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Abstract: This paper addresses a filtering problem that arises in the design of dynamic
positioning systems for ships and offshore rigs subjected to the influence of sea waves. The
dynamic model of the vessel captures explicitly the sea state as an uncertain parameter. The
proposed adaptive wave filter borrows from maximum likelihood identification techniques. The
general form of the logarithmic likelihood function is derived and the dominant wave frequency
(the uncertain parameter) is identified by maximizing this function. To this effect, a bank of
Kalman filters is used to evaluate the log-likelihood function for different values of the uncertain
parameter. After each identification step a new set of Kalman filters is designed to estimate the
dominant wave frequency with better accuracy. The proposed sea state identification technique
enables adaptive Wave Filtering (WF) and Dynamic Positioning (DP) systems to operate in
different operational conditions and hence, it is a step forward to the development of a so-called
all-year marine estimation and control system. The results are experimentally verified by model
testing a DP operated ship, the Cybership III, under different sea conditions in a towing tank
equipped with a hydraulic wave maker.
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1. INTRODUCTION

The advent of offshore exploration and exploitation at an
unprecedented scale has brought about increasing interest
in the development of Dynamic Positioning (DP) systems
for surface vessels. For this reason, the number of vessels
whose position is regulated by means of DP systems has
significantly increased during the last decades. In deep
waters, Jack-up barges and anchoring systems cannot be
used economically and DP systems are needed to keep
the position and heading of marine structures within pre-
specified excursion limits under expected weather win-
dows. Early DP systems were implemented using PID
controllers. In order to restrain thruster trembling caused
by the wave-induced motion components, notch filters in
cascade with low pass filters were used with the controllers.
However, notch filters restrict the performance of closed-
loop systems because they introduce phase lag around the
crossover frequency, which in turn tends to decrease phase
margin. An improvement in performance was achieved
⋆ This work was supported in part by projects MORPH (EU
FP7 under grant agreement No. 288704) and the FCT [PEst-
OE/EEI/LA0009/2011] and was carried cooperatively by the
Norwegian Marine Technology Research Institute (MARINTEK),
LARSyS-Instituto Superior Técnico (IST), Technical University of
Lisbon, Portugal, and the Centre for Autonomous Marine Operations
and Systems (AMOS); the Norwegian research council is acknowl-
edged as sponsor of MARINTEK and AMOS.

by exploiting more advanced control techniques based
on optimal control and Kalman filter (KF) theory, see
Balchen et al. (1976). These techniques were later mod-
ified and extended in Sælid et al. (1983); Sørensen et al.
(1996); Grøvlen and Fossen (1996); Torsetnes et al. (2004);
Nguyen et al. (2007); Hassani et al. (2012), and Hassani
et al. (2013c). For a survey of dynamic positioning control
systems, see Hassani et al. (2012, 2013c), and Sørensen
(2011) and the references therein. One of the most fruitful
concepts introduced in the course of the body of work
referred above was that of wave filtering, together with
the strategy of modeling the total vessel motion as the
superposition of low-frequency vessel motion and wave-
frequency motions. It was further recognized that in order
to reduce the mechanical wear and tear of the propul-
sion system components, in small to high see states, the
estimates entering the DP control feedback loop should
be filtered by using a so-called wave filtering technique
so as to prevent excessive control activity in response to
wave frequency components. Furthermore, only the slowly-
varying disturbances should be counterbalanced by the
propulsion system, whereas the oscillatory motion induced
by the waves (1st-order wave induced loads) should not
enter the feedback control loop. To this effect, DP control
systems should be designed so as to react to the low fre-
quency forces on the vessel only. In practice, position and
heading measurements are corrupted not only by sensor



noise but also by colored noise caused by wind, waves,
and ocean currents. In addition, in general measurements
of the vessel’s velocity are not available; thus the need
for an observer to estimate the vessel’s velocity from cor-
rupted measurements of position and heading and achieve
wave filtering while “separating” the low-frequency and
wave-frequency position and heading estimates (see Fossen
(2011) for details).

