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Abstract—Industry 4.0 proposes the integration of

the new generation of ICT solutions for the monitoring,

adaptation, simulation, and optimisation of factories.

With the democratization of sensors and actuators,

factories and machine tools can now be sensorized and

the data generated by these devices can be exploited,

for instance, to optimize the utilization of the machines

as well as their operation and maintenance. However,

analyzing the vast amount of data generated is re-

source demanding both in term of computing power

and network bandwidth, thus requiring highly scalable

solutions. This paper presents a novel big data platform

for the management of machine generated data in

the cloud. It brings together standard open source

technologies which can be adapted to and deployed on

different cloud infrastructures, hence reducing costs,

minimising deployment difficulty and providing on-

demand access to a virtually infinite set of computing,

storage and network resources.

I. Introduction

Advanced digitalisation within factories combined

with information and communication technologies

(ICT) results in a vision of large-scale production com-

prising modular, autonomous, embedded intelligence

and efficient manufacturing systems. This refers to

Industry 4.0 which is the integration of a wide range

of concepts involving smart factory, cyber-physical sys-

tems, self-organisation, distribution, adaptation, sus-

tainability and resource-efficiency [1][2]. The MC-

SUITE project proposes a new generation of ICT en-

abled manufacturing process simulation and optimi-

sation in terms of a cloud-based system that inter-

twines physical measurements and monitoring aimed

at reducing the gap between virtual modelling and

real physical processes. The interplay between the six

MC-SUITE modules aims to address predictive mainte-

nance and productivity improvement, hence transform-

ing the manufacturing industry by reducing manufac-

turing process flaws, waste and variability to dramat-

ically improve product quality and increase yield (see

Fig. 1). Two of these modules are the MC-Monitor and

the MC-Analytics. The first one is a retrieve-and-store

platform dedicated to collect, pre-process, transmit

and store continuously generated machining processes

data in the cloud. The second module is a knowledge

extraction platform dedicated to mine large data sets

of manufacturing processes in the cloud.

Fig. 1. Conceptual architecture of the MC-SUITE research project

and its six-modules. Image by IDEKO (http://www.mc-suite.eu).

All the technological tools needed for the design and

implementation of Cyber-Physical System (CPS) such

as sensors, cyber-physical devices, big data and dis-

tributed infrastructures are already available. In fact,

these have been applied in the context of ubiqui-

tous manufacturing defined as the use of informa-

tion technology as part of the manufacturing domain

[3][4][5][6]. However, to put these technologies to-

gether it might be needed customisation for the man-

ufacturing domain, standardisation, integration and

communication architectures as well as control al-

gorithms besides the willingness from manufacturing

sites [7]. This paper focuses on data characterisation,

data management challenges and technologies inte-

gration which as a whole enable a solid problem do-

main identification and the technology baseline needed

to deliver novel manufacturing data-driven services.
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Across the following sections, we showcase our work

emphasising on different yet related aspects of big data

management – i.e., ways to organise shop-floor data

to extract information – such as data characterisation,

data organisation, data reduction, restructuring and

compression. In particular, Section III enlarges on the

characterisation of sensory data and the challenges it

brings so far. Section IV presents an architecture for

shop-floor data management together with a state-of-

the-art technology solution. Finally, Section V analyses

some of the problems and solutions found during the

modelling and data preparation stages.

II. Related Work

The activities in the manufacturing domain are

driven by events usually collected through sensors and

actuators. Events can be actions, activities or moni-

tored parameter changes that influence the operational

status of manufacturing operations.

From the data management perspective, the work

in [8] proposes a twofold data classification: according

to the occurrence period, namely low-frequency and

high-frequency, and according to the source, namely

men, materials, methods or machines. With such clas-

sification at hand, it is argued that machine data is

actually collected in different frequencies. Thus, gen-

erating different timestamps and, henceforth, making

it difficult for data linking tasks. Therefore the authors

present a formalisation and bespoke algorithms to ar-

range and integrate data sources in terms of times-

tamp operations. In order to prove this, they use 14

million relational database records of data collected at

a shop-floor. Although it is an elegant data management

approach for one machine, nothing is said about scala-

bility when dealing with collection and management of

large data sets or data coming from the engine directly

as a stream.

Five categories needed to transform current facto-

ries into intelligent sites have been discussed in [9].

