
Under consideration for publication in Formal Aspects of Computing

Relating Computer Systems to Sequence
Diagrams — The Impact of
Underspecification and Inherent
Nondeterminism
Ragnhild Kobro Runde1, Atle Refsdal1,2 and Ketil Stølen1,2

1Department of Informatics, University of Oslo, Norway
2SINTEF ICT, Norway

Abstract.
Having a sequence diagram specification and a computer system, we need to answer the question: Is

the system compliant with the sequence diagram specification in the desired way? We present a procedure
for answering this question for sequence diagrams with underspecification and inherent nondeterminism.
The procedure is independent of any concrete technology, and relies only on the execution traces that may
be produced by the system. If all traces are known, the procedure results in either “compliant” or “not
compliant”. If only a subset of the traces is known, the conclusion may also be “likely compliant” or “likely
not compliant”.

Keywords: sequence diagrams; computer systems; refinement; implementation; compliance; denotational
trace semantics

1. Introduction

Having a sequence diagram specification and a computer system, we need to answer the question: Is the
system compliant with the specification in the desired way? Intuitively, a system is compliant with a specifi-
cation if the behaviours of the system are as described by the specification. The system should potentially
be able to perform every behaviour that the specification requires it to offer, and it should do nothing that
the specification disallows.

The question of compliance is essential every time a computer system is built from a specification. Even
so, the relationship between sequence diagrams and computer systems is surprisingly unclear. An important

Correspondence and offprint requests to: Ragnhild Kobro Runde, Department of Informatics, PO Box 1080 Blindern, N-0316
Oslo, Norway. e-mail: ragnhild.runde@ifi.uio.no

This is a post-peer-review, pre-copyedit version of an article published in Formal Aspects of
Computing The final authenticated version is available online at: http://dx.doi.org/10.1007/
s00165-011-0192-5

2 R. K. Runde, A. Refsdal and K. Stølen

reason for this, is that sequence diagrams (in contrast to most other techniques for specifying dynamic be-
haviour) give only a partial view of the behaviour. Also, sequence diagrams are used for specifying computer
systems within a broad range of application domains, and they are used for different methodological pur-
poses including requirements capture, illustrating example runs, test scenario specification and risk scenario
documentation. The various usages of sequence diagrams differ in the expressiveness required, and in how
the partiality of sequence diagrams should be understood.

In this paper we investigate compliance with respect to two classes of sequence diagrams: Sequence
diagrams with underspecification and sequence diagrams with both inherent nondeterminism and under-
specification. The first class may be used to capture trace properties, i.e., properties that can be falsified
by a single trace. Examples of trace properties include safety and liveness properties [AS85]. The second
class is also able to capture trace-set properties, which are properties that can only be falsified by sets
of traces. Trace-set properties include many information flow security properties as well as permissions in
the setting of policy rules [SSS09]. In fact, in the case of information flow security properties, being able
to distinguish between inherent nondeterminism and underspecification is necessary in order to avoid the
refinement anomaly [Jac89, Ros95, Jür01, SS06].

Underspecification means that certain aspects of the system behaviour are left open. Typically, under-
specification is a consequence of abstraction and a desire to focus on the essential behaviour of the system.
Underspecification implies a kind of nondeterminism, since the specification allows those responsible for
implementing or further refining the specification to choose between alternative ways of performing a task.

Inherent nondeterminism, on the other hand, means that the system must be able to produce all of
the described alternatives. For instance, when sequence diagrams are used to describe example runs of the
system, each of these example runs is required to be mirrored in the final implementation. Each example run
then constitutes a trace-set property. Another example is when specifying a gambling machine or similar,
where it is necessary to ensure that both winning and losing outcomes can be produced by the system.

In this paper, we define a set of compliance relations taking into account what sequence diagram class
is used, as well as different interpretations of the partiality of sequence diagrams. We propose a general
procedure for checking compliance of computer systems with respect to sequence diagrams, parameterized
with the compliance relation to be employed. The procedure is independent of the concrete implementation
technologies used, as this is not prescribed by a sequence diagram. Instead, we represent the system by the
set of execution traces that the system is able to produce. An execution trace is a sequence of events such as
transmission and reception of messages to and from the entities in the system. The set of execution traces
may be established or estimated for instance by source code inspection, or by testing.

In practice, the system may be able to produce infinitely many traces, and traces may be infinitely long.
If we do not have access to the source code, and the execution traces are found by e.g. testing, it will not be
possible to establish infinitely long traces or infinitely many traces by observation alone. Instead, the best
that can be achieved is an estimate based on a finite number of finitely long observations. If a system is
observed for a long period of time and nothing happens, it may be assumed that nothing more will happen
no matter how long one waits. Similarly, if the same output has been transmitted continuously for a long
time, then it may be assumed that an infinite loop has been entered. In practice this kind of assumptions
and estimates are unavoidable. Moreover, obtaining the full set of traces is not very realistic for systems
of some size. In the field of testing, this problem can be addressed by defining selection hypotheses under
which a verdict can be reached from a finite test set [Gau95]. In a similar manner, our compliance checking
procedure is designed to help in deciding whether compliance holds or not also in cases where only a subset
of the execution traces is known.

Based on the compliance relations, we derive a set of corresponding refinement relations. By refine-
ment, we mean adding more detail to the specification while preserving the requirements from the original
specification. Any system compliant with the refined sequence diagram should also be compliant with the
original diagram. The refinement and compliance relations given in this paper all support a stepwise and
compositional development process.

To summarize, in the general case and in many situations encountered in practice, it is not possible to
automatically check whether a system complies with a sequence diagram. Even in such situations, however,
or more correctly, in such situations in particular, we need clear definitions of what it means to comply with a
sequence diagram from an intuitive point of view and also methodological advice for how to check compliance.
These definitions and methodological advice in relation to sequence diagrams with underspecification and
inherent nondeterminism are the main contributions of this paper. We are not aware of similar contributions
in the literature.

Relating Computer Systems to Sequence Diagrams 3

The rest of this paper is organized as follows: Section 2 gives an overview of the compliance checking
procedure. In Section 3 we introduce sequence diagrams with underspecification and their semantic model.
In Section 4 we define compliance relations for sequence diagrams with underspecification, and derive the
corresponding refinement relations. Section 5 extends sequence diagrams with inherent nondeterminism,
while compliance and refinement for such sequence diagrams are defined in Section 6.

In Sections 4 and 6, we assume that the complete set of execution traces for the system is known. In
Section 7, we characterize the conditions under which the procedure may arrive at a definitive conclusion
when only a subset of the execution traces is known, and give guidelines for what should be done when these
conditions do not hold. We present related work in Section 8 before concluding in Section 9.

2. The Compliance Checking Procedure

An overview of the compliance checking procedure is given in Figure 1. As can be seen from the figure,
the procedure takes a sequence diagram D with semantics [[D]], a computer system S whose set of exe-
cution traces is characterized by traces(S), and a compliance relation 7→ρ as input (where ρ is a parameter
representing the exact compliance relation to be used), and reaches one of four different conclusions. If the
complete set of execution traces is known, the conclusion will always be either compliant or not compliant.
On the other hand, with only a subset of the execution traces available, the conclusion may also be one of
likely compliant or likely not compliant.

The first step of the procedure is to obtain a subset T of the execution traces for the system S. How
this is achieved is not prescribed by the procedure, but typical alternatives include source code inspection
and testing. Preferably, T should be the complete set of execution traces, but this is often not possible as
explained in the introduction.

After having obtained (a subset of) the execution traces, the procedure continues in step 2 by transforming
this set T into a mathematical representation 〈T 〉D of the system. This representation uses the same semantic
model as [[D]], and is further described in Sections 4.1 and 6.1.

Next, step 3 is to check whether the given compliance relation 7→ρ holds between the semantics [[D]] of
the sequence diagram and the system representation 〈T 〉D. Depending on the result, the procedure continues
with one of the two symmetrical branches in Figure 1.

If the compliance relation holds, the left branch of the figure is followed, starting with a new check as
step 4a. If T is the complete set of execution traces, then it may be concluded that the system S is compliant
with the sequence diagram D according to the compliance relation 7→ρ. There are also cases where the same
positive conclusion may be reached even when T only contains a subset of the execution traces. These cases
are described precisely by the predicate P ρpos , defined in Section 7.

In the cases where [[D]] 7→ρ 〈T 〉D holds, but T contains only a subset of the execution traces and the
predicate P ρpos does not hold, one may try to obtain a more complete estimate for T . Section 7 gives guidelines
for how to do this. These guidelines describe what kind of traces one should look for in the system in order
to contradict the positive verdict from step 3. If such traces are found, another iteration of the procedure is
performed, starting at step 2. However, if no such traces may be found, then the procedure concludes that
although it is impossible to give a definitive verdict, the system S is likely to be compliant with D according
to 7→ρ.

The right branch of Figure 1 is symmetrical, describing the steps to be taken when [[D]] 7→ρ 〈T 〉D is
found not to hold in step 3.

We now continue with describing each of the ingredients of the procedure in more detail, starting with
a short introduction to sequence diagrams with underspecification (but not inherent nondeterminism) and
their semantic model.

3. Sequence Diagrams with Underspecification

This section provides a general introduction to sequence diagrams with underspecification (but not inherent
nondeterminism, which is treated in Section 5), and their semantic model as defined in STAIRS [HHRS05].
For further details of the STAIRS semantics of sequence diagrams, we refer to [HHRS05, RHS05b] and the
summary in Appendix A. This formal semantics is compliant with the semi-formal descriptions given in the
UML 2.x standard [OMG10].

4 R. K. Runde, A. Refsdal and K. Stølen

Let:
- D be a sequence diagram with semantics [[D]]
- S be a computer system with execution traces
traces(S)

- be the compliance relation to be checked,
with the two predicates P pos and P neg

characterizing when a definitive conclusion
compliant/not compliant is possible when
only a subset of traces(S) is known

1. Estimate T, a subset of traces(S)

2. Create <T>D, a mathematical representation
of the system based on the estimated trace

subset

3. Does [[D]] <T>D hold?

4a. Is T=traces(S),
or does P pos hold?

yes

4b. Is T=traces(S),
or does P neg hold?

no

7a2. Conclude that
S is compliant with D

according to

yes

7b2. Conclude that
S is not compliant with

D according to

yes

5a. Try to obtain a better estimate
in terms of an extended set T by
following the guidelines given

when P pos does not hold

5b. Try to obtain a better estimate
in terms of an extended set T by
following the guidelines given

when P neg does not hold

6a. Is T extended
with relevant traces?

no no

yes
6b. Is T extended

with relevant traces? yes

7a1. Conclude that S
is likely compliant with

D according to

no

7b1. Conclude that S
is likely not compliant
with D according to

no

Fig. 1. Overview of the compliance checking procedure

We use the simple sequence diagram in Figure 2 to introduce some terminology. D is the name of the
sequence diagram, A and B are lifelines (corresponding to e.g. components or objects), while x and y are
messages from B to A. In this paper we only consider sequence diagrams where both the transmitter and the
receiver lifelines are present for all messages. We say that the diagram in Figure 2 includes four events, the
sending of x (denoted !x), the reception of x (denoted ?x), and the sending and reception of y. A sequence
diagram defines a number of traces representing system runs. For each lifeline, the events are ordered from

Relating Computer Systems to Sequence Diagrams 5

sd D

A B

x

y

Fig. 2. Simple sequence diagram

top to bottom. In addition, a send event must occur before the corresponding receive event. The sequence
diagram D defines two traces: 〈!x, ?x, !y, ?y〉 and 〈!x, !y, ?x, ?y〉.

As indicated above, the semantics of D is denoted [[D]]. For sequence diagrams containing underspeci-
fication, but not inherent nondeterminism, the semantics is given as an interaction obligation (p, n) where p
is a set of positive (i.e., valid) traces and n is a set of negative (i.e., invalid) traces. Positive traces represent
desired or acceptable behaviour, while negative traces represent undesired or unacceptable behaviour. Traces
not in the diagram are called inconclusive, and may be introduced as positive or negative by later refinement
steps. Letting H denote the universe of all well-formed traces, the traces H \ (p ∪ n) are inconclusive in the
interaction obligation (p, n).

The positive traces of an interaction obligation constitute underspecification, i.e., alternative traces that
those implementing the specification may choose between. This underspecification may be the result of weak
sequencing of messages as in the example above (and formally defined in Appendix A.1). Underspecification
may also be specified using the alt operator, formally defined by:

[[D1 alt D2]] def= [[D1]]] [[D2]] (1)

where] is inner union of interaction obligations, defined by:

(p1, n1)] (p2, n2)
def= (p1 ∪ p2, n1 ∪ n2) (2)

As can be seen from these definitions, the alt operator can be used both to introduce more underspecification
by combining sets of positive traces, and also to impose more restrictions by combining negative trace-sets.
By taking the union also of the negative traces, the alt operator can be used to merge alternatives that are
considered to be similar, both at the positive and the negative level.