In Sørensen et al. (1996), Wave Filtering (WF) was done
by exploiting the use of KF theory under the assumption
that the kinematic equations of the ship’s motion can be
linearized about a set of predefined constant yaw angles
(36 operating points in steps of 10 degrees, covering the
whole heading envelope); this is necessary when applying
linear KF theory and gain scheduling techniques. However,
global exponential stability (GES) of the complete system
cannot be guaranteed. In Fossen and Strand (1999), a
nonlinear observer with wave filtering capabilities and bias
estimation was designed using passivity. The sea state
may undergo large variations and therefore the observer
in charge of reconstructing the LF motion should adapt to
the sea state itself; adaptive WF and DP were introduced
in Strand and Fossen (1999); Torsetnes et al. (2004);
Nguyen et al. (2007); Hassani et al. (2012, 2013c), and
Sørensen (2011), where adaptation to sea state change was
introduced.

In this paper, inspired by previous pioneering work on DP
Systems, a modified model for wave filtering, proposed in
Hassani et al. (2012) is used. Based on the adopted model,
we propose the use of an adaptive wave filter coupled with
a maximum likelihood parameter identification technique.
To this effect, the log-likelihood function is defined and a
bank of KFs based on some initial values for the uncer-
tain parameter is formed; the log-likelihood function (as a
performance index for WF) is evaluated for the nominal
parameter set. Maximization of the log-likelihood function
over the nominal uncertain parameters is studied and a
new set of KFs are designed and exploited to further refine
the estimates of the uncertain parameter. At each stage
the estimated dominant wave frequency is used to identify
the sea condition, based on which adaptive wave filtering,
using Kalman filtering, is performed for dynamic position-
ing systems. The main emphasis of the paper is on the use
of maximum likelihood parameter identification techniques
for WF; however, for the sake of completeness, the relation
between the proposed methodology and Multiple Model
Adaptive Wave filtering, MMA-WF (see Hassani et al.
(2012), and Hassani et al. (2013c)) is studied.

The structure of the paper is as follows. Section 2 proposes
a linear representative vessel model. Section 3 describes
the key idea behind the proposed parameter identification
technique. It also provides a summary of Maximum likeli-
hood parameter identification and studies the similarities
and differences of the proposed algorithm and MMA-WF.
In section 4, a short description of the model test vessel,
Cybership III, and experimental results of model tests are
presented. Conclusions and suggestions for future research
are summarized in Section 5.

2. LINEAR MODEL OF THE DP VESSEL

In what follows, a vessel model that is by now standard 1

is presented. See for example Strand and Fossen (1999);

1 The model described by (1)-(6) has minor differences with respect
to the ones normally available in the literature. While in most of the
literature the WF components of motion are modeled in a fixed-
earth frame, in this paper the WF motion is modeled in body-

Hassani et al. (2012, 2013c). The model admits the real-
ization

ξ̇W = AW (ω)ξW + EWwW (1)

ηW = R(ψL)CW ξW (2)

ḃ = −T−1b+ Ebwb (3)

η̇L = R(ψL)ν (4)

Mν̇ +Dν = τ +RT (ψtot)b (5)

ηtot = ηL + ηW (6)

ηy = ηtot + v, (7)

where (1) and (2) capture the 1st-order wave induced mo-
tions in surge, sway, and yaw; equation (3) represents the
1st-order Markov process approximating the unmodelled
dynamics and the slowly varying environmental forces (in
surge and sway) and torques (in yaw) due to waves (2nd
order wave induced loads), wind, and currents. The latter
are given in earth fixed coordinates but expressed in body-
axis. In the above, ηW ∈ R3 is the vessel’s WF motion
due to 1st-order wave-induced disturbances, consisting of
WF position (xW , yW ) and WF heading ψW of the vessel;
wW ∈ R3 and wb ∈ R3 are zero mean Gaussian white noise
vectors, and