The authors propose that efficient implementations

should come from big data and cloud technologies,

although it is argued that such technologies do not suf-

ficiently focus on machine generated data, that they are

chosen according to cost and deployment difficulty, and

that in general they handle proprietary communication

protocols. The work focuses on a self-awareness and

self-maintenance method for industrial big data envi-

ronment. In particular, showcasing adaptive clustering

for machine health awareness analytics in terms of

unsupervised learning algorithms. To prove this, they

assess and predict a diesel engine health by collecting

parameters at key operating points in order to identify

patterns in data by applying a classification model.

The authors of [10] characterise a manufacturing

system in terms of connection, cloud, content, com-

munity and customisation concepts. In this scope they

argue that it is key to have the right information

for right purposes at the right time and that having

data without the right context and meaning is useless.

Therefore, they idealise a framework for a predictive

manufacturing system that extracts and harvests data

from vibrations, pressure, etc. The conceptual architec-

ture employs proprietary protocols, data is processed

with bespoke software components including signal

processing, feature extraction, health assessment, per-

formance prediction and fault diagnosis.

A conceptual framework for the development of pre-

dictive manufacturing CPS that includes capabilities

for internet of things, complex event processing and

big data analytics has been described in [11]. The

authors define MCPS as the marriage of manufacturing

and CPS systems envisioned to handle operations in

the physical world with simultaneously monitoring in

the cyber world in terms of advanced data processing

and simulation models for manufacturing processes.

In particular, they enlarge on the different types of

data generated in manufacturing domain and set up

the type of technology that would enable analytics

according to the seven requirements proposed for big

data processing [12].

On the one hand, there is a countless number of

research in the area of virtualisation and cloud-based

services for manufacturing systems and the use of big

data analytics. Most of them proposing either agent-

based error prone architectures incapable to handle

real big data scenarios or tailored to proprietary pro-

tocols, which are difficult to integrate within a scale

and flexible system. In addition, there are modelling

guidelines and conceptual architectures of all sorts

giving solid grounds for thoughtful discussions but

lacking implementations or descriptions in terms of big

data management. On the other hand, manufacturing

application of big data are lagging in penetration and

diversity compared to other domains. This is due to the

lack of adoption of standard technologies, the variety

of proprietary protocols and non scalable tailored so-

lutions. A proposal to address these follows in the next

sections of our work.

III. Shop-floor Data Characterisation

One of the several sources of data of MC-SUITE

are manufacturing shop-floor machines embedded

with a large variety of sensors, the values of which

are read, approximately, every second. These sensors

capture many machining processes attributes called

measurements such as spindle rates, feed rates, part



Fig. 2. The Savvy gateway serves as a sensor manager from where shop-floor data is fetch and transmitted to the MC-Monitor for processing,

storing and streaming. MC-Analytics access to sensory data to provide analytics and expert assistance. Image by MC-SUITE newsletter 2.

programs, power consumption, block numbers, alarms

and operators annotations to name a few. Additionally,

some shop-floor machines are also equipped with video

and audio devices capturing and streaming image and

sound of manufacturing processes being conducted.

This type of generated data is called thin data because

it is a very little amount of information per device (blip

of information) but potentially thousands of devices

being polled on a frequent rate. Thin data goes one

direction, that is from the sensors to a network, and it

is in our best interest to figure out how to adequately

administer it – i.e., to process, store and communicate

– while it is still manageable. Manufacturing shop-

floors data can be characterised in terms of:

Variety. The sensory data as well as the video

and sound signals define a plethora of data types

categorised into structured data, i.e. information with

a high degree of organisation, semi-structured data,

i.e. information that contains tags or other markers to

separate semantic elements, and unstructured data,

i.e. information that has neither a pre-defined data

model or organisation.

Velocity. Both the sensory data as well as the video

and sound signals can be generated at such a high

frequency that it needs to be collected, pre-processed

and stored in a framework capable of handling data in

real time before they can be used in an effective way

while keeping integrity, resilience, persistence and

security at the required levels.

Volume. Manufacturing activities can be a complex

and highly process-oriented operations. The high-

frequency data generated from the sheer number

and complexity of sensorized manufacturing activities

result in a nonlinear vast quantity generation of

information that requires a fast and efficient data

management approach.

High velocity, large volume, and heterogeneous

sets of data could become so large and complex that

traditional data management and data processing

applications result inadequate for revealing insight.