Definitions of some other central composition operators may be found in Appendix A.1.

4. Relating Computer Systems to Sequence Diagrams with Underspecification

In this section we define and explain the compliance relations for relating computer systems to sequence
diagrams with underspecification. First, in Section 4.1 we define how to represent a computer system in the
semantic model used for sequence diagrams with underspecification as described in Section 3. This definition
is used in step 2 of the compliance checking procedure in Figure 1. Section 4.2 then defines the compliance
relations, while Section 4.3 presents an example of using these definitions together with the compliance
checking procedure.

The refinement relations corresponding to the compliance relations in Section 4.2 are derived in Sec-
tion 4.4. Section 4.5 presents important theoretical results with respect to the compliance and refinement
relations in this section. Finally, Section 4.6 expands on the example from Section 4.3 to illustrate refinement
and the theoretical results from Section 4.5.

In this section, we assume that the complete set of execution traces for the system is known. The additional
definitions and guidelines used in the procedure when this is not the case are presented in Section 7.

4.1. System Representation

In order to check a computer system S represented by its complete set of execution traces, denoted traces(S),
against a sequence diagram specification containing underspecification (but not inherent nondeterminism),

6 R. K. Runde, A. Refsdal and K. Stølen

traces(S) must be transformed into an interaction obligation 〈S〉D. In this interaction obligation, the traces
in traces(S) are the only positive ones.

For all traces, either the trace may be produced by the system or it may not. Therefore, a computer
system cannot have inconclusive traces, and all relevant traces that are not in traces(S) are regarded as
negative. We consider the primary scope of a sequence diagram D to be the set of all lifelines in D, denoted
ll(D). Therefore, when checking compliance with respect to D, the relevant traces for 〈S〉D is taken as the
set Hll(D) (formally defined in Appendix A.1) of all well-formed traces consisting only of events taking place
on the lifelines in the sequence diagram D.

This leads to the following definition of 〈S〉D:

〈S〉D
def= (traces(S),Hll(D) \ traces(S)) (3)

When considering subsets of traces(S), definition (3) is overloaded to trace-sets in the obvious manner, i.e.:

〈T 〉D
def= (T,Hll(D) \ T) (4)

for T a set of well-formed traces.

4.2. Compliance

Even though sequence diagrams are partial specifications, any compliance relation for sequence diagrams
must at least relate all of the traces of the sequence diagram to the execution traces of the system. As
explained in Section 3, the negative traces of an interaction obligation represent undesired system behaviour,
implying that they should be negative also in the system representation.

The positive traces of the interaction obligation represent underspecification, meaning that some of them
may be positive and some of them may be negative in the system representation. The partial nature of
sequence diagrams leads to three natural compliance relations, differing in whether the positive trace-set in
the system representation is required to include an arbitrary number (zero not excluded), at least one, or
nothing but positive traces of the sequence diagram.

Basic compliance 1: This is the most flexible of the compliance relations, where the execution traces of
the system may contain any number of inconclusive and positive traces from the specification, without
any further restrictions:

[[D]] 7→b1 〈S〉D
def= neg .[[D]] ⊆ neg .〈S〉D ∧ pos.[[D]] ⊆ pos.〈S〉D ∪ neg .〈S〉D (5)

where pos and neg are functions selecting the positive and negative trace-set of an interaction obligation,
respectively.

Basic compliance 2: With this compliance relation, the execution traces of the system should contain at
least one of the positive traces from the sequence diagram, but it may also contain an arbitrary number
of inconclusive traces:

[[D]] 7→b2 〈S〉D
def= [[D]] 7→b1 〈S〉D ∧ pos.[[D]] ∩ pos.〈S〉D 6= ∅ (6)

Basic compliance 3: This is the least flexible of the three compliance relations, requiring that the set of
execution traces of the system includes only (some of the) positive traces, but none of the inconclusive
traces, of the sequence diagram:

[[D]] 7→b3 〈S〉D
def= [[D]] 7→b2 〈S〉D ∧ pos.〈S〉D ⊆ pos.[[D]] (7)

We consider the three compliance relations above to be the only reasonable ones for sequence diagrams
containing underspecification and not inherent nondeterminism. A fourth interpretation of the positive traces
is also feasible, requiring that all positive traces are to be produced by the system. However, this corresponds
to what we refer to as inherent nondeterminism, and will be treated in Section 6.

Relating Computer Systems to Sequence Diagrams 7

sd GM1

:User :Gambling
Machine

alt dime

quarter

msg(”You won”)

dollar

alt

msg(”You lost”)

veto dollar

Ready Finished
?dime/!msg(”You lost”)

Fig. 3. Sequence diagram with underspecification (alt)

4.3. Compliance Example

As a simple example, consider the specification of a gambling machine in Figure 3. First, the machine
receives either a dime or a quarter. As a result, the machine either sends the message “You won” together
with a dollar, or the message “You lost”.1 The veto operator is a high-level operator for specifying negative
behaviour, formally defined in Appendix A.1. In this example, veto is used to specify that the message “You
lost” should not be followed by a dollar.

According to the definitions in Section 3 and Appendix A.1, the semantics of the sequence diagram GM1

given in Figure 3 is an interaction obligation with six positive and four negative traces. The first operand of
the second alt operator has two traces due to weak sequencing of the two messages (i.e., no ordering between
the reception of “You won” and the sending of a dollar), while the second operand has only one positive
trace consisting of the sending and reception of “You lost”. Combined with the two traces of the first alt
operator, this gives a total of four “winning” and two “losing” traces in the positive trace-set. Similarly, the
weak sequencing of the two messages in the second operand of the second alt operator gives two negative
traces, and a total of four negative traces when combined with the two traces of the first alt operator.

Shortening each message to only a few letters, the semantics [[GM1]] may be written as:

({〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, 〈!qu, ?qu, !m(yw), ?m(yw), !do, ?do〉,
〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉, 〈!qu, ?qu, !m(yw), !do, ?m(yw), ?do〉,
〈!di, ?di, !m(yl), ?m(yl)〉, 〈!qu, ?qu, !m(yl), ?m(yl)〉} ,
{〈!di, ?di, !m(yl), ?m(yl), !do, ?do〉, 〈!qu, ?qu, !m(yl), ?m(yl), !do, ?do〉,
〈!di, ?di, !m(yl), !do, ?m(yl), ?do〉, 〈!qu, ?qu, !m(yl), !do, ?m(yl), ?do〉})

A possible way to implement this specification would be to build a system S1 where the gambling machine
may only receive a dime, after which it responds with a “You lost” message and then nothing more happens.
This would correspond to the trace-set traces(S1) = {〈!di, ?di, !m(yl), ?m(yl)〉}.

We may now use the procedure outlined in Section 2 in order to check compliance of such a computer
system S1 to the sequence diagram GM1.

1. In this section we assume complete knowledge of the execution traces, i.e.,
T = traces(S1) = {〈!di, ?di, !m(yl), ?m(yl)〉}.

2. The use of definition (4) then gives
〈T 〉GM1 = ({〈!di, ?di, !m(yl), ?m(yl)〉},Hll(GM1) \ {〈!di, ?di, !m(yl), ?m(yl)〉}).

3. [[GM1]] 7→ρ 〈T 〉GM1 holds for all three compliance relations defined in Section 4.2, as the single execution

1 As we will come back to in Section 5, alt is not the best operator to use between these two last alternatives.

8 R. K. Runde, A. Refsdal and K. Stølen

trace 〈!di, ?di, !m(yl), ?m(yl)〉 is positive in [[GM1]], and the negative traces of [[GM1]] are also negative
in 〈T 〉GM1 .

4. As noted above, we have T = traces(S1), and may conclude (step 7a2 of the compliance checking proce-
dure in Figure 1) that S1 is compliant with GM1 according to both 7→b1, 7→b2 and 7→b3.

This example demonstrates that for alternatives specified as underspecification (e.g. using the alt oper-
ator), the computer system is not required to produce more than one of these. To require the system to
produce all alternatives, we need the xalt operator that will be described in Section 5.

4.4. Refinement

Usually, a system is not made directly from the initial specification, but intermediate specifications are
needed. Such intermediate specifications, gradually adding more information to the specification in order to
bring it closer to a full description of the system, may be related by refinement relations.2 For each of the
three compliance relations in Section 4.2, we now derive a corresponding refinement relation. An important
requirement is that any valid system that is compliant with the refined specification should also be compliant
with the original specification.

Basic refinement 1: Basic refinement 1 of interaction obligations is derived directly from the relation basic
compliance 1:

(p, n) b1 (p′, n′) def= n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (8)

As can be seen from the definition, a refinement step may add more positive and/or negative behaviours
to the specification, hence reducing the set of inconclusive traces. Also, a refinement step may reduce
underspecification, i.e., redefine positive traces as negative. Negative traces always remain negative.

Basic refinement 2: For basic compliance 2, the additional conjunct (compared to basic compliance 1)
required a non-empty intersection between the positive traces of the sequence diagram and the positive
traces of the system representation. This requirement is not directly transferable to the corresponding
refinement relation, as a system in compliance with the refinement would not necessarily be in compliance
with the original sequence diagram. As an example of this, assume that [[D]] = ({t1, t2}, ∅), [[D′]] =
({t2, t3}, ∅) and traces(S) = {t3}. With p ∩ p′ 6= ∅ as the additional requirement for basic refinement 2,
we would in this example have that S complies with D′ (with t3 as the common trace) and D′ refines
D (with t2 as the common trace), but S does not comply with D (as the single execution trace t3 is not
included in [[D]]). Hence, the requirement p ∩ p′ 6= ∅ is not strong enough for basic refinement 2.
For p∩traces(S) to be non-empty when p′∩traces(S) is non-empty, we must instead have p′ ⊆ p, i.e., basic
refinement 2 may reduce the set of positive traces, but not redefine inconclusive traces as positive:

(p, n) b2 (p′, n′) def= (p, n) b1 (p′, n′) ∧ p′ ⊆ p (9)

Basic refinement 3: As for basic refinement 1, basic refinement 3 may be derived directly from the def-
inition of basic compliance 3. Note, however, that the additional requirement for basic compliance 3 is
already captured by the definition of basic refinement 2 above. Hence, basic refinement 2 and 3 reduce
to the same relation. For easier reference, basic refinement 3 is defined as a separate relation:

(p, n) b3 (p′, n′) def= (p, n) b2 (p′, n′) (10)

4.5. Theoretical Results

In this section we present a number of essential properties that are fulfilled by the refinement and compliance
relations defined above. The proofs of these theorems may be found in [RRS11].

The composition operators defined in Section 3 and Appendix A.1 are all monotonic with respect to

2 The specification may also be changed due to e.g. error correction or changed requirements. However, such changes will
typically not be considered as refinements.

Relating Computer Systems to Sequence Diagrams 9

sd GM0

:User :Gambling
Machine

quarter

msg(”You lost”)

Fig. 4. Initial example run for the gambling machine

the three refinement relations above, thus ensuring compositionality in the sense that the various parts of a
sequence diagram may be refined separately.

Theorem 4.1. (Monotonicity with respect to basic refinement.) For the refinement relation bx,
with x ∈ {1, 2, 3}:

[[D1]] bx [[D′1]] ∧ [[D2]] bx [[D′2]]⇒ [[op1 D1]] bx [[op1 D
′
1]] ∧ [[D1 op2 D2]] bx [[D′1 op2 D

′
2]]

where op1 is any of the unary operators (e.g. veto) and op2 any of the binary operators (e.g. alt or seq)
defined in Section 3 and Appendix A.1.

If different refinement relations are used for refining different parts of the sequence diagram, the resulting
diagram will at least be a basic refinement 1 of the original diagram, as basic refinement 2 (and 3) is a special
case of basic refinement 1.

All refinement relations are also transitive, ensuring that the result of successive refinement steps is a
valid refinement of the original sequence diagram. Again, using different refinement relations in the various
steps means that at least basic refinement 1 will hold between the last sequence diagram in the refinement
chain and the original sequence diagram.

Theorem 4.2. (Transitivity of basic refinement.) For the refinement relation bx, with x ∈ {1, 2, 3}:
[[D]] bx [[D′]] ∧ [[D′]] bx [[D′′]]⇒ [[D]] bx [[D′′]]

Finally, we also have transitivity between refinement and compliance.