AW =
[
03×3 I3×3
−Ω3×3 −Λ3×3

]
, EW =

[
03×1
I3×1

]
,

CW = [03×3 I3×3] ,

with

Ω = diag{ω2
1 , ω

2
2 , ω

2
3},

Λ = diag{2ζ1ω1, 2ζ2ω2, 2ζ3ω3},

where ω = [ω1 ω2 ω3]
T and ζi are the Dominant Wave

Frequency (DWF) and relative damping ratio, respec-
tively. Matrix T = diag(Tx, Ty, Tψ) is a diagonal ma-
trix of positive bias time constants and Eb ∈ R3×3 is
a diagonal scaling matrix. Vector ηL ∈ R3 consists of
low frequency (LF), earth-fixed position (xL, yL) and LF
heading ψL of the vessel relative to an earth-fixed frame,
ν ∈ R3 represents the velocities decomposed in a vessel-
fixed reference, and R(ψL) is the standard orthogonal
yaw angle rotation matrix (see Fossen (2011) for complete
details). Equation (5) describes the vessels’s LF motion
at low speed (see Fossen (2011)), where M ∈ R3×3 is the
generalized system inertia matrix including zero frequency
added mass components, D ∈ R3×3 is the linear damping
matrix, and τ ∈ R3 is a control vector of generalized forces
generated by the propulsion system, that is, the main
propellers aft of the ship and thrusters which can produce
surge and sway forces as well as a yaw moment. Vector
ηtot ∈ R3 describes the vessel’s total motion, consisting
of total position (xtot, ytot) and total heading ψtot of the
vessel. Finally, (7) represents the position and heading
measurement equation, with v ∈ R3 a zero-mean Gaussian
white measurement noise.

From (1)-(6), using practical assumptions, a linear model
with parametric uncertainty was obtained in Hassani et al.
(2012) as follows:

frame. The reader is referred to Hassani et al. (2012) for details
and improvements of the present model.



ξ̇W = AW (ω)ξW + EWwW (8)

ηbW = CW ξW (9)

ḃp = −T−1bp + wfb (10)

η̇pL = ν (11)

Mν̇ +Dν = τ + bp (12)

ηfy = ηpL + ηbW (13)

where ηbW are WF components of motion on the body-

coordinate axis, wfb and ηfy are a new modified distur-

bance and a modified measurement defined by wfb =

RT (ψy)Ebwb and η
f
y = RT (ψy)ηy, respectively, ω, is para-

metric uncertainty, and matrix S is given by

S =

[
0 1 0
−1 0 0
0 0 0

]
.

The equations describing the kinematics and the dynamics
of the vessel can be represented in the following standard
form for multiple-input-multiple-output (MIMO) linear
plant models:

ẋ(t) = A(ω)x(t) +Bu(t) +Gw(t), (14a)

y(t) = Cx(t) + v(t), (14b)

where x(t) = [ξW
T bpT ηpL

T
νT ]T ∈ R15 denotes the state

of the system, u(t) = M−1τ ∈ R3 its control input,
y(t) = ηfy ∈ R3 its measured noisy output, w(t) =

[wW
Twfb

T
]T ∈ R6 an input plant disturbance that cannot

be measured, and v(t) ∈ R3 is the measurement noise. The
equations in (14) are simply a compact way of presenting
equations in (8)-(13); A(ω), B, G, and C are defined in the
obvious manner. Table 1 shows the definition of the sea
conditions characterized by the DWF. The sea conditions
are associated with the particular model of offshore supply
vessel that is used in our study. We assume that DWF

Table 1. Definition of Sea States from Price
and Bishop (1974)

Sea States DWF Significant Wave Height
ω (rad/s) Hs (m)

Calm Seas > 1.11 < 0.1
Moderate Seas [0.74 1.11] [0.1 1.69]

High Seas [0.53 0.74] [1.69 6.0]
Extreme Seas < 0.53 > 6.0

lies in the interval [0.39 1.8] 2 that covers calm, moderate,
high and extreme sea conditions.

3. MAXIMUM LIKELIHOOD PARAMETER
IDENTIFICATION

In this section we develop the maximum likelihood func-
tion for the descretized model of (15) given by 3

x(t+ 1) = A(θ)x(t) +Bu(t) +G(θ)w(t),

y(t) = C(θ)x(t) + v(t). (15)

Let Y (t) ≡ {y(0), y(1), · · · , y(t)} express the time history
of the observed output. The likelihood of a set of parameter
values, θ, given some observed outcomes, Y (t),

(
denoted

by L(θ;Y (t))
)
is equal to the probability of those observed

2 We use the same interval for DWF in surge, sway and yaw.
3 To consider a more general case we rename the parametric uncer-
tainty by θ and we assume that the parametric uncertainty is present
in the A, G, and C matrices.

outcomes assuming that those parameter values were true
values in the dynamic of the plant, that is

L(θ;Y (t)) = p(Y (t); θ). (16)