Thus, MC-SUITE should be ready to deliver effective,

efficient and sophisticate functionality, the challenges

of which include data capture, transfer, storage,

analysis, sharing, querying and updating. In order

to address these, we have designed and developed

a distributed, resource-efficient, highly scalable

solution across shop-floor machines, MC-Monitor and

MC-Analytics as depicted in Fig. 2.

In order to deliver cost-effective data analysis in

MC-Analytics we should ensure an optimal ingestion

and transfer of data from the shop-floor. For instance,

some analytical tasks may necessitate the use of

specific data sets. Our solution ensures the availability

of and the access to the right shop-floor data, therefore

enabling systematic data access and, consequently,

efficient knowledge extraction in MC-Analytics. This

has been achieved by much design and implementation

of data management operations that address key pre-

processing challenges such as missing data, data



Fig. 3. Overview of the MC-Monitor Apache Storm acyclic topology comprising spout and bolts. The ReadData spout collects data from

the Savvy REST API which is then passed to the SplitData bolt. This splits and transmits the data in tuples to the KafkaPublisher bolt, the

DBPublisher bolt and the Average bolt. The Alarm bolt works together with the Average bolt to alert when a certain measurement falls

outside average. The implementation is available at https://github.com/nicolasferry/vsepml.

repetition and data dimension:

Missing data. Two of the most common challenges

found in shop-floor data collection relate to missing

data values and file structures. Degradation or failure

in the sensors might pass inaccurate and wrong

readings. In addition, missing values can appear due

to error in transmission of data to remote locations.

Data repetition. Highly repetitive data relates

to the nature of manufacturing. That is, during

a manufacturing process, the frequency at which

sensors are read is likely to generate large series of

repeated values. Therefore, leading to a higher than

necessary volume of data being transferred.

Data size. Unstructured data such as video and

sound could present challenges related to efficient

transmission of data. Therefore, appealing to the

use of reliable methods for signal compression and

filtering techniques to only generate data when very

well defined changes on the video or sound take place.

IV. Shop-floor Data Management

This section presents an architecture for shop-floor

data management needed to deliver novel data-driven

services in the MC-Analytics module. The first sub-

section describes the MC-Monitor module functionality

and implementation. The second subsection depicts

data formats and storage technology employed for

managing both unstructured and structured data for

offline analytics. The third subsection enlarges on data

formats and streaming technology needed for manag-

ing structured data for online analytics.

A. The MC-Monitor

The first activity performed by big data systems

consists in collecting data from the data sources. This

can be divided into (a) gathering the data from the

shop-floor and (b) pre-processing and providing ac-

cess to the collected data. MC-SUITE data sources

comprise Siemens, Heidenhain and Fidia computer

numerical control (CNC) machines embedded with a

large variety of machining sensors, the values of which

are read by an advanced monitoring system called

Savvy Smart Box1. This system retrieves, packs and

transmits the sensory data to a cloud-based platform

called Savvy Industrial Cloud via its machine-to-cloud

(M2C) protocol. It is then the Savvy Industrial Cloud

platform which ultimately provides MC-Monitor access

to the data throughout a representational state transfer

(REST) API. It is at this point where MC-Monitor pre-

processes and provides access to the collected sensory

data by either publishing it in a data store or keeping

it in motion in the form of streams. The MC-Monitor

leverages the Apache Storm2 framework the logic of

which is specified in terms of an acyclic graph topology

where nodes represent sources of streams (spouts) or

data processing components (bolts), and the edges rep-

resent streams of data. Fig. 3 depicts the MC-Monitor

architecture designed in terms of the ReadData spout,

the SplitData bolt, the Average bolt, the Alarm bolt,

the KafkaPublisher bolt and the DBPublisher bolt. The

SplitData spout reads sensory data from the Savvy

REST API and transmits it to the SplitData bolt who

splits the sensory data into streams of tuples com-

prising sensor name, measurement, timestamp and an

1http://www.savvydatasystems.com/advanced-monitoring
2http://storm.apache.org



unique identifier. Each of this tuples are then fed into

the KafkaPublisher, DBPublisher and Average bolts.

The first one keeps the tuples in motion by sending

them to a Kafka message queue which in turn publishes

the data in specified topics. The DBPublisher creates

and publishes batches of twenty tuples into a NoSQL

data base. The Average and Alarm bolts work together

creating a mechanism to alert and notify when a certain

measurement falls outside average. MC-Monitor spout

and bolts can be instantiated several times, thus en-

abling parallel data processing. However, since bolts

are stateless and share no memory, the routing of

tuples is of particular importance, e.g. measurements

from the same sensor should be transmitted to the

same Average bolt. In order to address this, the fields

grouping strategy [13] has been implemented to ensure

that all tuples within a specific field are routed towards

the same instance.