Theorem 4.3. (Transitivity between basic refinement and basic compliance.) For the refinement
relation bx and compliance relation 7→bx with x ∈ {1, 2, 3}:

[[D]] bx [[D′]] ∧ [[D′]] 7→bx 〈S〉D′ ⇒ [[D]] 7→bx 〈S〉D
The two transitivity theorems (Theorems 4.2 and 4.3) are important as they ensure that a computer

system that complies with a sequence diagram resulting from a series of refinement steps, will also comply
with the original sequence diagram.

4.6. Refinement Example

Consider the sequence diagram GM0 in Figure 4, describing an initial example run for the gambling machine,
in which the machine receives a quarter and then replies with a “You lost” message. The gambling machine
GM1 in Figure 3 is a valid refinement of GM0 according to basic refinement 1, but not according to basic
refinement 2 (and 3), as can be seen by splitting the diagram in two parts and considering each part separately.

First, the quarter message in Figure 4 leads to an interaction obligation with only one positive trace
(the sending and reception of the quarter), and no negative traces. In the first alt operand in Figure 3, this
interaction obligation is extended with one new positive trace (the sending and reception of a dime), which
was inconclusive in Figure 4. This extension is allowed by basic refinement 1, but not by basic refinement 2
(and 3).

Similarly, the “You lost” message in Figure 4 leads to an interaction obligation with one positive and no
negative traces, which is extended in the second alt operand in Figure 3 with two positive and two negative
traces. Again, this is allowed by basic refinement 1, but not by basic refinement 2 (and 3).

Hence, the two operands of the implicit weak sequencing operator (between the two messages) in Figure 4
are refined separately according to basic refinement 1. By the monotonicity theorem (Theorem 4.1), we may

10 R. K. Runde, A. Refsdal and K. Stølen

then conclude that the sequence diagram in Figure 3 is a valid refinement of the diagram in Figure 4 by
basic refinement 1 (i.e., GM0 b1 GM1).

In Section 4.3, the compliance checking procedure was used to conclude that the system S1 (with only
one trace where the gambling machine receives a dime and responds with “You lost”) was in compliance
with the sequence diagram GM1 in Figure 3 according to all three basic compliance relations, including 7→b1

(i.e., GM1 7→b1 〈S1〉GM1). From GM0 b1 GM1 and GM1 7→b1 〈S1〉GM1 we may conclude GM0 7→b1 〈S1〉GM0

by Theorem 4.3, without having to use the compliance checking procedure again.
The fact that S1 is in basic compliance 1 with GM0 may seem a surprising result at first, as the gambling

machine receives a dime in the system S1, but a quarter in the sequence diagram specification GM0. However,
this is a natural consequence of GM0 being only a partial specification of the gambling machine, and of the
use of underspecification in the form of the first alt operator in GM1, stating that a dime and a quarter are
considered equally good alternatives as input to the gambling machine. (On the other hand, using the less
flexible relations basic compliance 2 or 3, would give the result that S1 is not in compliance with GM0, as
both of these relations would require the quarter-alternative from GM0 to be reflected in the system.)

5. Sequence Diagrams with Inherent Nondeterminism

In the case of underspecification (and no inherent nondeterminism) investigated above, a system may comply
with a given sequence diagram even if the system is able to produce only one of the positive traces in the
diagram, and nothing else. In most cases this is of course not satisfactory, as one would like to specify a
set of behaviours that should all be reflected in the implementation in one way or another. One example
is the gambling machine from Section 4.3, where the sequence diagram allowed a system where the only
possible outcome was the user losing his money. A realistic specification would be to require that both
winning and losing should be possible outcomes. Also, the choice between the two should be performed
nondeterministically (or at least appear so to the user of the gambling machine).

For specifying inherent nondeterminism, or alternatives that must all be reflected in the specified system,
we use the xalt operator first introduced in [HS03]. The semantics of a sequence diagram D that may contain
inherent nondeterminism in addition to underspecification, is no longer a single interaction obligation as in
Section 3, but instead defined as a set of any number of interaction obligations [HHRS05]. The idea is
that each interaction obligation gives a requirement that must be fulfilled by any system that should be in
compliance with the sequence diagram, while the positive traces within an interaction obligation represent
underspecification as before.

Formally, the semantics of the xalt operator is defined by:

[[D1 xalt D2]] def= [[D1]] ∪ [[D2]] (11)

Hence, the composition of D1 and D2 by xalt requires all the inherent nondeterminism specified by D1 in
addition to all the inherent nondeterminism specified by D2. In other words, the result of xalt-composition
is the union of the sets of interaction obligations capturing the semantics of the two operands. This means
that a trace may be positive in one interaction obligation and negative in another, as will be illustrated by
the example in Section 6.3.

The generalized definitions for the other composition operators, including alt, may be found in Ap-
pendix A.2.

6. Relating Computer Systems to Sequence Diagrams with Inherent
Nondeterminism and Underspecification

In this section we discuss how to relate computer systems to sequence diagrams with both alt and xalt,
similar to what we did for sequence diagrams with only alt in Section 4. As in Section 4, we assume that the
complete set of execution traces for the system is known, and leave the additional definitions and guidelines
when this is not the case to Section 7.

Relating Computer Systems to Sequence Diagrams 11

6.1. System Representation

In order to characterize compliance between a system S and a sequence diagram D with inherent nonde-
terminism (as well as underspecification), we redefine 〈S〉D to consist of one interaction obligation for each
trace in traces(S):

〈S〉D
def= {({t},Hll(D) \ {t}) | t ∈ traces(S)} (12)

The idea is that there is no underspecification in a system. Hence, there is no need to have interaction
obligations with more than one positive trace, and the system representation consists of one interaction
obligation for each one of the execution traces.

When considering subsets of traces(S), definition (12) is overloaded to trace-sets in the obvious manner,
i.e.:

〈T 〉D
def= {({t},Hll(D) \ {t}) | t ∈ T} (13)

for T a set of well-formed traces.

6.2. Compliance

As stated in Section 5, each interaction obligation in the semantics of a sequence diagram represents a
requirement to be reflected in any system compliant with the diagram. For sequence diagrams with inherent
nondeterminism, there are two natural interpretations with respect to compliance, differing in whether the
system representation is required to reflect nothing but the interaction obligations of the sequence diagram,
or if additional behaviours are also allowed.

From Section 4.2, we have three alternative basic compliance relations that may be used for pairwise
comparison between the interaction obligations of the sequence diagram and the system representation.
In principle, this leads to a total of six different compliance relations for sequence diagrams with both
underspecification and inherent nondeterminism. However, with the system representation containing only
one positive trace in each interaction obligation, there is no difference between basic compliance 2 and 3.
Thus, we only use basic compliance 1 and 2 in the definitions below.

General compliance 1 and 2: With general compliance, every interaction obligation from the specifica-
tion should be reflected in at least one of the interaction obligations in the system representation, but
there is no restriction on additional interaction obligations in the system representation:

[[D]] 7→gx 〈S〉D
def= ∀o ∈ [[D]] : ∃o′ ∈ 〈S〉D : o 7→bx o

′ (14)

for x ∈ {1, 2}.
Limited compliance 1 and 2: Limited compliance requires not only that all interaction obligations in

the specification are reflected in the system, but also that every interaction obligation in the system
representation complies with at least one interaction obligation from the specification. This limits the
possibilities for additional behaviours in the system:

[[D]] 7→lx 〈S〉D
def= [[D]] 7→gx 〈S〉D ∧ ∀o′ ∈ 〈S〉D : ∃o ∈ [[D]] : o 7→bx o

′ (15)

for x ∈ {1, 2}.

6.3. Compliance Example

Figure 5 is a revised specification of the gambling machine from Figure 3, replacing the second alt operator
with xalt and adding some more negative behaviours. The ref-construct may be understood as a syntactical
shorthand for the contents of the referenced sequence diagram.

The semantics [[GM2]] of this sequence diagram is a set of two interaction obligations, one for each of

12 R. K. Runde, A. Refsdal and K. Stølen

sd GM2

:User :Gambling
Machine

alt dime

quarter

xalt

alt
ref win

refuse

ref loss

alt

ref win

refuse

ref loss

Ready Finished

?dime/!msg(”You lost”)

?dime/
!msg(”You win”),!dollar

sd win

:User :Gambling
Machine

msg(”You won”)

dollar

sd loss

:User :Gambling
Machine

msg(”You lost”)

veto dollar

Fig. 5. Sequence diagram with inherent nondeterminism (xalt)

the two xalt operands:

{ ({〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, 〈!qu, ?qu, !m(yw), ?m(yw), !do, ?do〉,
〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉, 〈!qu, ?qu, !m(yw), !do, ?m(yw), ?do〉} ,
{〈!di, ?di, !m(yl), ?m(yl)〉, 〈!qu, ?qu, !m(yl), ?m(yl)〉,
〈!di, ?di, !m(yl), ?m(yl), !do, ?do〉, 〈!qu, ?qu, !m(yl), ?m(yl), !do, ?do〉,
〈!di, ?di, !m(yl), !do, ?m(yl), ?do〉, 〈!qu, ?qu, !m(yl), !do, ?m(yl), ?do〉}) ,

({〈!di, ?di, !m(yl), ?m(yl)〉, 〈!qu, ?qu, !m(yl), ?m(yl)〉} ,
{〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, 〈!qu, ?qu, !m(yw), ?m(yw), !do, ?do〉,
〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉, 〈!qu, ?qu, !m(yw), !do, ?m(yw), ?do〉,
〈!di, ?di, !m(yl), ?m(yl), !do, ?do〉, 〈!qu, ?qu, !m(yl), ?m(yl), !do, ?do〉,
〈!di, ?di, !m(yl), !do, ?m(yl), ?do〉, 〈!qu, ?qu, !m(yl), !do, ?m(yl), ?do〉}) }

The first of these interaction obligations comes from the first xalt operand (combined by weak sequencing
with the two traces of the alt operand on top), containing four traces representing alternative “winning”
outcomes, while the six traces representing “losing” outcomes are considered negative in this interaction
obligation. The second interaction obligation above comes from the second xalt operand and contains two
positive traces representing possible “losing” outcomes. The four “winning” traces are negative in this inter-
action obligation, together with the four traces representing the erroneous situation where the user loses but
still gets a dollar.

The system S1 given in Section 4.3 is not in compliance with GM2, as can be seen by using the compliance
checking procedure as follows:

1. T = traces(S1) = {〈!di, ?di, !m(yl), ?m(yl)〉} (as in Section 4.3).

Relating Computer Systems to Sequence Diagrams 13

2. The use of definition (12) then gives
〈T 〉GM2 = {({〈!di, ?di, !m(yl), ?m(yl)〉},Hll(GM2) \ {〈!di, ?di, !m(yl), ?m(yl)〉})}.

3. [[GM2]] 7→ρ 〈T 〉GM2 does not hold for any of the four compliance relations defined in Section 6.2.
The single interaction obligation in 〈T 〉GM2 is not in basic compliance (neither 1 nor 2) with the first
interaction obligation in [[GM2]], as the given execution trace is negative in that interaction obligation.
Hence, the first interaction obligation in [[GM2]] is not reflected in the system representation as required
by both general and limited compliance.

4. As we have T = traces(S1), we may conclude (step 7b2 of the compliance checking procedure in Figure 1)
that S1 is not in compliance with GM2 according to any of the four compliance relations 7→g1, 7→g2, 7→l1

and 7→l2.

Now assume a system S2 that is similar to S1, except that after receiving a dime, S2 may also reply
with the message “You won” and a dollar. S2 would then be in compliance with GM2 according to all of
the compliance relations defined in this section. Again, we demonstrate the use of the compliance checking
procedure for relating S2 to GM2:

1. The informal description of S2 corresponds to the trace-set traces(S2) = {t1, t2, t3}, where
t1 = 〈!di, ?di, !m(yw), ?m(yw), !do, ?do〉, t2 = 〈!di, ?di, !m(yw), !do, ?m(yw), ?do〉 and
t3 = 〈!di, ?di, !m(yl), ?m(yl)〉. As we assume complete knowledge of the execution traces, we have
T = traces(S2).

2. The use of definition (12) then gives
〈T 〉GM2 = {({t1},Hll(GM2) \ {t1}), ({t2},Hll(GM2) \ {t2}), ({t3},Hll(GM2) \ {t3})}.