In other words, the likelihood function of the state space
model is a parameterized density function of the set of
observations Y (t) which reflects how likely it is to observe
Y (t) if θ were the true values of the uncertain parame-
ters. 4 In fact, p(Y (t); θ) is a family of density functions
that can be computed for different values of θ and obser-
vation history Y (t). For a fixed set of observations Y (t),
p(Y (t); θ) is a function of θ and the maximum likelihood

estimate θ̂ of θ, is defined as the value that maximizes
p(Y (t); θ) (for the above mentioned fixed Y (t)). Using the
definition of conditional probability and employing Bayes’s
theorem recursively, p(Y (t); θ) can be described as product
of conditional densities

p(Y (t); θ) =
τ=t∏
τ=1

p(y(τ)|Y (τ − 1); θ). (17)

In order to compute p(y(τ)|Y (τ − 1); θ) we summarize the
classical Kalman filter structure (see Anderson and Moore
(1979))

x̂θ(t+ 1|t) = Aθx̂θ(t|t) +Bu(t) (18a)

x̂θ(t|t) = x̂θ(t|t− 1) +Hθ(t)
(
y(t)− ŷθ(t|t− 1)

)
(18b)

Σθ(t+ 1|t) = AθΣθ(t|t)ATθ +GθQG
T
θ (18c)

Σθ(t|t) = Σθ(t|t− 1)−Hθ(t)CθΣθ(t|t− 1) (18d)

Sθ(t) = CθΣθ(t|t− 1)CTθ +R (18e)

Hθ(t) = Σθ(t|t− 1)CTθ S
−1
θ (t) (18f)

ŷθ(t|t− 1) = Cθx̂θ(t|t− 1) (18g)

where [Aθ, Gθ] and [Aθ, Cθ] are assumed to be stabilizable
and detectable.
It is well known that in Kalman filtering theory, under the
Gaussian assumption, the residuals ỹθ(t) = y(t)−ŷθ(t|t−1)
form an independent Gaussian sequence such that

p(y(t)|Y (t− 1); θ) =
e−

1
2 ỹ

T
θ (t)S−1

θ
(t)ỹθ(t)

(2π)
q
2

√
|Sθ(t)|

, (19)

where q is dimension of y(t) and Sθ(t) is the covariance
matrix of residuals in the KF given by (18e).
Combining (19) and (17), under linearity and Gaussian
assumptions the likelihood function is given by

L(θ;Y (t)) =

τ=t∏
τ=1

e−
1
2 ỹ

T
θ (τ)S−1

θ
(τ)ỹθ(τ)

(2π)
q
2

√
|Sθ(τ)|

. (20)

In practice, it is often more convenient to work with
the logarithm of the likelihood function, called the log-
likelihood function, defined as

log
(
L(θ;Y (t))

)
= (21)

τ=t∑
τ=1

[−q
2
log(2π)− 1

2
log(|Sθ(τ)|)−

1

2
ỹTθ (τ)S

−1
θ (τ)ỹθ(τ)].

The first term on the right hand side of (21) (i.e.
− tq

2 log(2π)) does not depend on θ; hence, the maxi-

mum likelihood estimate θ̂ can be found by maximizing∑τ=t
τ=1[−

1
2 log(|Sθ(τ)|) −

1
2 ỹ
T
θ (τ)S

−1
θ (τ)ỹθ(τ)] or by mini-

mizing the “relevant parts” of the negative log likelihood
function, denoted by K(θ;Y (t)), given by

4 Strictly speaking, θ is not a random variable and hence, p(Y (t); θ)
is not a conditional density function.



K(θ;Y (t)) =
τ=t∑
τ=1

1

2
[log(|Sθ(τ)|) + ỹTθ (τ)S

−1
θ (τ)ỹθ(τ)].

(22)

3.1 Finite Parameter Case

At this stage, let us consider the case where the uncertain
parameter θ belongs to a finite set Θ = {θ1, θ2, . . . , θN}.
To find the maximum likelihood estimate θ̂, a bank of
KFs (with N KFs) can be designed based on models of
the plant, taking θi ∈ Θ as an uncertain parameter value.
At each sampling time, the ith KF in the bank generates
Sθi(t) and ỹθi(t) which can be used to evaluate L(θi;Y (t)).

