
A Systematic Method for Risk-driven Test Case
Design Using Annotated Sequence Diagrams

Gencer Erdogan1,2, Atle Refsdal1, and Ketil Stølen1,2

1 Department for Networked Systems and Services, SINTEF ICT P.O. Box 124
Blindern, N-0314 Oslo, Norway

2 Department of Informatics, University of Oslo P.O. Box 1080 Blindern, N-0316
Oslo, Norway

{gencer.erdogan,atle.refsdal,ketil.stolen}@sintef.no

Abstract. Risk-driven testing is a testing approach that aims at focus-
ing the testing process on the aspects or features of the system under
test that are most exposed to risk. Current risk-driven testing approaches
succeed in identifying the aspects or features that are most exposed to
risks, and thereby support testers in planning the testing process accord-
ingly. However, they fail in supporting testers to employ risk analysis to
systematically design test cases. Because of this, there exists a gap be-
tween risks, which are often described and understood at a high level of
abstraction, and test cases, which are often defined at a low level of ab-
straction. In this paper, we bridge this gap. We give an example-driven
presentation of a novel method, intended to assist testers, for systemat-
ically designing test cases by making use of risk analysis.

1 Introduction

Risk-driven testing (or risk-based testing) is a testing approach that use risk
analysis within the testing process [4]. The aim in risk-driven testing is to focus
the testing process with respect to certain risks of the system under test (SUT).

However, current risk-driven testing approaches leave a gap between risks,
which are often described and understood at a high level of abstraction, and
test cases, which are often defined at a low level of abstraction. The gap exists
because risk analysis, within risk-driven testing approaches, is traditionally used
as a basis for planning the test process rather than designing the test cases.
Making use of risk analysis when planning the test process helps the tester to
focus on the systems, aspects, features, use-cases, etc. that are most exposed to
risk, but it does not support test case design. In order to bridge the gap between
risks and test cases, risk-driven testing approaches should not merely make use
of the risk analysis when planning the test process, but also when designing test
cases. Specifically, risk-driven testing approaches must provide testers with steps
needed to design test cases by making use of the risk analysis.

In this paper, we present a systematic and general method, intended to assist
testers, for designing test cases by making use of risk analysis. A test case is a
behavioral feature or behavior specifying tests [15]. We employ UML sequence

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-07076-6_7 



diagrams [14] as the modeling language, conservatively extended with our own
notation for representing risk information. In addition, we make use of the UML
Testing Profile [15] to specify test cases in sequence diagrams. The reason for
choosing sequence diagrams is that they are widely recognized and used within
the testing community. In fact, it is among the top three modeling languages
applied within the model-based testing community [13]. By annotating sequence
diagrams with risk information, we bring risk analysis to the work bench of
testers without the burden of a separate risk analysis language, thus reducing
the effort needed to adopt the approach. Recent surveys on trends within soft-
ware testing show that the lack of time and high costs are still the dominating
barriers to a successful adoption of testing methods and testing tools within IT
organizations [5].

Our method consists of four steps. In Step 1, we analyze the SUT and identify
threat scenarios and unwanted incidents with respect to the relevant assets. In
Step 2, we estimate the likelihood of threat scenarios and unwanted incidents,
as well as the consequence of unwanted incidents. In Step 3, we prioritize risks,
and then for each risk we prioritize paths that lead to the risk. In Step 4, we
design test cases with respect to the paths selected for testing.

Section 2 gives an overview of our method. Section 3 introduces the web
application on which we apply our method to demonstrate its applicability. Sec-
tions 4, 5, 6 and 7 employ the four steps on the web application, respectively.
Section 8 relates our method to current risk-driven testing approaches that also
address test case design. Finally, we provide concluding remarks in Sect. 9.