3. [[GM2]] 7→ρ 〈T 〉GM2 holds for all four compliance relations defined in Section 6.2. The interaction
obligation ({t1},Hll(GM2) \ {t1}) complies with the first interaction obligation in [[GM2]] according to
both basic compliance 1 and 2. The same is the case for the interaction obligation ({t2},Hll(GM2) \{t2}).
Similarly, the interaction obligation ({t3},Hll(GM2)\{t3}) complies with the second interaction obligation
in [[GM2]] according to both basic compliance 1 and 2. Hence, both interaction obligations in [[GM2]]
are reflected in an interaction obligation in 〈T 〉GM2 , as required by general compliance. Also, each of the
three interaction obligations in 〈T 〉GM2 complies with an interaction obligation in [[GM2]] as required
by limited compliance.

4. As we have T = traces(S2), we may conclude (step 7a2 of the compliance checking procedure in Figure 1)
that S2 is compliant with GM2 according to both 7→g1, 7→g2, 7→l1 and 7→l2.

6.4. Refinement

Similar to what we did for basic compliance in Section 4, we now derive four refinement relations corre-
sponding to the four compliance relations in Section 6.2.

General refinement 1 and 2: General refinement 1 and 2 are derived directly from general compliance 1
and 2, i.e., each interaction obligation in the original sequence diagram should be refined by one of the
interaction obligations in the refined sequence diagram:

[[D]] gx [[D′]] def= ∀o ∈ [[D]] : ∃o′ ∈ [[D′]] : o bx o
′ (16)

for x ∈ {1, 2}.
As can be seen from the definition, general refinement 1 and 2 both allow a refinement to introduce new
interaction obligations that are not refinements of any interaction obligation in the original specification,
possibly increasing the inherent nondeterminism required of the system. Note also that for general re-
finement 2 to hold, basic refinement 2 should be used for refining all of the interaction obligations of the
original specification.

Limited refinement 1 and 2: As for general refinement, limited refinement 1 and 2 are derived directly
from the definition of limited compliance 1 and 2:

[[D]] lx [[D′]] def= [[D]] gx [[D′]] ∧ ∀o′ ∈ [[D′]] : ∃o ∈ [[D]] : o bx o
′

for x ∈ {1, 2}.

14 R. K. Runde, A. Refsdal and K. Stølen

Again, limited refinement 2 only holds if general refinement 2 holds and each of the interaction obligations
for the refined sequence diagram is a basic refinement 2 of at least one of the interaction obligations for
the original specification.

6.5. Theoretical results

For the refinement and compliance relations defined above, we have monotonicity and transitivity theorems,
corresponding to Theorems 4.1–4.3 in Section 4. Again, all proofs may be found in [RRS11].

Theorem 6.1. (Monotonicity with respect to general and limited refinement.) For the refinement
relation ρ, with ρ ∈ {g1, g2, l1, l2}:

[[D1]] ρ [[D′1]] ∧ [[D2]] ρ [[D′2]]⇒ [[op1 D1]] ρ [[op1 D
′
1]] ∧ [[D1 op2 D2]] ρ [[D′1 op2 D

′
2]]

where op1 is any of the unary operators (e.g. veto) and op2 any of the binary operators (e.g. alt, xalt or seq)
defined in Section 5 and Appendix A.2.

If different refinement relations are used for refining different parts of the sequence diagram, the resulting
diagram will at least be a general refinement 1 of the original diagram, as general refinement 2 and limited
refinement 1 and 2 are all special cases of general refinement 1.

Theorem 6.2. (Transitivity of general and limited refinement.) For the refinement relation ρ, with
ρ ∈ g1, g2, l1, l2:

[[D]] ρ [[D′]] ∧ [[D′]] ρ [[D′′]]⇒ [[D]] ρ [[D′′]]

Theorem 6.3. (Transitivity between general/limited refinement and general/limited compli-
ance.) For the refinement relation ρ and compliance relation 7→ρ with ρ ∈ {g1, g2, l1, l2}:

[[D]] ρ [[D′]] ∧ [[D′]] 7→ρ 〈S〉D′ ⇒ [[D]] 7→ρ 〈S〉D
Finally, the following Theorem 6.4 states that for sequence diagrams without any xalt operator (i.e., with-

out inherent nondeterminism), we have the natural correspondences between the compliance relations in Sec-
tion 4 for sequence diagrams with underspecification, and the compliance relations in Section 6 for sequence
diagrams that also allows inherent nondeterminism.

Until now we have overloaded the notation for the semantic representation of diagrams and computer
systems in order to enhance readability. It is now necessary to introduce the full notation. Let [[D]]b and
[[D]]g denote the semantics of the sequence diagram D when interpreted according to the definitions in
Section 3 and Section 5, respectively. Similarly, for a system S we use 〈S〉bD and 〈S〉gD to denote its semantic
representation with respect to D according to definition (3) and definition (12), respectively.

Theorem 6.4. (Correspondence.) For a sequence diagram D without xalt:

[[D]]b 7→b1 〈S〉bD ⇔ [[D]]g 7→l1 〈S〉gD (a)
∧

[[D]]b 7→b3 〈S〉bD ⇔ [[D]]g 7→l2 〈S〉gD (b)

Theorem 6.4 states that for sequence diagrams without xalt, basic compliance 1 and limited compliance 1
are always in accordance with each other, as are basic compliance 3 and limited compliance 2.

From Theorem 6.4 and the definitions of basic compliance, it follows that basic compliance 2 is positioned
in between limited compliance 1 and 2 with respect to how much it restricts the system. Basic compliance 2
allows the system representation to include traces that are inconclusive in the sequence diagram, something
that is not allowed by limited compliance 2. On the other hand, limited compliance 1 allows the system
representation to include only traces that are inconclusive in the sequence diagram, while basic compliance
2 requires the system representation to also include at least one positive trace from the sequence diagram.

Also, general compliance allows more implementations than basic compliance. This is because general
compliance interprets the partiality of sequence diagrams very flexible, allowing the system representation
to contain additional interaction obligations that are not refinements of any of the interaction obligations for

Relating Computer Systems to Sequence Diagrams 15

the sequence diagram. In particular, the system representation may include an interaction obligation with a
trace t as positive, even if t is negative in all of the original interaction obligations. However, implementing
a negative trace is not allowed by basic compliance, where a single interaction obligation is the semantic
model used for representing both the sequence diagram and the system.

6.6. Refinement and Correspondence Example

The gambling machine specification GM2 in Figure 5 is a valid refinement of the specification GM1 in
Figure 3 according to all four refinement relations defined in Section 6.4, as all of the positive behaviours of
GM2 are positive also for GM1, the remaining positive behaviours of GM1 are negative in both interaction
obligations for GM2, and the negative behaviours of GM1 remain negative in both interaction obligations
for GM2.

In Section 6.3, the compliance checking procedure was used to conclude that the system S2 (which receives
a dime and then responds with either “You lost” or with “You won” and a dollar) was in compliance with the
sequence diagram GM2 in Figure 5 according to all four compliance relations in Section 6.2. By transitivity
between refinement and compliance (Theorem 6.3), we may then conclude that S2 is also in compliance with
GM1 according to all four compliance relations 7→g1, 7→g2, 7→l1 and 7→l2, .

As GM1 does not include any xalt operators, the correspondence results in Theorem 6.4 may be used
to establish that S2 is in compliance with GM1 also according to the three basic compliance relations in
Section 4.2, without having to use the compliance checking procedure again. 7→b1 and 7→b3 follows directly
from the theorem, while 7→b2 follows from Theorem 6.4(b) and the definition of 7→b3.

7. Exploiting the Theory in Practice

In the previous sections, we have assumed that the complete set of execution traces for the system is known.
However, as explained in the introduction, one will often be in the situation where this is not the case and
only a finite subset of the traces is available. When the compliance checking in step 3 of the procedure in
Figure 1 is based on an incomplete system representation, the result is not automatically valid for the system
itself. A system may comply with the specification even if compliance does not hold for the incomplete system
representation, and vice versa.

In this section we define the predicates to be used in step 4 of the compliance checking procedure in order
to determine whether a definitive conclusion may be reached although only a subset of the execution traces
is known. We also present the guidelines used in step 5 of the procedure when trying to extend the set of
known execution traces. These are traces trying to contradict the verdict given in step 3 of the procedure.
Even in cases where a definitive answer in practice cannot be given because one needs to know the complete
set of traces, an inability to find such traces as described in the relevant guidelines should at least result in
an increased confidence in the procedure verdict.

For the compliance relations defined in Sections 4.2 and 6.2, the concrete predicates and guidelines are
presented in Sections 7.2 and 7.3, respectively. But first, in Section 7.1, we explain the formal role of the
predicates in more detail.

7.1. Soundness and Completeness Criteria

Step 4 of the compliance checking procedure uses one of two different predicates, Ppos or Pneg, depending on
the result of the compliance checking in step 3. For each compliance relation 7→ρ, the predicate P ρpos(D,T) is
defined so that it ensures soundness in the sense that when 7→ρ holds between the semantics of the sequence
diagram D and the system representation based on the trace-(sub)set T , then it is sufficient to show that
P ρpos(D,T) is true in order to conclude that any system that may produce all of the traces in T will indeed
comply with the sequence diagram. Formally, this means that P ρpos(D,T) fulfils the following criterion:

[[D]]x 7→ρ 〈T 〉xD ∧ P ρpos(D,T)⇒ ∀S : (T ⊆ traces(S)⇒ [[D]]x 7→ρ 〈S〉xD) (17)

where x = b and ρ ∈ {b1, b2, b3}, or x = g and ρ ∈ {g1, g2, l1, l2}.
Also, P ρpos(D,T) ensures completeness in the sense that if P ρpos(D,T) is false when 7→ρ holds, then there

16 R. K. Runde, A. Refsdal and K. Stølen

exists at least one system that is not compliant with the sequence diagram even though the system is able
to produce all of the traces in T . I.e., P ρpos(D,T) fulfils the following criterion:

[[D]]x 7→ρ 〈T 〉xD ∧ ¬P ρpos(D,T)⇒ ∃S : (T ⊆ traces(S) ∧ [[D]]x 67→ρ 〈S〉xD) (18)

where x = b and ρ ∈ {b1, b2, b3}, or x = g and ρ ∈ {g1, g2, l1, l2}.
Similarly, P ρneg is defined to ensure soundness and completeness such that a negative verdict for 7→ρ in

step 3 is guaranteed to be correct if and only if P ρneg(D,T) is true:

[[D]]x 67→ρ 〈T 〉xD ∧ P ρneg(D,T)⇒ ∀S : (T ⊆ traces(S)⇒ [[D]]x 67→ρ 〈S〉xD) (19)
[[D]]x 67→ρ 〈T 〉xD ∧ ¬P ρneg(D,T)⇒ ∃S : (T ⊆ traces(S) ∧ [[D]]x 7→ρ 〈S〉xD) (20)

where x = b and ρ ∈ {b1, b2, b3}, or x = g and ρ ∈ {g1, g2, l1, l2}.
In the following sections, we go through each of the compliance relations defined in this paper and give

theorems stating exactly the conditions that traces(S) must fulfil in order to satisfy each relation. For each
relation 7→ρ, the predicates P ρpos(D,T) and P ρneg(D,T) are derived from the corresponding theorems. Proofs
that these predicates satisfy criteria (17)–(20), as well as the proofs of the theorems, may be found in [RRS11].

7.2. Predicates and Guidelines for Sequence Diagrams with Underspecification

In this section, we present the predicates and corresponding guidelines to be used when working with the
basic compliance relations defined in Section 4.2, i.e., for relating computer systems to sequence diagrams
containing underspecification but not inherent nondeterminism.

7.2.1. Predicates and Guidelines for Basic Compliance 1

Theorem 7.1 (Condition for 7→b1).

neg .[[D]]b ∩ traces(S) = ∅ ⇔ [[D]]b 7→b1 〈S〉bD
Theorem 7.1 tells us that S complies with D according to 7→b1 if and only if the set of execution

traces (i.e., traces(S)) does not include any of the traces specified as negative (i.e., in neg .[[D]]b). This
has two important consequences. Firstly, with only a subset of traces(S) at hand, this requirement can be
established with certainty only if the specification has no negative traces. With an empty set of negative
traces, neg .[[D]]b ∩ traces(S) = ∅ is trivially true and basic compliance 1 holds for any system S. Hence:

P b1
pos(D,T) def= neg .[[D]]b = ∅ (21)

Secondly, Theorem 7.1 implies that for 7→b1, compliance is broken if a trace specified as negative by D is
found among the execution traces. As a consequence, if basic compliance 1 holds for the subset T of execution
traces, but P b1

pos does not hold, then one should try to extend T with traces that are specified as negative. If
it is revealed that the system may produce one such trace, basic compliance 1 does not hold. On the other
hand, if no negative trace may be found in the system, compliance can be assumed with high confidence
(although it can never be guaranteed without knowledge about the complete set of execution traces).