B. Offline Data Management

A cloud storage is used to store all relevant shop-

floor data published by the DBPublisher bolt. We have

chosen Apache CouchDB3 since it is schema-less, sup-

ports structured as well as unstructured data, it is

horizontally scalable and it exposes a simple HTTP

REST interface.

The attributes of the machines in a shop-floor are

stored in a CouchDB database named “MachinesList”.

Thus the information related to each machine is stored

as a JSON (JavaScript Object Notation) document com-

prising name, identification and shop-floor physical

location. Given the sheer volume of data collected

and in order to facilitate multiple types of analysis in

MC-Analytics, different views can be associated per

machine. Each of this views is nothing else than a

group of sensory values captured for especific purposes

in individual CouchDB databases the names of which

are also listed in the machine JSON document (see

Listing 1). Thus, this hierarchical structure enables the

dynamic addition and deletion of machines and their

views without impacting other databases.

Listing 1

Attributes of a machine in a shop-floor

{

"databases":[

{

"name":"machine1",

"id":"E15L17_VCVFQY_1",

"location":"E15L17",

"databases":[{"name":"machine1"}]

}

]

}

3http://couchdb.apache.org/

The operator descriptions are stored in a CouchDB

database named “Comments”. Each description is

stored as a JSON document comprising the identifier

of the machine operator who originates the annotation

(owner), date and time when the observation has been

published (timestamp in EPOCH), natural language an-

notation written by the operator (val), the importance

level of the comment, possible values are low, moderate

or high (importance), whether the observed event was

planned or not (occasion), when the observed event has

started (from) and when the observed event has ended

(to) as shown in Listing 2.

Listing 2

An operator description

{

"_id":"67ac9d997252b7c006bdcce4c000029e",

"_rev":"1-5b5bf654f2c1e07047bb0299fb7cbffb",

"owner":"test",

"timestamp":"1459801408682",

"val":"Coolant problem",

"importance":"high",

"occasion":"not planned",

"from":"",

"to":""

}

Sensory data is stored in a CouchDB database named

after the machine it belongs to. In particular, data gath-

ered at a given point in time is captured altogether in a

single JSON document structured as a list of individual

measurements. Each measurement comprises a sensor

identifier, value of the sensor reading, type of informa-

tion, unit of the value and a coefficient (see Listing 3).

This JSON document may also contain an extra field

generated by the sparsity data mechanism explained

in Section V. This field is called DocumentSkipped and

its value indicates the amount of previously skipped

identical measurements.

Listing 3

A machine sensory data

{

"_id":"1451692802000",

"_rev":"1-ca46f3b012d07e31ed777bc97fa95863",

"DocumentSkipped":891,

"Measurements": [

{

"Measurement":"1547410",

"SensorID":"Axis_X",

"Type":"positionActualWCS",

"Unit":"mm",

"Coeff":"d1000"

},

{

"Measurement":"46",

"SensorID":"Axis_X1",

"Type":"power",

"Unit":"percent",

"Coeff":""

}

]



}

C. Online Data Management

A message queue is used to stream all relevant

shop-floor data published by the KafkaPublisher bolt.

We have chosen Apache Kafka4 since it offers the

most promising performance in terms of message

publication and consumption, it is horizontally

scalable and fault tolerant, it provides space and

time decoupling, and it exposes a simple HTTP REST

interface with the capability to navigate and re-read

messages. Thus, the KafkaPublisher bolt publishes

sensory data to one or more topics. A topic is a queue

where one or multiple subscribers can register to

listen and read data of interest. It is worth noting

that topics can be created dynamically facilitating

scalability and flexibility of the MC-Monitor and MC-

Analytics. Currently, the following four topics have

been created:

SensorsChunk. Is a topic defined for messages

grouping data generated by all sensors of a given

machine at a specific time.

Sensor. Is a topic created for messages containing

data generated by individual sensors.

Alarms. Is a topic created for messages containing

data generated by an alarm. This refers to a mechanism

that compares the average value of a sensor to the

current one and raises an alarm if the discrepancy

between these two is too high.

Average. Is a topic defined for messages containing

the average value generated from the last n

measurements of a given sensor.