2 Overview of Method

Before going into the details of our method, we explain the assumed context in
which it is to be applied. A testing process starts with test planning, followed by
test design and implementation, test environment set-up and maintenance, test
execution, and finally test incident reporting [9]. Our method starts after test
planning, but before test design and implementation. Furthermore, the first and
the fourth step in our method expect as input a description of the SUT in terms
of sequence diagrams and suspension criteria, respectively. Suspension criteria
are criteria used to stop all or a portion of the testing activities [8]. This is also
known as test stopping criteria or exit criteria. Suspension criteria are used in
our method to reflect the investable testing effort. We assume that these inputs
are obtained during test planning. Next, we assume that the preparations for
carrying out risk analysis have been completed, i.e., that assets have been identi-
fied, likelihood and consequence scales have been defined, and a risk evaluation
matrix has been prepared so that risks can later be inserted as soon as their
likelihood and consequence are determined. Our method consists of four main
steps as illustrated in Fig. 1; dashed document icons represent input prepared
during test planning, solid document icons represent output from one step and
acts as input to the following step.



SUT

Specification as

sequence

diagrams.

Assets.

Sequence

diagrams

representing

manipulated

behavior.

Likelihood scale

and consequence

scale.

Risk evaluation

matrix.

Prioritized risks

and paths.

Suspension

criteria.

Sequence

diagrams

annotated with

likelihood and

consequence

values.

1.1: Identify aspects of the

SUT to analyze

1.2: Prepare a sequence

diagram for each aspect

1.3: Identify unwanted

incidents and threat scenarios

Step 1: Threat Scenario Identification

2.1: Estimate likelihood

2.2: Estimate consequence

Step 2: Threat Scenario Risk Estimation

3.1: Prioritize risks

3.2: Prioritize paths that lead

to risks

Step 3: Threat Scenario Prioritization

4.1: Select paths to test w.r.t.

suspension criteria

4.2: Design test cases w.r.t.

selected paths

Step 4: Threat Scenario Test Case Design

Test cases.

Fig. 1. Overview of the steps in the method.

In Step 1, we analyze the SUT with the objective to identify unwanted inci-
dents with respect to a certain asset to be protected, as well as threat scenarios
resulting from manipulations initiated by the threat. This step expects as input
a sequence diagram specification of the SUT and the asset that is to be consid-
ered. First, we identify the aspects of the SUT we are interested in analyzing.
We then annotate each aspect with a label, containing a unique identifier. Sec-
ond, we prepare a corresponding sequence diagram to capture risk information
for each aspect label. Each sequence diagram inherits the SUT specification en-
capsulated by the underlying aspect label. Additionally, it represents the asset
as a lifeline. The threats that may initiate threat scenarios are also represented
as lifelines. Third, we identify unwanted incidents that have an impact on the
asset, and threat scenarios that may lead to the unwanted incidents. The output
of this step is a set of annotated sequence diagrams that represent manipulated
behavior of the SUT and its context, in terms of threat scenarios and unwanted
incidents.

In Step 2, we estimate the likelihood for the occurrence of the threat sce-
narios and the unwanted incidents in terms of frequencies, the conditional prob-
ability for threat scenarios leading to other threat scenarios or to unwanted
incidents, as well as the impact of unwanted incidents on the asset. The input
for this step is the output of Step 1. Additionally, this step expects a predefined
likelihood scale in terms of frequencies, and a predefined consequence scale in



terms of impact on the asset. First, we estimate the likelihood for the occur-
rence of the threat scenarios and the unwanted incidents using the likelihood
scale, as well as the conditional probability for threat scenarios leading to other
threat scenarios or to unwanted incidents. Second, we estimate the consequence
of unwanted incidents using the consequence scale. The output of this step is the
same set of sequence diagrams given as the input for the step, annotated with
likelihood estimates and consequence estimates as described above. A risk in
our method is represented by an unwanted incident (i.e., a message to the asset
lifeline) together with its likelihood value and its consequence value. Different
sets of threat scenarios may lead to the same risk. We refer to the different sets
of threat scenarios as different paths. That is, different paths may lead to the
same risk.

In Step 3, we prioritize the risks as well as the different paths that lead to
the prioritized risks. The input for this step is the output of Step 2. Additionally,
this step employs the predefined risk evaluation matrix. First, we map all the
risks to the risk evaluation matrix based on their likelihood (frequency) value
and consequence (impact) value. We then prioritize the risks based on their risk
level, i.e., their position in the risk evaluation matrix. Second, we prioritize
the different paths that lead to the selected risks with respect to the likelihood-
contribution of each path. The output of this step is a prioritized list of risks,
and a prioritized list of paths leading to the prioritized risks.