Theorem 7.2 (Certainty of negative verdicts using 7→b1).

T ⊆ traces(S) ∧ [[D]]b 67→b1 〈T 〉bD ⇒ [[D]]b 67→b1 〈S〉bD
Theorem 7.2 states that if basic compliance 1 does not hold for a subset of the execution traces, then no

additional trace is able to change this into a positive verdict. This is an example of the ideal situation, where
the procedure verdict in step 3 is guaranteed to be correct without any additional conditions. Consequently,
no additional guidelines for step 5 are needed, and we get:

P b1
neg(D,T) def= true (22)

Relating Computer Systems to Sequence Diagrams 17

Positive verdict in procedure step 3 Negative verdict in procedure step 3

Formal P b1
pos : neg.[[D]]b = ∅ P b1

neg : true

predicate P b2
pos : neg.[[D]]b = ∅ P b2

neg : [[D]]b 67→b1 〈T 〉bD ∨ pos.[[D]]b \ neg.[[D]]b = ∅
P b3

pos : pos.[[D]]b \ neg.[[D]]b = H P b3
neg : pos.[[D]]b \ neg.[[D]]b = ∅ ∨ T 6= ∅

Informal P b1
pos : Definitive if D specifies no negative traces. P b1

neg : Definitive.
explanation P b2

pos : Definitive if D specifies no negative traces. P b2
neg : Definitive if 7→b1 does not hold or D specifies

of predicate no truly positive traces.
P b3

pos : Definitive if D specifies all possible traces P b3
neg : Definitive if D specifies no truly positive traces

as truly positive. or at least one execution trace is known.

Guidelines P b1
pos : Look for behaviour that is specified as P b1

neg : (No guideline needed.)
for procedure negative by D.
step 5 P b2

pos : Look for traces that are specified as P b2
neg : Look for traces that are specified as truly

negative by D. positive by D.
P b3

pos : Look for traces that are specified as P b3
neg : Look for any execution trace.

negative or inconclusive by D.

Table 1. Overview of predicates and guidelines for basic compliance 1, 2 and 3

7.2.2. Predicates and Guidelines for Basic Compliance 2

Theorem 7.3 (Condition for 7→b2).

pos.[[D]]b ∩ traces(S) 6= ∅ ∧ neg .[[D]]b ∩ traces(S) = ∅ ⇔ [[D]]b 7→b2 〈S〉bD
Theorem 7.3 states that S complies with D according to basic compliance 2 if and only if the following

two requirements are fulfilled:

1. the set of execution traces (i.e., traces(S)) includes at least one trace specified as positive by D (i.e., in
pos.[[D]]b).

2. the set of execution traces does not include any trace specified as negative by D (this is the same
requirement as for 7→b1).

If the first requirement holds for a subset of the execution traces, then obviously it will also hold for the
complete set of traces. This means that a positive procedure verdict for 7→b2 in step 3 is guaranteed to be
correct for the system S in exactly the same cases as for 7→b1, i.e.:

P b2
pos(D,T) def= neg .[[D]]b = ∅ (23)

Theorem 7.3 also tells us that there are two ways in which S may not be in basic compliance 2 with D.
The first possibility is that the set of execution traces includes at least one trace specified as negative by D
(i.e., neg .[[D]]b ∩ traces(S) 6= ∅). From Section 7.2.1, we know that in this case, basic compliance 1 will not
hold either, and the procedure verdict in step 3 is guaranteed to be correct.

The second possibility of non-compliance with respect to 7→b2 is if the set of execution traces does not
include any of the traces specified as positive by D. However, without access to the complete set of execution
traces, the system may include a trace specified as positive by D even if such a trace is not found in the
given subset T . As a result, if basic compliance 2 does not hold for T , then this verdict is guaranteed to be
correct for the system S only if D specifies no truly positive traces (i.e., traces that are positive without also
being negative), in which case 7→b2 cannot possibly hold for any system at all. As a result, we get:

P b2
neg(D,T) def= [[D]]b 67→b1 〈T 〉bD ∨ pos.[[D]]b \ neg .[[D]]b = ∅ (24)

If P b2
neg does not hold, one should try to extend T with traces specified as truly positive by D. If no

such trace is found, then basic compliance 2 most likely does not hold. On the other hand, if one truly
positive trace is revealed, the procedure verdict in step 3 will change to positive. The situation will then be
as described above, where one should look for traces specified as negative by D in order to obtain increased
confidence in the positive verdict.

18 R. K. Runde, A. Refsdal and K. Stølen

7.2.3. Predicates and Guidelines for Basic Compliance 3

Theorem 7.4 (Condition for 7→b3).

traces(S) ⊆ pos.[[D]]b \ neg .[[D]]b ⇔ [[D]]b 7→b3 〈S〉bD
Theorem 7.4 states that S complies with D according to basic compliance 3 if and only if all execution

traces (i.e., traces(S)) are specified as truly positive by D. With only a subset of traces(S) at hand, this
requirement can only be established with certainty if every possible trace (i.e., all traces in H) is specified
as truly positive by D, in which case traces(S) ⊆ pos.[[D]]b \ neg .[[D]]b will be trivially true for all systems
S. Hence:

P b3
pos(D,T) def= pos.[[D]]b \ neg .[[D]]b = H (25)

If P b3
pos does not hold, one should try to extend T with traces that are not specified as truly positive by

D, i.e., traces that D specifies as negative or inconclusive. If no such trace is found, then basic compliance 3
can be assumed with high confidence. On the other hand, if one negative or inconclusive trace is found, the
procedure verdict in step 3 will change to negative. As will be described next, this verdict is guaranteed to
be correct, and the system S will not be in basic compliance 3 with D.

Theorem 7.4 implies that if basic compliance 3 does not hold, this will be because the set of execution
traces is not a subset of the traces specified as truly positive by D. This will always be the case if no traces
are specified as truly positive by D, in which case traces(S) 6⊆ (pos.[[D]]b \ neg .[[D]]b) will be trivially
true as any real system S has at least one trace. Also, if basic compliance 3 is found not to hold for a
non-empty subset of the execution traces, this will be because at least one of those traces are not specified
as truly positive by D. Hence, the system S is known to include a trace that is not allowed by D, and basic
compliance 3 cannot hold. Together, this gives:

P b3
neg(D,T) def= pos.[[D]]b \ neg .[[D]]b = ∅ ∨ T 6= ∅ (26)

In practice, P b3
neg will always hold as the second disjunct (T 6= ∅) gives that it is sufficient to know

at least one of the execution traces to conclude that a negative procedure verdict is correct also for the
complete system. As a result, if step 3 of the compliance checking procedure gives a negative verdict for
basic compliance 3, the conclusion will in practice always be that the system S is not in basic compliance 3
with D.

7.3. Predicates and Guidelines for Sequence Diagrams with Inherent
Nondeterminism and Underspecification

Similar to what we did for basic compliance in the previous section, we now present the predicates and
guidelines to be used when working with the general and limited compliance relations defined in Section 6.2,
i.e., the compliance relations that may be used for relating computer systems to sequence diagrams containing
inherent nondeterminism in addition to underspecification.

7.3.1. Predicates and Guidelines for General Compliance 1

Theorem 7.5 (Certainty of positive verdicts using 7→g1).

T ⊆ traces(S) ∧ [[D]]g 7→g1 〈T 〉gD ⇒ [[D]]g 7→g1 〈S〉gD
Theorem 7.5 states that in order to show that S complies with D according to general compliance 1, it

is sufficient to find a subset T of traces(S) such that this subset complies with D. This means that with a
positive verdict for 7→g1 in step 3 of the procedure, we are again in an ideal situation where this verdict is
guaranteed to be correct even when only a subset of the execution traces is known. This is due to the fact
that general compliance 1 interprets the partiality of sequence diagrams to mean that as long as S reflects
every interaction obligation in D, any additional behaviour is also allowed. Thus, no additional guidelines
for step 5 are needed, and we get:

P g1
pos(D,T) def= true (27)

Relating Computer Systems to Sequence Diagrams 19

Positive verdict in procedure step 3 Negative verdict in procedure step 3

Formal P g1
pos : true P g1

neg : ∃(p, n) ∈ [[D]]g : n = H
predicate P g2

pos : true P g2
neg : ∃(p, n) ∈ [[D]]g : p \ n = ∅

Informal P g1
pos : Definitive. P g1

neg : Definitive if there exists an interaction obligation for D
explanation where all traces are specified as negative.
of predicate P g2

pos : Definitive. P g2
neg : Definitive if there exists an interaction obligation for D

where no traces are specified as truly positive.

Guidelines P g1
pos : (No guideline needed.) P g1

neg : For each interaction obligation for D, look for traces
for procedure that are specified as non-negative.
step 5 P g2

pos : (No guideline needed.) P g2
neg : For each interaction obligation for D, look for traces

that are specified as truly positive.

Table 2. Overview of predicates and guidelines for general compliance 1 and 2

Theorem 7.6 (Condition for 67→g1).

∃(p, n) ∈ [[D]]g : traces(S) ⊆ n⇔ [[D]]g 67→g1 〈S〉gD
Theorem 7.6 states that in order to show that S does not comply with D according to general compli-

ance 1, it is necessary and sufficient to show that there exists an interaction obligation (p, n) in [[D]]g where
all of the execution traces (i.e., traces(S)) are specified as negative. However, this can only be established
from a subset of the execution traces if there exists an interaction obligation where every possible trace is
specified as negative. If such an interaction obligation exists, traces(S) ⊆ n will be trivially true for any
system S and general compliance 1 can never hold. Hence:

P g1
neg(D,T) def= ∃(p, n) ∈ [[D]]g : n = H (28)

When P g1
neg does not hold, one should focus on each of the interaction obligations for the specification,

one at a time, and try to extend T with traces that are non-negative in that obligation. If it is possible to
find one non-negative trace for each interaction obligation in the specification, the verdict in step 3 of the
procedure will change to positive, which by Theorem 7.5 is guaranteed to be correct for any system S having
T among its set of execution traces.

7.3.2. Predicates and Guidelines for General Compliance 2

Theorem 7.7 (Certainty of positive verdicts using 7→g2).

T ⊆ traces(S) ∧ [[D]]g 7→g2 〈T 〉gD ⇒ [[D]]g 7→g2 〈S〉gD
As in the case of general compliance 1, general compliance 2 requires the system to be able to produce

some specific traces, but any other execution trace is allowed as well. This is captured in Theorem 7.7, which
states that if a subset of the execution traces results in a positive verdict for 7→g2 in step 3 of the procedure,
then the existence of additional execution traces is of no importance, the conclusion will always be that S is
in general compliance 2 with D. Again we are in the ideal situation, where no additional guideline is needed
and we get:

P g2
pos(D,T) def= true (29)

Theorem 7.8 (Condition for 67→g2).

∃(p, n) ∈ [[D]]g : traces(S) ∩ (p \ n) = ∅ ⇔ [[D]]g 67→g2 〈S〉gD
From Theorem 7.8 we get that in order to show that S does not comply with D according to general

compliance 2, it is necessary and sufficient to find an interaction obligation in [[D]]g where none of the
execution traces are specified as truly positive (i.e., positive without also being negative). With only a subset
of the execution traces available, this can only be established with certainty if the obligation specifies no
truly positive traces (i.e., p \ n = ∅), in which case none of the additional execution traces will ever be able

20 R. K. Runde, A. Refsdal and K. Stølen

to contradict traces(S) ∩ (p \ n) = ∅. (This situation is similar to the second possibility of non-compliance
for basic compliance 2 in Section 7.2.2). Hence:

P g2
neg(D,T) def= ∃(p, n) ∈ [[D]]g : p \ n = ∅ (30)

When P g2
neg does not hold, one should focus on the interaction obligations for D, one at a time, and look

for traces that are specified as truly positive in that obligation. If it is revealed that the execution traces
include at least one truly positive trace from each of the interaction obligations in D, the verdict for 7→g2

in step 3 will change to positive. By Theorem 7.7, this verdict will then be assuredly correct even if the
complete set of execution traces is still not known.

7.3.3. Predicates and Guidelines for Limited Compliance 1

Theorem 7.9 (Condition for 7→l1).

[[D]]g 7→g1 〈S〉gD ∧ traces(S) ∩
⋂

(p,n)∈[[D]]g

n = ∅ ⇔ [[D]]g 7→l1 〈S〉gD

Theorem 7.9 states that S complies with D according to limited compliance 1 if and only if the following
two requirements are fulfilled:

1. S complies with D according to general compliance 1.
2. the set of execution traces does not include any trace specified by D as globally negative (i.e., negative

in all interaction obligations).

