2 can also be used for the disturbance bounds in [3].

As the second Lemma relies on finding the supremums
of nonlinear equations, it is not as practical as Lemma 1.
Investigating the general structure of ∆y with respect to some
classes of robotic systems, e.g. consisting of revolute joints
defined by the Denavit-Hartenberg convention, might give rise
to explicit bounds.

We can see that if all the integrals of (12) are performed
numerically, which would allow us to generate an observer
from only the symbolic system equations, naively imple-
mented, we will end up with 2n2 numerical integrals from our
approximation of β, ∂β

∂sy
, and ∂β

∂sx
evaluated at each timestep.

This might be cumbersome even with optimized methods of
performing the integrals and parallelising the effort. Further
work evaluating what to do when parts of the differential equa-
tion is solvable may reduce the number of numeric integrals
needed. The exact number of integrals required depends on
how one defines the generalized coordinates of the robot, and
the mechanical structure of the system. For example, if the

second joint in our example was defined relative to the first
joint angle instead of the horizontal line, H(y, x̂) would not
depend on y1 and the corresponding integrals would be zero.

B. Conclusion

In this article we presented the observer of Astolfi et al.
from [3] reformulated so as to give more intuitive internal
states. These make it easier to provide an explicit method in
Lemma 1 and constructive method in Lemma 2 for defining
the necessary bounds. The method of Lemma 2 is sufficiently
general to be applied to the observer of [3]. A result of our
reformulation of the observer is that it requires an upper bound
on the inertia matrix, a property that Astolfi et al. did not
require. Through our approximation of a partial differential
equation, the observer requires evaluation of 2n2 integrals.
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