In Step 4, we design test cases with respect to paths leading to selected
risks. The input for this step is the output of Step 1 and the output of Step 3.
Additionally, this step expects predefined suspension criteria. First, we select
risks we would like to test based on the prioritized list of risks, and then we
select paths, based on the prioritized list of paths, leading up to the selected
risks. These selections are done with respect to the predefined suspension criteria.
Second, for each path we want to test, we refer to its sequence diagram identified
in Step 1 and use that as a basis for specifying a test case. We specify a test
case by annotating the sequence diagrams using the UML Testing Profile [15].
The output of this step is a set of sequence diagrams representing test cases.

Table 1 shows the notation for annotating sequence diagrams with risk in-
formation. We have mapped some risk information to corresponding UML con-
structs for sequence diagrams. Assets and threats are represented as lifelines.
Inspired by CORAS [11], we distinguish between three types of threats; deliber-
ate threats (the leftmost lifeline in the Notation column), unintentional threats
(the center lifeline in the Notation column) and non-human threats (the right-
most lifeline in the Notation column). Manipulations and unwanted incidents
are represented as messages. We distinguish between three types of manipu-
lations; new messages in the sequence diagram (a message annotated with a
filled triangle), alteration of existing messages in the sequence diagram (a mes-
sage annotated with an unfilled triangle), and deletion of existing messages in
the sequence diagram (a message annotated with a cross inside a triangle). As-
pect labels, likelihoods, conditional probabilities and consequences do not have
corresponding UML constructs for sequence diagrams. However, the following



constraints apply: A likelihood can only be attached horizontally across lifelines.
A likelihood assignment represents the likelihood, in terms of frequency, of the
interaction preceding the likelihood assignment. The purpose of messages repre-
senting unwanted incidents is to denote that an unwanted incident has an impact
on an asset. A consequence can therefore only be attached on messages repre-
senting unwanted incidents. A conditional probability may be attached on any
kind of message except messages representing unwanted incidents. A conditional
probability assignment represents the probability of the occurrence of the mes-
sage on which it is assigned, given that the interaction preceding the message
has occurred.

Table 1. Notation for annotating sequence diagrams with risk information.

Risk information UML Construct Notation

Aspect label N/A ID

Asset Lifeline

Threat Lifeline

Manipulation Message

Unwanted incident Message

Likelihood N/A l

Conditional probability N/A
p

Consequence N/A c

3 Example: Guest Book Application

As mentioned in Sect. 1, our method is a general method for designing test cases
by making use of risk analysis. In this demonstration, we focus on security, and
apply the steps presented in Sect. 2 on a guest book that is available in the
Damn Vulnerable Web Application (DVWA) [3]. One of DVWA’s main goals is
to be an aid for security professionals to test their skills and tools in a legal envi-
ronment [3]. DVWA is programmed in the scripting language PHP and requires
a dedicated MySQL server to function correctly. We are running DVWA version
1.8 on the HTTP server XAMPP version 1.8.2 [22], which provides the required
execution environment.



The SUT in this demonstration is a guest book in DVWA. Figure 2a shows a
screenshot of the guest book user interface before a guest book entry is submit-
ted, while Fig. 2b shows a screenshot of the user interface after the guest book
entry is successfully submitted. Figure 2c represents its behavioral specification
expressed as a sequence diagram. A guest book user may use a web browser in a
client to sign the guest book by typing a name and a message, and then submit
the guest book entry by clicking the “Sign Guestbook” button. If the name input
field is empty, the guest book form replies with a warning message. If the name
input field is not empty, but the message input field is empty, the guest book
form also replies with a warning message. If neither of the input fields are empty,
the guest book form submits the entry to the guest book database. The guest
book database stores the entry and replies with the message true indicating that
the transaction was successful. Having received the message true, the guest book
form retrieves all of the guest book entries from the database, including the one
just submitted, and displays them to the client.