From Section 7.3.1 we know that if general compliance 1 holds for a subset of the execution traces,
it will also hold for the system S. For the second requirement above, this can only be established from a
proper subset of the execution traces if D specifies no globally negative traces, in which case traces(S) ∩⋂

(p,n)∈[[D]]g n = ∅ will be trivially true. Consequently:

P l1
pos(D,T) def=

⋂
(p,n)∈[[D]]g

n = ∅ (31)

If P l1
pos does not hold, one should try to extend T with traces that are specified as globally negative by D.

If it is revealed that the system S may produce one such trace, the verdict in step 3 will change to negative,
and in this case, the negative verdict is guaranteed to be correct for S as explained below.

Theorem 7.9 also tells us that there are two cases that result in a negative procedure verdict for limited
compliance 1. The first case is when general compliance 1 does not hold either. In this situation, we know
from Section 7.3.1 that the verdict in step 3 is guaranteed to be correct only if there exists an interaction
obligation for the specification where all possible traces are specified as negative. The second case leading
to a negative procedure verdict for 7→l1 is when one of the known execution traces is specified as globally
negative by D. Together, this gives:

P l1
neg(D,T) def= T ∩

⋂
(p,n)∈[[D]]g

n 6= ∅ ∨ ∃(p, n) ∈ [[D]]g : n = H (32)

If P l1
neg does not hold, and the verdict in step 3 is negative because general compliance 1 does not hold

for the given subset of execution traces, the guideline provided for a negative verdict for 7→g1 in Table 2
should be used in order to increase the confidence in the negative verdict or, alternatively, achieve a positive
verdict for 7→g1 instead (which we know from Section 7.3.1 is guaranteed to be correct).

If, on the other hand, P l1
neg does not hold and the verdict in step 3 is negative due to the second case

above (regardless of whether 7→g1 holds or not), any system S containing that particular globally negative
trace as one of its execution traces will be non-compliant with the specification according to 7→l1. In this
situation, then, no additional guideline is needed.

Relating Computer Systems to Sequence Diagrams 21

Positive verdict in procedure step 3 Negative verdict in procedure step 3

Formal P l1
pos :

T
(p,n)∈[[D]]g n = ∅ P l1

neg : T ∩
T

(p,n)∈[[D]]g n 6= ∅ ∨ ∃(p, n) ∈ [[D]]g : n = H
predicate P l2

pos :
S

(p,n)∈[[D]]g (p \ n) = H P l2
neg : T 6⊆

S
(p,n)∈[[D]]g (p \ n) ∨ ∃(p, n) ∈ [[D]]g : p \ n = ∅

Informal P l1
pos : Definitive if D specifies no globally P l1

neg : Definitive if the known subset T contains a trace
explanation negative traces. specified by D as globally negative, or if there exists
of predicate an interaction obligation for D where all traces are

specified as negative.
P l2

pos : Definitive if every possible trace is P l2
neg : Definitive if the known subset T contains a trace that

specified as truly positive in at least is not truly positive in any interaction obligation for
one interaction obligation for D. D, or there exists an obligation where no traces are

truly positive.

Guidelines P l1
pos : Look for traces that are specified as P l1

neg : For each interaction obligation for D, look for traces
for procedure globally negative by D. that are non-negative.
step 5 P l2

pos : Look for traces that are not P l2
neg : For each interaction obligation for D, look for traces

specified as positive in any that are specified as truly positive.
interaction obligation for D.

Table 3. Overview of predicates and guidelines for limited compliance 1 and 2

7.3.4. Predicates and Guidelines for Limited Compliance 2

Theorem 7.10 (Condition for 7→l2).

[[D]]g 7→g2 〈S〉gD ∧ traces(S) ⊆
⋃

(p,n)∈[[D]]g

(p \ n)⇔ [[D]]g 7→l2 〈S〉gD

Theorem 7.10 states that S complies with D according to limited compliance 2 if and only if the following
two requirements are fulfilled:

1. S complies with D according to general compliance 2.
2. each of the execution traces are specified by D as truly positive in at least one interaction obligation (not

necessarily the same).

From Section 7.3.2 we know that general compliance 2 is guaranteed to hold for the system S if it holds
for a subset of the execution traces. However, without knowing the complete set of execution traces, the
second requirement above can only be established if every possible trace is specified by D as positive in at
least one interaction obligation. Consequently:

P l2
pos(D,T) def=

⋃
(p,n)∈[[D]]g

(p \ n) = H (33)

If P l2
pos does not hold, one should try to extend T with traces that are not specified by D as truly positive

in any of the interaction obligations. If it is revealed that the system is able to produce one such trace, the
verdict in step 3 will change to negative, which in this case is guaranteed to be correct (see below).

Theorem 7.10 also tells us that there are two cases that result in a negative verdict for limited compliance 2
in step 3 of the procedure. The first case is when general compliance 2 also results in a negative verdict in
step 3, which we know from Section 7.3.2 is guaranteed to be correct only if there exists an interaction
obligation for D where no traces are specified as truly positive. The second case leading to a negative verdict
for 7→l2 is when one of the known execution traces is not specified as truly positive in any of the interaction
obligations in D. Together, this gives:

P l2
neg(D,T) def= T 6⊆

⋃
(p,n)∈[[D]]g

(p \ n) ∨ ∃(p, n) ∈ [[D]]g : p \ n = ∅ (34)

.
In the same manner as for limited compliance 1, if P l2

neg does not hold and the verdict for limited
compliance 2 in step 3 is negative due to the fact that general compliance 2 does not hold for the given
subset of execution traces, the guideline provided for a negative verdict for 7→g2 in Table 2 should be used.

22 R. K. Runde, A. Refsdal and K. Stølen

If P l2
neg does not hold and the verdict is negative due to one of the subset traces not being specified as

truly positive in any of the interaction obligations for D (regardless of whether 7→g2 holds or not), the system
S is guaranteed to be non-compliant with D according to 7→l2 and no additional guideline is needed.

8. Related Work

To the best of our knowledge, there is no other paper treating the relationship between computer systems
and sequence diagrams as thoroughly as we do in this paper. The closest is the work by Cengarle and Knapp
in [CK04], which defines a notion of implementation that has inspired our notion of basic compliance 2.
In contrast to all of the refinement notions given in this paper, [CK04] allows positive traces to become
inconclusive. However, this refinement notion does not give monotonicity for all of the composition operators.
Therefore, a restricted refinement notion is defined where the set of positive traces is kept unchanged (i.e.,
the only possible refinement step is supplementing traces as negative). With this restriction, monotonicity
is achieved.

Inherent nondeterminism is not treated in [CK04]. In fact, the distinction between inherent nondetermin-
ism and underspecification that allows us to abstract trace-set properties and plays such a fundamental role
in our approach is hardly reflected in most other approaches. There are however some notable exceptions.
We believe our work on compliance is also of significance for these. We now go through these approaches in
more detail.

In the work by Krüger [Krü00], a variant of Message Sequence Charts (MSC) is given a formal semantics
and provided a formal notion of refinement. Four different interpretations of MSC are proposed, referred to
as the existential, universal, exact, and negative interpretation. The existential interpretation requires the
fulfilment of the MSC in question by at least one system execution, while the universal interpretation requires
the fulfilment of the MSC in all executions. The exact interpretation is a strengthening of the universal
interpretation by explicitly prohibiting behaviours other than the ones specified by the MSC. Finally, the
negative interpretation requires that no execution is allowed to fulfil the MSC. Three notions of refinement
are defined, referred to as property, message, and structural refinement. Property refinement corresponds to
the classical notion of refinement as reverse set inclusion, i.e., the removal of underspecification by reducing
the possible behaviour of the system. Message refinement is to replace a single message with a sequence of
messages, while structural refinement means to decompose an instance (i.e., a lifeline), with a set of instances.

The exact interpretation is similar to our notion of basic compliance 3, while the existential interpretation
is particularly interesting in our context as it may capture trace-set properties in much the same way as we
do with inherent nondeterminism and general compliance. As shown in [Krü00], a system that fulfils an MSC
specification under the universal, exact, or negative interpretation also fulfils specifications that are property
refinements of the original specification. This is, however, not the case for the existential interpretation,
which means that trace-set properties are not preserved under refinement.

Uchitel et al. [UBC07] present a technique for generating Modal Transition Systems (MTSs) from a
specification given as a combination of system properties and scenario specifications. System properties,
such as safety or liveness properties, are universal as they impose requirements on all of the execution traces,
and are in [UBC07] specified in Fluent Linear Temporal Logic. Scenario specifications are existential as
they provide examples of intended system behaviour, and are specified in the form of MSC. An MTS is a
behaviour model with the expressiveness to distinguish between required, possible, and proscribed behaviour.
The method for generating MTSs from properties and scenarios ensures that all system behaviours satisfy
the properties while the system may potentially fulfil all the scenarios. Furthermore, both composition and
refinement of behaviour models preserve the original properties and scenarios. With this approach, MSC can
be utilized to capture trace-set properties and preserve these under refinement. However, as opposed to our
approach, [UBC07] is not a pure interaction based development process, and the use of MSC is restricted to
the existential interpretation.

Live sequence charts (LSC) [DH01, HM03] is an extension of MSC that particularly address the issue
of expressing liveness properties. LSC support the specification of two types of diagrams, referred to as
existential and universal diagrams. An existential diagram describes an example scenario that must be
satisfied by at least one execution trace, whereas the scenario described by a universal diagram must be
satisfied by all execution traces. Universal charts can furthermore be specified as conditional scenarios by
the specification of a prechart that, if successfully fulfilled by an execution trace, requires the fulfilment
of the scenario described in the chart body. The universal/existential distinction is a distinction between

Relating Computer Systems to Sequence Diagrams 23

mandatory and provisional behaviour, respectively. Such a distinction is also made between elements of a
single LSC by characterizing these as hot or cold, where a hot element is mandatory and a cold element is
provisional.

LSC seem to have the expressiveness needed for trace-set properties by the use of existential diagrams.
Obviously, falsification of requirements expressed by an existential diagram cannot be done by a single
execution trace. However, a system development in LSC is intended to undergo a shift from an existential
view in the initial phases to a universal view in later stages as knowledge of the system evolves. Such a
development process with LSC will generally not preserve trace-set properties. Moving from an existential
view to a universal view can be understood as a form of refinement, but LSC is not supported by a formal
notion of refinement.

Modal sequence diagrams (MSD) [HM08] is defined as a UML 2.x profile. The notation is an extension
of the UML sequence diagram notation based on the universal/existential distinction of LSC. The main
motivation for the development of the MSD language is the problematic definitions of the assert and negate
constructs of UML sequence diagrams. The authors observe that the UML 2.x specification is contradictory
in the definition of these constructs, and also claim that the UML trace semantics of valid and invalid traces
is inadequate for properly supporting an effective use of the constructs.

The semantics for MSDs is basically the same as for LSC. The main difference is that the LSC prechart
construct is left out. Instead, a more general approach is adopted where cold fragments inside universal
diagrams serve the purpose of a prechart. A cold fragment is not required to be satisfied by all execution
traces, but if it is satisfied, it requires the satisfaction of the subsequent hot fragment. With respect to
capturing trace-set properties and preserving these under refinement, the situation is the same as for LSC.
It is in [HM08] indicated that existential diagrams should be kept in the specification as the development
process evolves and that universal diagrams are gradually added. With such an approach, trace-set properties
might be preserved.

In [CF04, CF05], Cavarra and Küster-FIlipe present an operational semantics for UML 2.x sequence
diagrams inspired by LSC. Liveness properties are expressed by adding OCL (Object Constraint Language
[OMG06]) constraints to the sequence diagrams. This makes it possible to distinguish between may and
must behaviour, and between universal and existential diagrams. The semantics is formalized using abstract
state machines. Choices are essentially treated as nested if-then-else statements, and may not be used for
underspecification or inherent nondeterminism.

A continuation of this work may be found in [Fil06, Bow06], where Küster-Filipe gives an LSC inspired
denotational semantics of UML 2.x sequence diagrams based on partially ordered sets. These are used to
build event structures, and modal logic constraints over the event structures are used to express negative
behaviour, as well as must and may behaviour. The only notion of refinement discussed in these approaches
is referencing, i.e., structural decomposition.

Triggered message sequence charts (TMSC) [SC06] is an approach in the family of MSC that is related to
our approach in several ways. The development of TMSC is motivated by the fact that MSC does not have
the expressiveness to define conditional scenarios, i.e., that one interaction (the triggering scenario) requires
the execution of another (the action scenario), that MSC does not formally define a notion of refinement,
and that MSC lacks structuring mechanisms that properly define ways of grouping scenarios together.