Then, the maximum likelihood estimate θ̂ is found as

θ̂(t) = argmax
θi∈Θ

L(θi;Y (t)). (23)

Before considering the compact parameter case, let us take
the discussion a stage further and highlight the relations
between WF using maximum likelihood identification and
Multiple Model Adaptive WF (MMA-WF), see Hassani
et al. (2012). In the MMA-WF methodology, a bank of
KFs is designed for a finite number of dominant wave
frequency values in Θ, each corresponding to a different
peak frequency of the assumed wave spectrum model. The
a posterior probability for each KF representing the true
model of plant is computed as

pθi(t) =
|Sθi(t)|−

1
2 e

− 1
2 ỹ

T
θi

(t)S−1
θi

(t)ỹθi (t)

N∑
j=1

pθj (t)|Sθj (t)|−
1
2 e

− 1
2 ỹ

T
θj

(t)S−1
θj

(t)ỹθj (t)

pθi(t− 1),

(24)

where pi(0) are the prior model probabilities. The final pa-
rameter estimation can be formed either by the stochastic
weighted average

θ̂(t) :=
N∑
i=1

pθi(t)θi, (25)

or by the maximum a posteriori (MAP) estimate

θ̂(t) := argmax
θi∈Θ

pθi(t). (26)

Lemma 1. Assuming that the distinguishablity condition
in Hassani et al. (2009a) and Hassani et al. (2013a) are

satisfied, the parameter estimate θ̂(t) in (23) and (26)

coincide. Moreover, the parameter estimate θ̂(t) in (25)
converges to the one in (23) and (26) asymptotically.

Before proving the lemma, let us introduce the Baram
index (see Baram and Sandell (1978)) and summarize the
main results in Hassani et al. (2009a) and Hassani et al.
(2013a). It is shown in Hassani et al. (2009a) and Hassani
et al. (2013a) that under some distinguishingly conditions,
as t → ∞, one of the posterior probabilities governed by
(24) (the a posterior probability associated with the KF
designed based on the closet model to the true plant in
a well defined sense), say pj , converges to 1 and the rest
converge to 0. Moreover, it is shown that

Γθ⋆θj ≤ Γθ⋆θi , ∀θi ∈ Θ (27)

where θ⋆ ∈ Θ is the true θ value in the plant and the
Baram index denoted by Γθ⋆θi is defined as

Γθ⋆θi ≡ +
1

2
log(|Sθi |) +

1

2
tr(S−1

θi
Sθ⋆
θi
), (28)

where Sθ⋆
θi

is the covariance of the residuals in KF tuned
for θi while the true parameter in the plant is θ⋆ and Sθi
denotes lim

t→∞
Sθi(t).

Proof. To prove the first part of lemma 1 it suffices to
show that

argmax
θi∈Θ

pθi(t) = argmax
θi∈Θ

L(θi;Y (t)). (29)

It is shown in Hassani et al. (2011) (lemma 1, page 3) that

argmax
θi∈Θ

pθi(t) = argmin
θi∈Θ

µθi(t), t = 1, 2, . . . (30)

where µθi(t) are monitoring signals assessing the perfor-
mance of KFs in the bank and defined as

µθi(t) = (31)

q

2
log(2π) +

1

2t

τ=t∑
τ=1

[log(|Sθ(τ)|) + ỹTθ (τ)S
−1
θ (τ)ỹθ(τ)].

Comparing (21) and (31) it is not hard to show that

µθi(t) =
1

t
log

(
L(θ;Y (t))

)
, (32)

from which it follows that

argmin
θi∈Θ

µθi(t) = argmin
θi∈Θ

tµθi(t) = argmax
θi∈Θ

L(θi;Y (t)).

(33)
It is further shown in Hassani et al. (2011) that as t→ ∞,
the monitoring signal µθi(t) converges to Baram index

Γθ⋆θi and hence, the estimate in (25) and (26) have similar
asymptotic behavior.

3.2 Compact Infinite Parameter Case

Let us investigate the case where Θ is a compact (and
convex) set. Assume that θ⋆ is the true parameter value
of the plant. In order to find the maximum likelihood
estimate θ one needs to maximize the likelihood function
L(θ;Y (t)) (or minimize K(θ;Y (t))) over θ ∈ Θ, at each
sampling time. In Hassani et al. (2013b), a gradient based
method is exploited and an algorithm to compute the
gradient of L(θ;Y (t)) with respect to θ is presented.
However, in the present paper we use a simpler setup which
is based on a bank of N KFs running in parallel to evaluate
the value of L(θ;Y (t)) for N sample points in Θ. After a
fixed amount of time ∆ a new set of N sample points are
selected and a new set of KFs are designed accordingly
and the value of L(θ;Y (t)) is computed for the new sample
points in Θ. Under some mild distinguishablity condition
(see Kashyap (1970)) the maximum likelihood estimator
enjoys consistency and one expects that if ∆ is selected
carefully one can evaluate the value of L(θ;Y (t)). If we
only use the first bank of KFs and we don’t re-design
the bank of KFs the results coincides with MMA-WF
techniques. However, using the new set of KFs enables us
to identify the uncertain parameter with higher accuracy.
To summarize this section we provide, in the following, a
procedure by which the DWF identification is performed.
Algorithm
Initialization: Set k = 0 and select N nominal value
from the compact parametric uncertainty set and form
Θ0 = {θ01, θ02, . . . , θ0N} (see Hassani et al. (2009b) for a
performance based selection methodology).
Process: 5