C : Client

sd GuestBookInDVWA

signGB(name,msg)

GBForm :

PHPForm

GBDatabase:

MySQL

submit(name,msg)

[msg==””]

[else]

alt

[name==””]

alert(nameEmpty)

alert(messageEmpty)

true

selectAllGBEntries()

allGBEntries

display(allGBEntries)

(c)(b)

(a)

Fig. 2. (a) Screenshot of the guest book before submitting a new entry. (b) Screen-
shot of the guest book after submitting the entry. (c) Specification of the guest book
expressed as a sequence diagram.

4 Step 1: Threat Scenario Identification

The SUT in this demonstration is the guest book explained in Sect. 3. Let us
assume that we are interested in analyzing the guest book with respect to a
security asset defined as “integrity of guest-book’s source code”.



As shown in Fig. 3a, we have identified three aspects labeled with aspect la-
bels A1, A2 and A3. For the aspect represented by aspect label A1, we are inter-
ested in analyzing the interaction composed of the messages signGB(name,msg)
and alert(nameEmpty), with respect to the integrity of the guest-book’s source
code. The same reasoning applies for A2 and A3. The aspects identified in this
example are small. In practice it may well be that one is interested in analyz-
ing bigger and more complex aspects. The granularity level of the aspects is
determined by the tester.

C : Client

sd GuestBookInDVWA

signGB(name,msg)

GBForm :

PHPForm

GBDatabase:

MySQL

submit(name,msg)

[msg==””]

[else]

alt

[name==””]

alert(nameEmpty)

alert(messageEmpty)

true

selectAllGBEntries()

allGBEntries

display(allGBEntries)

A1 A2 A3

C:

Client

sd A3

signGB(name,msg)

GBForm:

PHPForm

GBData

base :

MySQL

submit(name,msg)

true

Integrity of GB

Source Code

(a) (b)

Fig. 3. (a) Specification of the guest book annotated with aspect labels. (b) Corre-
sponding sequence diagram of the aspect encapsulated by aspect label A3.

Suppose we are only interested in analyzing the aspect encapsulated by aspect
label A3. Figure 3b shows a sequence diagram corresponding to the interaction
encapsulated by aspect label A3. Additionally, it represents the abovementioned
security asset as a lifeline. We now have a sequence diagram we can use as a
starting point to analyze the SUT aspect encapsulated by aspect label A3, with
respect to integrity of the guest-book’s source code. We represent the risk related
information in bold and italic font, in the sequence diagrams, to distinguish
between the specification and the risk related information.

We proceed the analysis by identifying unwanted incidents that may have
an impact on the security asset, and threat scenarios that may lead to the un-
wanted incidents (see Fig. 4). The integrity of the guest-book’s source code is
compromised if, for example, a malicious script is successfully stored (i.e., in-
jected) in the guest book database. A malicious script that is injected in the
guest book database is executed by the web browser of the guest book user



when accessed. This modifies the content of the HTML page on the user’s web
browser, thus compromising the integrity of the guest-book’s source code. These
kinds of script injections are also known as stored cross-site scripting (stored
XSS) [17]. We identify this as an unwanted incident (UI1 ), as represented by
the last message in Fig. 4.

C : Client

sd A3

LocalCopyGBForm :

PHPForm

<<create>>

referFormActionToOriginalGBForm

removeOnSubmitRestriction

removeOnClickRestriction

GBForm :

PHPForm

openLocalCopyGB

loadLocalCopyGB

LocalCopyGB

HsignGB(name,storedXSSinjection)

signGB(name,storedXSSinjection)

Integrity of GB

Source Code

GBDatabase:

MySQL

downloadGBFormHtmlFiles

GBFormHtmlFiles

true

(UI1) Integrity of GB source code

compromised due to stored XSS injection

Hacker

submit(name,storedXSSinjection)

Fig. 4. Identifying unwanted incidents and threat scenarios for the aspect encapsulated
by aspect label A3, w.r.t. integrity of the guest-book’s source code.

UI1 may be caused by different manipulations on the expected behavior
of the guest book. One potential cause could be that the msg parameter in
submit(name, msg) and signGB(name,msg) is replaced with storedXSSinjection,
representing an XSS injection script. This is an alteration of the guest-book’s
expected behavior. We therefore replace the messages signGB(name,msg) and
submit(name,msg) with messages representing alterations.