The triggering scenarios of TMSC are closely related to the precharts of LSC. An important semantic
difference, however, is that whereas LSC synchronizes at the beginning of precharts and main charts, TMSC
is based on weak sequencing in the spirit of MSC. TMSC includes composition operators for sequential com-
position, recursion (similar to loop), and parallel composition. The most interesting composition operators
in the context of this paper, however, are delayed choice and internal choice. Both operators take a set of
diagrams as operands and define a choice between these. Internal choice is an operator similar to the alt
operator and defines underspecification. An implementation that can execute only one of the operands is
a correct implementation. Delayed choice, on the other hand, is an operator somewhat related to our xalt
operator where a correct implementation must provide all the choices defined by the specification. However,
as opposed to inherent non-determinism captured by the xalt operator, a delayed choice is not made until a
given execution forces it to be made.

It is observed in [SC06] that the simple trace-set semantics of MSC does not have the expressiveness to
distinguish between optional and required behaviour, which means that a heterogeneous mix of these in the
specification is not supported. Such a mix is supported in our approach, syntactically by the alt operator for
underspecification and the xalt operator for inherent non-determinism, semantically by the set of interaction
obligations. The semantics of TMSC is defined in terms of so-called acceptance trees. Acceptance trees record

24 R. K. Runde, A. Refsdal and K. Stølen

the traces that are defined by a specification, but also distinguish between required and optional behaviour.
Importantly, the semantics of TMSC supports a notion of refinement that preserves the required behaviour
and gives freedom with respect to optional behaviour.

[SC06] stress that refinement should preserve properties such as safety and liveness. These properties
are trace properties, and the issue of capturing trace-set properties and preserving these under refinement
is not discussed. However, by the semantics of the delayed choice operator and the fact that this type of
choice is preserved under refinement, TMSC seem to have the expressiveness to capture and preserve trace-
set properties. Like the refinement relations given in this paper, refinement of TMSC is compositional, i.e.,
composition of specifications is monotonic with respect to refinement. An important difference between our
approach and TMSC is that the latter does not support the specification of negative behaviour. This also
means that with TMSC there is no notion of inconclusive behaviour; a system specification defines a set of
valid traces, and all other traces are invalid.

Grosu and Smolka [GS05] interpret positive and negative sequence diagrams as specifying liveness and
safety properties, respectively. This is a much stronger interpretation than the traditional use of sequence
diagrams for illustrating example runs. Based on several transformation steps, the semantics of sequence
diagrams is defined as two Büchi automata, one for the positive and one for the negative behaviour. The
approach is based on composing simple sequence diagrams without composition operators into high-level
sequence diagrams, i.e., interaction overview diagrams. A valid trace is allowed to have any suffix, and
events not explicitly mentioned in the diagram may be interleaved with the specified events. Refinement is
defined as language inclusion, and the most common composition operators are shown to be monotonic with
respect to this refinement notion.

Another operational semantics for sequence diagrams is given by Knapp and Wuttke in [KW07]. In
contrast to [GS05], a single interaction automaton is created for the entire diagram. To simplify this process,
negation and loop may only be applied to simple diagrams, and a simpler variation of loop is introduced,
where loop iterations are sequenced by strict rather than weak sequencing. Synchronization is also used
between lifelines before entering a choice. No notion of refinement is included in [KW07], neither is there a
distinction between underspecification and inherent nondeterminism.

Störrle [Stö03] is one of the few approaches where alternatives are interpreted as must, similar to our xalt
operator for specifying inherent nondeterminism. Refinement means adding new traces to the specification.
Reducing underspecification is not an issue in [Stö03], as there is no treatment of underspecification in the
semantics. However, refinement also includes adding new events to the traces.

There exists also other works on the semantics of sequence diagrams. However, to the best of our knowl-
edge none of these include a distinction between underspecification and inherent nondeterminism or work on
refinement and the relationship between computer systems and sequence diagrams. In general, the semantics
is also far from the informal description given in the UML 2.x semantics. Overviews of different semantics
of sequence diagrams may be found in [LRS10] and [MW10], including the works discussed above and also
others.

Underspecification and nondeterminism have been important issues also in other specification formalisms.
In the setting of algebraic specifications, Walicki and Meldal [WM01] argue for using explicit nondeterminism
in cases where underspecification might in fact lead to overspecification. However, the resulting system may
still be deterministic. In [LAMB89], Larsen et al made a similar distinction in VDM-SL when interpreting
looseness in specifications, i.e., specifications allowing alternative behaviours. Looseness in function defini-
tions is interpreted as underdeterminedness (i.e., underspecification), meaning that the exact definition is
chosen at implementation time. Looseness in operations is interpreted as nondeterminism where the choice
may be delayed until run-time, meaning that the final system may be either deterministic or nondeterministic.

In CSP [Hoa85, Ros98], there are two different operators for nondeterminism, referred to as internal and
external nondeterminism, respectively. With internal nondeterminism, the system is free to choose whether
it should offer all alternatives or only one (or some) of them. The choice may be performed at run-time,
making the system nondeterministic, but the choice may also be made by the implementer, resulting in
a deterministic system. For external nondeterminism (also called environmental choice), the behaviour is
determined by the environment and the system must be able to perform all alternatives.

In the refinement calculus [BvW98], Back and von Wright make a similar distinction between angelic
and demonic choice. An angelic choice is a choice that is made by the system with the goal of establishing
a given postcondition. This means that if the behaviours are similar up to some point, the choice between
them may be deferred as long as possible in order to increase the chances of obtaining the desired end result.
On the other hand, a demonic choice is assumed to be resolved by an environment with another goal. Hence,

Relating Computer Systems to Sequence Diagrams 25

the system may only guarantee the given postcondition if that condition may be established for all of the
demonic alternatives.

Steen et al [SBDB97] extend the process algebraic language LOTOS [ISO89] with a disjunction opera-
tors for specifying implementation freedom (i.e., underspecification), leaving the traditional LOTOS choice
operator to be used for inherent nondeterminism. With this new disjunction operator, exactly one of the al-
ternatives may be implemented, in contrast to the usual interpretation of underspecification that also allows
implementations with several of the alternative behaviours.

Looking outside the scope of specifications expressed as sequence diagrams, there are also numerous works
that address testing related to formal specifications, and we now present a few of these. In [Gau95], Gaudel
introduces a theory of testing based on algebraic specifications and briefly reports on some case studies and
experiments related to the theory. The theory defines formally concepts like test, (successful) test experiment,
unbias (meaning that correct programs are not rejected) and validity (meaning that only correct programs
are accepted). To deal with the fact that an exhaustive test set is generally infinite, the theory allows selection
hypotheses to be defined under which a verdict can be reached from a finite test set. The choice of selection
hypothesis determines what tests should be included in the test set and should be guided by the specification.
Weakening the selection hypothesis implies increasing the test set and corresponds to extending the set of
known traces in our approach. Hence, our guidelines for extending the set of known traces – which are also
guided by the specification – correspond to guidelines for choice of selection hypothesis.

Lee and Yannakakis [LY96] present a survey of methods for testing finite state machines. Five different
fundamental problems of testing related to state machines are presented, but the one of most interest in
our context is conformance testing. Here, the task is to test whether an implementation represented by a
black box, i.e., an unknown finite state machine where only I/O behaviour can be observed, conforms to a
specification state machine. This amounts to finding a so-called checking sequence for the specification state
machine. A checking sequence is an input sequence that under certain assumptions (for example about the
number of states of the implementation) distinguishes the specification from all other state machines. The
paper presents and discusses a number of different methods and heuristics for effectively finding checking
sequences.

In [Tre99], Tretmans presents a framework for testing based on formal specifications. The goal is to link
the informal world of actual implementations and tests to the formal world of specifications and models.
Unlike [Gau95], [LY96] and the approach presented in this paper, the framework in [Tre99] is generic in
the sense that it is not tied to any particular specification language. Concepts like conformance, testing,
sound/exhaustive test suites and test derivation are defined at a generic level. After presenting the generic
framework, Tretmans shows how it can be instantiated for labelled transition system specifications, and
presents an algorithm for derivation of test cases for such specifications that are sound in the sense that
a conforming implementation will never get a negative verdict. An interesting exercise would be to try to
apply the framework to our approach, although this is beyond the scope of this paper. Lund [LS06, Lun08]
has made use of Tretmans’ framework to test refinement in the setting of STAIRS.

The efficient selection of test cases is investigated from a practical and empirical viewpoint in [JMV04]
by Juristo et al. Although this paper does not really focus on the role of formal specifications with respect to
testing (and some of the approaches even require knowledge of the source code of the implementation), it is
interesting because it aims to compile the existing knowledge and results about testing techniques that have
been tried out, either in the laboratory or in the field, and to evaluate and compare the results. Unfortunately,
the authors conclude that knowledge about testing techniques based on empirical investigations is very
limited. Hopefully, in the future we will see more empirical research on the application of testing based on
formal specifications.

9. Conclusions

If sequence diagrams are to be used as formal specifications, it is important to know how to evaluate whether
a given computer system is compliant with the sequence diagram or not. To the best of our knowledge, our
work is the first to address this in detail. Sequence diagrams are different from most other techniques
for specifying dynamic behaviour in that they usually give only a partial view. When relating computer
systems to sequence diagram specifications, it is crucial to understand exactly how this partiality should be
interpreted.

In this paper, we have proposed a general procedure for checking compliance with respect to two classes

26 R. K. Runde, A. Refsdal and K. Stølen

of sequence diagrams: Sequence diagrams with underspecification, which may be used to capture trace
properties, and sequence diagrams with both inherent nondeterminism and underspecification, which may
also be used to capture trace-set properties. To this end, we have introduced a set of natural compliance
relations, differing with respect to how the partiality of sequence diagrams should be understood. From
these compliance relations, we have derived a set of corresponding refinement relations, and shown that
these relations satisfy the mathematical properties of transitivity and monotonicity that are necessary to
support a stepwise and compositional development process.

The approach is faithful to the UML 2.x standard, both with respect to the underlying semantic model
using sets of positive and negative traces, and with respect to the semantics given for each concrete operator.
In particular, all of our definitions take into account the partial nature of sequence diagrams. The compliance
checking procedure is independent of any particular programming language or paradigm. All we require, is
that there exists some means to obtain (a subset of) the execution traces of the system. Depending on the
known execution traces and the specification, the verdict from applying the procedure may be definitive or
only an indication of whether compliance holds or not. We have defined predicates distinguishing precisely
between these two cases, and given methodological advice for how to proceed in order to obtain increased
confidence in the verdict.

In this paper we have only considered sequence diagrams without external input and output. Our results
may be generalized to handle also sequence diagrams with such external communication by in each case
defining an adversary representing the environment of the system, and then checking compliance under the
assumption of this adversary.

We plan to generalize our approach to handle probabilistic choice, where the different alternatives are
provided with a set of probabilities specifying how often that alternative should be chosen. See [RRS07] for
a first step in this direction.

To make practical use of the theoretical work presented in this paper, tool support is obviously needed.
We have plans to extend the Escalator tool developed by Lund [Lun08, Lun09] to facilitate testing according
to our procedure and guidelines. This will furthermore allow us to investigate the feasibility and usefulness
of the proposed procedure in empirical studies.

Acknowledgement

The research on which this paper reports has been partly carried out within the context of the IKT-2010
project SARDAS (15295/431) and the IKT SOS project ENFORCE (164382/V30), both funded by the
Research Council of Norway. We thank the other members of the SARDAS project for useful discussions
related to this work.

References

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21(4):181–185, 1985.
[Bow06] Juliana Küster Filipe Bowles. Decomposing interactions. In Algebraic Methodology and Software Technology

(AMAST 2006), volume 4019 of LNCS, pages 189–203. Springer, 2006.
[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive Systems: Focus on Streams, Inter-

faces, and Refinement. Springer, 2001.
[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction. Springer, 1998.
[CF04] Alessandra Cavarra and Juliana Küster Filipe. Formalizing liveness-enriched sequence diagrams using ASMs. In

Abstract State Machines (ASM 2004), volume 3052 of LNCS, pages 62–77. Springer, 2004.
[CF05] Alessandra Cavarra and Juliana Küster Filipe. Combining sequence diagrams and OCL for liveness. Electronic

Notes in Theoretical Computer Science, 115:19–38, 2005.
[CK04] María Victoria Cengarle and Alexander Knapp. UML 2.0 interactions: Semantics and refinement. In Proceedings 3rd

International Workshop on Critical Systems Development with UML (CSDUML’04), Technical report TUM-I0415,
pages 85–99. Institut für Informatik, Technische Universität München, 2004.