5 The proposed algorithem is straightforward for systems involving
a single scalar uncertain real parameter. In the case of two, or
more, uncertain parameters the procedure has to be modified. In the



(1) Design a bank of N KFs based on N plant model
associated with the nominal parameter values in Θk.

(2) For ∆ seconds run the bank of KFs in parallel and
compute K = {K(θk1 ;Y (t)), . . . ,K(θkN ;Y (t))}.

(3) Find θ̂k = argmin
θk
i
∈Θk

K(θki ;Y (t)).

(4) Set k = k + 1.
(5) Select N nominal value from the compact parametric

uncertainty set and form Θk = {θk1 , θk2 , . . . , θkN} such
that ∥Θk∥ ≤ ∥Θk−1∥.

(6) If ∥Θk∥ ≤ δ then stop, otherwise go to (1).

4. EXPERIMENTAL RESULTS

The proposed adaptive wave filter was tested using the
model vessel Cybership III, at the Marine Cybernetic Lab-
oratory (MCLab) of the Department of Marine Technology
at the Norwegian University of Science and Technology
(NTNU). The performance of maximum likelihood param-
eter identification was tested under different sea conditions
produced by a hydraulic wave maker. Adaptive wave filter-
ing was achieved using the identified DWF and a Kalman
wave filter.

4.1 Overview of the CybershipIII

CyberShip III is a 1:30 scaled model of an offshore vessel
operating in the North Sea. Fig. 1 shows the vessel at the
basin in the MCLab. See Nguyen et al. (2007); Hassani
et al. (2012, 2013c) for details of the main parameters of
the model and full scale vessel.

Fig. 1. Cybership III.

Cybership III is equipped with two pods located at the aft.
A tunnel thruster and an azimuth thruster are installed in
the bow. 6 It has a mass ofm = 75 (kg), length of L = 2.27
(m) and breadth of B = 0.4 (m). The internal hardware
architecture is controlled by an onboard computer which
can communicate with onshore PC through a WLAN.
The PC onboard the ship uses the QNX real-time oper-
ating system (target PC). The parameter identification,
adaptive wave filter, and control systems described before
were developed on a PC in the control room (host PC)
under Simulink/Opal and downloaded to the target PC
using automatic C-code generation and wireless Ethernet.
The motion capture unit (MCU), installed in the MCLab,
provides Earth-fixed position and heading of the vessel.
The MCU consists of onshore 3-cameras mounted on the
towing carriage and a marker mounted on the vessel. The
cameras emit infrared light and receive the light reflected
from a marker on the vessel.

current algorithm we consider the single parametric case. Moreover,
for stopping condition we consider ∥Θk∥ ≤ δ where ∥Θ∥ denotes the
maximum Euclidian distance among the members of Θ and δ is a
predefined limit.
6 For technical reasons, in this experiment the tunnel thruster was
deactivated.

Due to limited computation power of the PC onboard
the ship we implemented the proposed methodology using
steady state KFs. We also assumed that the DWFs in
surge, sway, and heading are equal, i.e. ω1 = ω2 = ω3 = ω.