Listing 4

Message published in the Sensor topic

{

"_id":"1451957699000",

"MachineID":"E15L17_VCVFQY_1",

"SensorId":"Axis_Y",

"Measurements":"30",

"Type":"motor",

"Coeff":"degreeCelsius",

"Unit":"temperature"

}

The structure of the messages published in the Sen-

sorsChunk topic is depicted in Listing 3, i.e. an array

of measurements read from individual sensors at a

given point in time comprising sensor identifier, value,

type, coefficient and unit. The structure of a message

4https://kafka.apache.org/

published in the Sensors topic comprises the machine

identification, sensor identifier, the value of the sensor

reading, type of information, unit of the value and a

coefficient (see Listing 4). The content of the messages

published in the Averages and Alarms topics is similar

to the one above but with an additional field for the

average.

V. Data Enhancements

The success of a data analytic service involves far

more than choosing or developing an algorithm and

running it over data. In most cases, results can be

improved by a suitable choice of input parameter val-

ues and the appropriate choice of the data at hand.

The last one constitute a kind of data engineering,

that is engineering the input data into a form suitable

for analytics and to make it more effective. Thus, the

restructuring of the sensory data is performed by the

components described in Section IV. In order to best fit

the data management requirements for MC-Analytics,

this components were enhanced with a context-aware

data collection mechanism that dynamically adapts

to factory changes, a feature to retrieve-and-resource

relevant sensory data attributes and a size reduction

feature to optimise sensory data management. The

last two aiming at improving the performance and

scalability of the MC-Analytics by reducing the size

and number of messages exchanged which, as a result,

optimise the volume of data in CouchDB databases.

A. Context-Aware Data Retrieval

As explained in Section IV-A the ReadData spout has

access to shop-floor data throughout the Savvy Indus-

trial Cloud REST API. However, the format and content

of this data is insufficient for knowledge extraction

tasks in MC-Analytics. Indeed, as depicted in Listing 5,

the JSON document provided by the Savvy REST API,

key semantic information such as the sensors name

and type as well as the unit of the measurements are

missing.

Listing 5

Savvy REST API output

{

"machine":"E15L17_VCVFQY_1",

"group":"QE1KWH",

"data":

{

"timestamp":

{

"date":"2017-01-20T10:22:14.286Z"

},

"B3JCPQ":"10",

"A5TBSV":"0"

}

}



Therefore, we have enriched the ReadData spout with

the capability to perform HTTP requests to collect not

only information about shop-floor machines but also

information about data and metadata of the machine

sensors. Once the details about machines and sensors

are retrieved, the ReadData spout uses this information

to register with the Savvy REST API and initiate the

continuous transfer of data all of which is subsequently

re-formated by the SplitData bolt. For example, Listing

6 shows HTTP requests to collect data and metadata

such as list of machines available for monitoring in

location E1L1, a list acquisition groups associated to

machine E15L17_VCVFQY_1 and a list of sensors of

the CZDY1B acquisition group. This information is then

combined to perform a final HTTP request that streams

sensory data from machine E15L17_VCVFQY_1. As a

result, the elements of this stream are JSON objects

composed by measurements collected from all sensors

at a given point in time (see Listing 3).

Listing 6

HTTP requests to the Savvy REST API

GET /locations/E1L1/machines

GET /v1/locations/E15L17/machines/E15L17_VCVFQY_1/groups

GET /v1/locations/E15L17/machines/E15L17_VCVFQY_1/groups/

CZDY1B/sensors

GET /v1/stream?track=E15L17_VCVFQY_1

Enriching the ReadData spout for leveraging the Savvy

REST API improves the flexibility of the entire topology

since the machines and sensors information can now be

obtained dynamically. That is, the shop-floor equipment

can change (e.g. new sensors can be added to or

removed from the machines) and the whole mechanism

for retrieving data will reconfigure itself, hence adapt-

ing to factory level modifications without substantial

modifications.

B. Sensory Data Attribute Selection

In data mining, there is often far too many data

attributes to handle and some of them could become

clearly irrelevant or redundant. Hence, applying di-

mensionality reduction yields a more compact, more

easily interpretable representation for the objectives,

thus helping focus the attention on the most relevant

pieces of information. Although there exists automatic

methods, the best way to proceed with attribute se-

lection in our case is manually since we have a deep

understanding of what the attributes actually mean.