[DH01] Werner Damm and David Harel. LSC’s: Breathing life into message sequence charts. Formal Methods in System
Design, 19(1):45–80, 2001.

[Fil06] Juliana Küster Filipe. Modelling concurrent interactions. Theoretical Computer Science, 351(2):203–220, 2006.
[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Theory And Practice of Software Development (TAP-

SOFT’95), volume 915 of LNCS, pages 82–96. Springer, 1995.
[GS05] Radu Grosu and Scott A. Smolka. Safety-liveness semantics for UML 2.0 sequence diagrams. In Proceedings Ap-

plications of Concurrency to System Design (ACSD’05), pages 6–14. IEEE Computer Society, 2005.

Relating Computer Systems to Sequence Diagrams 27

[HHRS05] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. STAIRS towards formal design with
sequence diagrams. Software and Systems Modeling, 4(4):349–458, 2005.

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer, 2003.

[HM08] David Harel and Shahar Maoz. Assert and negate revisited: modal semantics for UML sequence diagrams. Software
and Systems Modeling, 7(2):237–252, 2008.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[HS03] Øystein Haugen and Ketil Stølen. STAIRS — Steps to analyze interactions with refinement semantics. In The

Unified Modeling Language. Modeling Languages and Applications (UML 2003), volume 2863 of LNCS, pages
388–402. Springer, 2003.

[ISO89] International Standards Organization. Information Processing Systems – Open Systems Interconnection – LOTOS
– a Formal Description Technique Based on the Temporal Ordering of Observational Behaviour – ISO 8807, 1989.

[Jac89] Jeremy Jacob. On the derivation of secure components. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 242–247, 1989.

[JMV04] Natalia Juristo, Ana María Moreno, and Sira Vegas. Reviewing 25 years of testing technique experiments. Empirical
Software Engineering, 9(1–2):7–44, 2004.

[Jür01] Jan Jürjens. Secrecy-preserving refinement. In Formal Methods for Increasing Software Productivity (FME 2001),
volume 2021 of LNCS, pages 135–152. Springer, 2001.

[Krü00] Ingolf Heiko Krüger. Distributed System Design with Message Sequence Charts. PhD thesis, Technische Universität
München, 2000.

[KW07] Alexander Knapp and Jochen Wuttke. Model checking of UML 2.0 interactions. InModels in Software Engineering,
volume 4364 of LNCS, pages 42–51. Springer, 2007.

[LAMB89] Peter Gorm Larsen, Michael Meincke Arentoft, Brian Q. Monahan, and Stephen Bear. Towards a formal semantics
of the BSI/VDM specification language. In Information processing 89: Proceedings IFIP 11th World Computer
Congress, pages 95–100. Elsevier, 1989.

[LRS10] Mass Soldal Lund, Atle Refsdal, and Ketil Stølen. Semantics of UML models for dynamic behavior. A survey of
different approaches. In Model-Based Engineering of Embedded Real-Time Systems, volume 6100 of LNCS, pages
77–103. Springer, 2010.

[LS06] Mass Soldal Lund and Ketil Stølen. Deriving tests from UML 2.0 sequence diagrams with neg and assert. In
Proceedings 1st International Workshop on Automation of Software Test (AST’06), pages 22–28. ACM Press,
2006.

[Lun08] Mass Soldal Lund. Operational analysis of sequence diagram specifications. PhD thesis, University of Oslo, 2008.
[Lun09] Mass Soldal Lund. Model-based testing with the Escalator tool. Telektronikk, 105(1):117–125, 2009.
[LY96] David Lee and Mihalis Yannakakis. Principles and methods of testing finite state machines – a survey. Proc. IEEE,

84(8):1090–1123, 1996.
[MW10] Zoltán Micskei and Hélène Waeselynck. The many meanings of UML 2 sequence diagrams: a survey. Software and

Systems Modeling, Online First:1–26, 2010.
[OMG06] Object Management Group. Object Constraint Language 2.0, document: formal/2006-05-01 edition, 2006.
[OMG10] Object Management Group. UML 2.3 Superstructure Specification, document: formal/2010-05-05 edition, 2010.
[RHS05a] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. How to transform UML neg into a useful construct. In

Proceedings Norsk Informatikkonferanse (NIK 2005), pages 55–66. Tapir, 2005.
[RHS05b] Ragnhild Kobro Runde, Øystein Haugen, and Ketil Stølen. Refining UML interactions with underspecification and

nondeterminism. Nordic Journal of Computing, 12(2):157–188, 2005.
[Ros95] Bill Roscoe. CSP and determinism in security modelling. In Proceedings 1995 IEEE Symposium on Security and

Privacy, pages 114–127. IEEE Computer Society Press, 1995.
[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.
[RRS07] Ragnhild Kobro Runde, Atle Refsdal, and Ketil Stølen. Relating computer systems to sequence diagrams with

underspecification, inherent nondeterminism and probabilistic choice. Part 2: Probabilistic choice. Technical Report
347, Department of Informatics, University of Oslo, 2007.

[RRS11] Ragnhild Kobro Runde, Atle Refsdal, and Ketil Stølen. Relating computer systems to sequence diagrams — the
impact of underspecification and inherent nondeterminism. Technical Report 410, Department of Informatics,
University of Oslo, 2011.

[SBDB97] Maarten Steen, Howard Bowman, John Derrick, and Eerke Boiten. Disjunction of LOTOS specifications. In Formal
Description Techniques and Protocol Specification, Testing and Verification (FORTE X / PSTV XVII ’97), pages
177–192. Chapman & Hall, 1997.

[SC06] Bikram Sengupta and Rance Cleaveland. Triggered message sequence charts. IEEE Transaction on Software
Engineering, 32(8):587–607, 2006.

[SS06] Fredrik Seehusen and Ketil Stølen. Information flow property preserving transformation of UML interaction
diagrams. In Proceedings Symposium on Access Control Models and Technologies (SACMAT 2006), pages 150–159.
ACM, 2006.

[SSS09] Fredrik Seehusen, Bjørnar Solhaug, and Ketil Stølen. Adherence preserving refinement of trace-set properties in
STAIRS: exemplified for information flow properties and policies. Software and Systems Modeling, 8(1):45–65,
2009.

[Stö03] Harald Störrle. Assert, negate and refinement in UML-2 interactions. In Proceedings 2nd International Workshop
on Critical Systems Development with UML (CSDUML’03), Technical report TUM-I0317, pages 79–93. Institut
für Informatik, Technische Universität München, 2003.

28 R. K. Runde, A. Refsdal and K. Stølen

[Tre99] Jan Tretmans. Testing concurrent systems: a formal approach. In Proceedings 10th International Conference on
Concurrency Theory (CONCUR’99), volume 1664 of LNCS, pages 46–65. Springer, 1999.

[UBC07] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Behaviour model synthesis from properties and scenarios.
In Proceedings 29th Interational Conference in Software Engineering (ISCE’07), pages 34–43. IEEE Computer
Society, 2007.

[WM01] M. Walicki and S. Meldal. Nondeterminism vs. underspecification. In Proceedings Systemics, Cybernetics and
Informatics (ISAS-SCI 2001), pages 551–555. IIIS, 2001.

A. Summary of the STAIRS Semantics for UML 2.x Sequence Diagrams

Formally, a message is a triple (s, tr, re) consisting of a signal s, a transmitter lifeline tr and a receiver
lifeline re.M and L denotes the set of all messages and lifelines, respectively. E denotes the set of all events.
Formally, an event is a pair (k,m) consisting of a kind k (either ! or ?) and a message m. We define the
functions

k._ ∈ E → {!, ?}, tr._ , re._ ∈ E → L

to yield the kind, transmitter and receiver of an event, respectively.

A.1. Sequence Diagrams with Underspecification

As explained in Section 3, the semantic model of the class of sequence diagrams containing only underspec-
ification and not inherent nondeterminsim, is an interaction obligation (p, n) where p is the set of positive
and n the set of negative traces.

Here, we give the definitions of the most central basic composition operators for sequence diagrams in
addition to alt (which was defined in Section 3), namely par, seq and refuse. The operators par and seq are
used for parallel and (weak) sequential composition, respectively. For specifying negative behaviours, we
follow [RHS05a] and use the operator refuse instead of the neg operator used in UML 2.x. Definition of other
operators such as loop and assert may be found in e.g. [RHS05b].

Parallel composition (‖) of two trace sets corresponds to point-wise interleaving of their individual traces.
The ordering of events within each trace is maintained in the result. For sequential composition (%) we require
in addition that for events on the same lifeline, all events from the first trace are ordered before the events
from the second trace. Formally:

s1 ‖ s2
def= {h ∈ H | ∃p ∈ {1, 2}∞ : π2(({1} × E) T© (p, h)) ∈ s1 ∧ π2(({2} × E) T© (p, h)) ∈ s2} (35)

s1 % s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : e.l S©h = e.l S©h1

_ e.l S©h2} (36)

where E is the set of all events; π2 is a projection operator returning the second element of a pair; _ is
the concatenation operator for sequences; and e.l is the set of events that may take place on the lifeline l,
formally defined by:

e.l
def= {e ∈ E | (k.e =! ∧ tr.e = l) ∨ (k.e =? ∧ re.e = l)} (37)

S© and T© are filtering operators for traces and pairs of traces, respectively. E S©h is the trace obtained from
the trace h by removing from h all events that are not in the set of events E. For instance, we have that

{e1, e3} S© 〈e1, e1, e2, e1, e3, e2〉 = 〈e1, e1, e1, e3〉

The operator T© is a generalization of S© filtering pairs of traces with respect to pairs of elements such that
for instance

{(1, e1), (1, e2)} S© (〈1, 1, 2, 1, 2〉, 〈e1, e1, e1, e2, e2〉) = (〈1, 1, 1〉, 〈e1, e1, e2〉)

For formal definitions of S© and T© , see [BS01].
For interaction obligations, parallel composition (‖), sequential composition (%) and refusal (†) are defined

Relating Computer Systems to Sequence Diagrams 29

by:

(p1, n1) ‖ (p2, n2)
def= (p1 ‖ p2, (n1 ‖ p2) ∪ (n1 ‖ n2) ∪ (p1 ‖ n2)) (38)

(p1, n1) % (p2, n2)
def= (p1 % p2, (n1 % p2) ∪ (n1 % n2) ∪ (p1 % n2)) (39)

†(p1, n1)
def= (∅, p1 ∪ n1) (40)

Notice that composing a positive and a negative trace always yields a negative trace, while the result of
composing an inconclusive trace with a positive or negative trace is always inconclusive.

The sequence diagram operators for parallel composition (par), sequential composition (seq) and negative
behaviour (refuse) are then defined by:

[[D1 par D2]] def= [[D1]] ‖ [[D2]] (41)

[[D1 seq D2]] def= [[D1]] % [[D2]] (42)

[[refuse D1]] def= †[[D1]] (43)

In addition to the operators above, the example in Section 4.3 uses the high-level operator veto which is
defined by:

veto D
def= (skip) alt (refuse D) (44)

where skip is the empty diagram with semantics defined by:

[[skip]] def= ({〈〉}, ∅) (45)

Finally, the set Hll(D) used in the definition of the system representation in Section 4.1 is formally defined
by:

Hll(D) def= {h ∈ H | ∀i ∈ N : i > #h ∨ ∃l ∈ ll(D) : h[i] ∈ e.l} (46)

where ll(D) denotes all lifelines in the sequence diagram D, #h is the length of the sequence h, and h[i] is
the i’th element of this sequence.

A.2. Sequence Diagrams with Inherent Nondeterminism and Underspecification

As explained in Section 5, the semantic model of the class of sequence diagrams containing both inherent
nondeterminism and underspecification is a set of interaction obligations.

With this generalized semantic model, we need to lift the definitions for parallel composition (‖), sequen-
tial composition (%), inner union (]) and refusal (†) to sets of interaction obligations:

O1 ‖ O2
def= {o1 ‖ o2 | o1 ∈ O1 ∧ o2 ∈ O2} (47)

O1 % O2
def= {o1 % o2 | o1 ∈ O1 ∧ o2 ∈ O2} (48)

O1] O2
def= {o1] o2 | o1 ∈ O1 ∧ o2 ∈ O2} (49)

†O1
def= {†o1 | o1 ∈ O1} (50)

With these definitions for sets of interaction obligations, the main definitions of the sequence diagram op-
erators par, seq, and refuse (definitions (41)–(43)) and alt (definition (1)) are unchanged, while the semantics
of skip is redefined as:

[[skip]] def= {({〈〉}, ∅)} (51)