These alterations may be initiated by different threats. Let us say we are in-
terested in analyzing this further from a hacker perspective, which is categorized
as a deliberate threat. A hacker may successfully carry out an XSS injection by,
for example, first downloading the HTML files of the guest book using the web



browser, in order to create a local copy of the guest-book’s user interface (down-
loadGBFormHtmlFiles, GBFormHtmlFiles and <<create>>). Having success-
fully saved a local copy of the guest-book’s HTML files, the hacker removes all
restrictions, such as the maximum number of characters allowed in the name and
message input fields when submitting a guest book entry (removeOnSubmitRe-
striction and removeOnClickRestriction). Then, the hacker refers all actions to
the original guest book by making use of its web address (referFormActionToO-
riginalGBForm). Finally, the hacker loads the local copy of the guest book in the
web browser, writes an XSS injection script in the message field, and submits
the guest book entry containing the XSS injection (openLocalCopyGB, loadLo-
calCopyGB, LocalCopyGB and HsignGB(name,storedXSSinjection)). Note that
all of the messages described in this paragraph are annotated as new messages
in the sequence diagram (message with a filled triangle).

5 Step 2: Threat Scenario Risk Estimation

Table 2 shows the likelihood and consequence scale that we assume have been
established during preparation of the risk analysis. The likelihood scale is given
in terms of frequency intervals. The description of likelihood Rare reads “zero to
ten times per year”. The description of likelihoods Unlikely, Possible and Likely
reads in similar way, while the description for likelihood Certain reads “three
hundred times or more per year”. The consequence scale is given in terms of
impact on different categories of the security asset. For example, an unwanted
incident has a catastrophic impact on the security asset if it compromises the
integrity of the guest-book’s source code that carries out database transactions.
Similar interpretations apply for the other consequences.

Table 2. Likelihood scale and consequence scale.

Likelihood scale Consequence scale

Likelihood Description Consequence Description

Rare [0, 10>:1y Insignificant Src. that generates the aesthetics.
Unlikely [10, 50>:1y Minor Src. that retrieves third party ads.
Possible [50, 150>:1y Moderate Src. that generates the user interface.
Likely [150, 300>:1y Major Src. that manages sessions and cookies.
Certain [300, ...>:1y Catastrophic Src. that carries out database transactions.

Figure 5 shows likelihood estimates for the threat scenarios and the unwanted
incident identified in Step 1, as well as a consequence estimate for the unwanted
incident. The tester may estimate likelihood values and consequence values based
on expert judgment, statistical data, a combination of both, etc. Let us say we
have acquired information indicating that hackers most likely prepare injection
attacks in the manner described by the interaction starting with message down-
loadGBFormHtmlFiles, and ending with message LocalCopyGB in Fig. 5. For



this reason, we choose to assign likelihood Likely on this interaction. Note that
Likely corresponds to the frequency interval [150, 300>:1y (see Table 2).

C : Client

sd A3

LocalCopyGBForm :

PHPForm

<<create>>

referFormActionToOriginalGBForm

removeOnSubmitRestriction

removeOnClickRestriction

GBForm :

PHPForm

openLocalCopyGB

loadLocalCopyGB

LocalCopyGB

HsignGB(name,storedXSSinjection)

signGB(name,storedXSSinjection)

Integrity of GB

Source Code

GBDatabase:

MySQL

downloadGBFormHtmlFiles

Likely

GBFormHtmlFiles

0.8

true

(UI1) Integrity of GB source code

compromised due to stored XSS injection

0.6

Moderate

Hacker

submit(name,storedXSSinjection)

Possible

1

1

Fig. 5. Estimating the likelihood of the threat scenarios and unwanted incident UI1,
as well as the consequence of UI1.