To simulate the different sea conditions, a hydraulic wave
maker system was used. It consists of a single flap cov-
ering the whole breadth of the basin, and a computer
controlled motor, moving a flap. The device can produce
regular and irregular waves with different spectra. We
have used the JONSWAP spectrum to simulate the dif-
ferent sea conditions for our experiment. Fig. 2 shows the
results of an experiment where the wave maker system
simulates a moderate sea state with ω = 0.90 (rad/sec).
The first sub-figure in Fig. 2 shows the wave profile
recorded in the basin (two meter in front of the vessel).
In this experiment we updated the DWF estimation ev-
ery 550 seconds. Initially, five KFs were designed based
on five different representative values of the uncertain
parameter (uniformly distributed in uncertain parame-
ter space, {0.6250 , 0.8600 , 1.0950 , 1.3300 , 1.5650}) and
the log-likelihood function of each representative value
(given by (21)) was evaluated. At time t = 550 (sec)
the KF tuned for ω = 1.0950 (rad/sec) had the maxi-
mum log-likelihood value. At this point, a new bank of
KFs were designed based on a new set of representative
DWFs {0.7817 , 0.9383 , 1.0950 , 1.2517 , 1.4083} and the
log-likelihood function was evaluated for the mentioned
set. At t = 1100 (sec) the DWF estimation was updated
to ω = 0.9383 (rad/sec) (that has the maximum log-
likelihood function). The fifth sub-figure in Fig. 2 rep-
resents the estimated DWF and Fig. 3 shows the log-
likelihood functions. The second, third and fourth sub-
figures in Fig. 2 show the time evolution of the positions
and heading of the vessel. It can be seen that the DWF
estimation converged to ω = 1.0255 (rad/sec) after five
estimation steps. This is different from the set value of
the wave maker; later, we estimated the power spectral
density of time series of wave elevation and we found that
a more accurate DWF value was ω = 0.96 (rad/sec). We
hypothesize that the small bias in the estimation is due to
a) the simplified model of plant used for identification, b)
the assumption of equal DWFs in sure, sway, and heading,
and c) the tuning of the disturbance covariances in the
KFs. 7

5. CONCLUSIONS

The problem of parameter identification for adaptive WF
in DP of marine vessels was addressed in a systematic way
for discrete-time, linear, time-invariant MIMO plants with
parameter uncertainty maximum likelihood methodology
To this effect, the maximum likelihood parameter identi-
fication was re-visited and the link between the proposed
identification methodology and the one in Multiple Model
Adaptive Estimation was investigated. The results were
experimentally verified by model testing a DP operated
ship, the CybershipIII, under simulated sea condition in
a towing tank. The experimental data confirms that the
method developed holds promise for practical applications.
Future work will include the application of the method
developed to time-varying operational conditions, from
calm to extreme seas.

ACKNOWLEDGEMENTS

We thank our colleagues A. Pedro Aguiar, J. Hespanha
and Michael Athans for many discussions on adaptive
7 We should stress that we have tuned the algorithm during a few
tests and Fig. 2 shows the final tuned system.



−1

0

1

w
av

e 
(m

)

−1

0

1

N
o

rt
h

 (
m

)

−0.8

0

0.8

E
as

t 
(m

)

−2

0

2

H
ea

d
in

g
 (

d
eg

)

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

D
W

F
 (

ra
d

/s
)

Time (s)

Initialization

Fig. 2. Experimental results: evolution of the wave profile,
the position and heading of the vessel, and the DWF
estimation in moderate sea state.

0 500 1000 1500 2000 2500 3000

4.4493

4.4493

4.4494

4.4494

4.4494

4.4494

4.4494

4.4495

4.4495

Time (s)

Lo
g−

Li
ke

lih
oo

d 
F

un
ct

io
ns

 

 

µ
1

µ
2

µ
3

µ
4

µ
5

Fig. 3. Experimental results: evolution of the log-likelihood
functions; every 550 seconds a new set of KFs are
designed to evaluate the log-likelihood function for a
new set of uncertain parameters (DWF).

estimation and control. We would also like to thank T.
Wahl, Øyvind Smogeli, M. Etemaddar, E. Peymani, M.
Shapouri, and B. Ommani for their generous assistance
during the model tests at MCLab.

REFERENCES

Anderson, B.D.O. and Moore, J.B. (1979). Optimal Fil-
tering. Prentice-Hall, New Jersey, USA.

Balchen, J., Jenssen, N., and Sælid, S. (1976). Dynamic
positioning using Kalman filtering and optimal control
theory. In the IFAC/IFIP Symposium On Automation
in Offshore Oil Field Operation, 183–186. Bergen, Nor-
way.

Baram, Y. and Sandell, N. (1978). An information the-
oretic approach to dynamical systems modeling and
identification. IEEE Trans. on Automat. Contr., 23,
61–66.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrody-
namics and Motion Control. John Wiley & Sons. Ltd,
Chichester, UK.

Fossen, T.I. and Strand, J.P. (1999). Passive nonlinear
observer design for ships using lyapunov methods: Full-
scale experiments with a supply vessel. Automatica, 35,
3–16.
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