Therefore, in order to provide the MC-Analytics with

the most relevant data, the SplitData bolt transforms

the data supplied by the Savvy system (via the Read-

Data spout) into another JSON object. This is done by

setting a descriptor that specifies the names of the

sensors of interest (see Listing 7 for an example). The

input : data and metadata JSON objs from

ReadData spout (objD and objMD)

output: new JSON obj with relevant

measurements (newObj)

newObj = new JSON object;

newObj.measurements = new JSON list;

foreach objD.measurements[i] do

name = objMD.measurements[i].name;

if name is in descriptor then

fields = objMD.measurements[i];

newMsrnt = new measurement;

newMsrnt.name = fields.name;

newMsrnt.val = objD.measurements[i].val;

newMsrnt.type = fields.type;

newMsrnt.unit = fields.unit;

newMsrnt.coeff = fields.coefficient;

add newMsrnt to newObj.measurements ;

else

objD.measurements[i] is ignored

end

end

return newObj;

Algorithm 1: Restructuring sensory data task within

SplitData bolt

transformation and restructuring is then carried out by

the SplitData bolt as defined in Algorithm 1.

Listing 7

Descriptor for power consumption analisys in MC-Analytics

Cnc_Program_Name_RT

Cnc_Program_BlockNumber_RT

Axis_X1_power_percent

Axis_X2_power_percent

Axis_Y_power_percent

Axis_Z_power_percent

Cnc_Tool_Number_RT

Cnc_IsAutomaticModeActive

Cnc_IsCycleOn_RT

Spindle_IsAutomatic

Spindle_IsDirect

Spindle_IsOrtogonal

Spindle_positioning

Spindle_Power_percent

Axis_X_positionActualMCS_mm_d1000

Axis_Y_positionActualMCS_mm_d1000

Axis_Z_positionActualMCS_mm_d1000

Axis_FeedRate_actual

Cnc_IsManualModeActive

C. Sparsity Induced Sensory Data

The sensory data comprises very little amount of

information per sensor (potentially thousands) being

polled on a frequent rate (approximately every second).

One of the management issues this presents is dealing

with repetitive information, i.e. repeated data values

coming from a given sensor during a certain period



of time (perhaps tens of minutes). Ignoring repetitive

data values could not only implicate less traffic of un-

necessary data but also dramatically reduce the space

capacity within the cloud storage. Therefore, one of the

ways to deal with this is to convert sensory data into

sparse data, i.e. capturing new values only when they

change. Here we outline a simple method to do this.

In addition to the sensory data attribute selection de-

scribed earlier, and before adding the list of measure-

ments into a JSON object, the SplitData bolt checks

whether the provided set of measurements is similar to

the one processed right before. This is simply done by

comparing all sensor values collected at time t to the

values collected at time t − 1. If both sets are equal,

this measurement is not added to the JSON object

generated by the bolt and an associated counter is

incremented. As soon as the measurement starts to

be different, the value of the counter is set to the

DocumentsSkipped field of the JSON object to indi-

cate how many measurements were skipped. There-

fore, giving the origin to sparsity-inducing dictionaries

associated to the data. The features obtained from

sparsity based representation provide discriminative

information useful for analytics based on classification.

In addition, the sparsity of a signal implemented in

terms of compressed sensing [14] can be exploited by

data analytics that need the entire signal since this can

efficiently be recovered from far fewer samples than

required [15].

VI. Conclusion and Further Work

This work focused on data characterisation, data

management challenges and the implementation of a

shop-floor data management platform that integrates

the standard open source big data technologies Apache

Storm, Kafka, CouchDB and JSON. This infrastruc-

ture is specified using Cloud Modelling Language

(CloudML5) which, in turn, can be automatically de-

ployed on and adapted to different cloud solutions us-

ing CloudMF [16], hence reducing cost and deployment

difficulty. In addition, it works at the infrastructure-as-

a-service level ensuring that we have control over the

protocols. We have showcased our work emphasising

on different yet related aspects of big data manage-

ment such as data characterisation, data organisa-

tion, data reduction, restructuring and compression.

In terms of shop-floor data, we are currently looking

at the identification and collection of machine alarms

and exploring the management of video and audio data

which is stored in an open-source Dropbox-like service

called Owncloud. Since cyber security penetration in

manufacturing domain is an unaddressed need across

5http://cloudml.org

researchers and practitioners we will be exploring the

best standard approaches to address vulnerability as

well as to add resilience test to cope with complex

events and respond in acceptable time as well as

sustain operations in face of disturbances.
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