XSS injection attacks are less likely to be initiated by hackers compared to
other kinds of injection attacks they initiate (such as SQL-injection) [18]. For
this reason, we choose to assign a probability 0.8 on message HsignGB(name,
storedXSSinjection), indicating that it will occur with probability 0.8 given that
the messages preceding it has occurred. This probability assignment leads to a
different frequency interval for the interaction starting with message downloadG-
BFormHtmlFiles and ending with message HsignGB(name,storedXSSinjection).
The frequency interval for the aforementioned interaction is calculated by mul-
tiplying [150, 300>:1y with 0.8, which results in the frequency interval [120,
240>:1y. This frequency interval is in turn used to calculate the subsequent fre-
quency interval, in the path, in a similar manner. This procedure is carried out



until the frequency interval for the whole path leading to the unwanted incident
is calculated. The frequency interval for the whole path is then mapped to the
likelihood scale in Table 2 in order to deduce a likelihood value. The deduced
likelihood value represents the likelihood value for the whole path, and thereby
the likelihood value for the unwanted incident.

We proceed the estimation by identifying conditional probabilities for the
remaining messages. We assume message signGB(name,storedXSSinjection) will
occur with probability 1 since the hacker has removed all restrictions on the
local copy of the guest book form. The guest book form is programmed in the
scripting language PHP. Although PHP makes use of what is known as “prepared
statements” to validate input directed to the database, bypassing the validation
is still possible if the prepared statements are not handled correctly [19]. These
kinds of bypasses require insight into the structure of the source code and are
therefore harder to exploit. For this reason, we choose to assign a probability
0.6 on message submit(name,storedXSSinjection). We assume message true will
occur with probability 1, as there is nothing that prevents the database from
executing the query containing the XSS injection if it has made all its way into
the database.

We calculate the frequency interval for the whole path by multiplying [150,
300>:1y with the product of the abovementioned conditional probabilities. That
is, we multiply [150, 300>:1y with 0.48, which results in the frequency interval
[72, 144>:1y. By mapping this frequency interval to the likelihood scale in Ta-
ble 2, we see that the frequency interval is within the boundaries of likelihood
Possible. This means that unwanted incident UI1 may occur with likelihood
Possible. Finally, a stored XSS injection has the objective to execute a script on
the end user’s web browser for different purposes. This means that stored XSS
injection modifies the source code that generates the user interface. Thus, UI1
has an impact on the security asset with a moderate consequence.

6 Step 3: Threat Scenario Prioritization

Table 3 shows the risk evaluation matrix established during preparation of the
risk analysis. In traditional risk analysis, risk evaluation matrices are designed to
group the various combinations of likelihood and consequence into three to five
risk levels (e.g., low, medium and high). Such risk levels cover a wide spectrum
of likelihood and consequence combinations and are typically used as a basis
for deciding whether to accept, monitor or treat risks. However, in risk-driven
testing setting, one is concerned about prioritizing risks to test certain aspects
of the SUT exposed to risks. A higher granularity with respect to risk levels may
therefore be more practical. The risk evaluation matrix in Table 3 represents
nine risk levels, diagonally on the matrix. The tester defines the interpretation
of the risk levels. In this demonstration we let numerical values represent risk
levels; [1] represents the lowest risk level and [9] represents the highest risk
level.



Table 3. Risk evaluation matrix composed of the scales in Table 2.

Consequence
InsignificantMinor Moderate Major Catastrophic

L
ik
e
li
h
o
o
d Rare [1]

Unlikely [2] UI3
Possible [3] UI1
Likely [4] UI2
Certain [5] [6] [7] [8] [9]

In Step 2, we estimated that UI1 occurs with likelihood Possible and has
a moderate impact on the security asset. Based on these estimations, we map
UI1 to its respective cell in the risk evaluation matrix. In order to demonstrate
the prioritizing of risks for testing, we assume that we have identified two addi-
tional risks UI2 (with likelihood Likely and consequence Insignificant) and UI3
(with likelihood Unlikely and consequence Moderate) in the same manner as we
identified UI1. We map UI2 and UI3 to the risk evaluation matrix with respect
to their likelihood value and consequence value. The result is shown in Table 3.
We prioritize the risks according to their risk level. UI1, UI2 and UI3 has risk
level [5], [4], and [4], respectively. Note that UI2 and UI3 have the same risk
level. It is the task of the tester to prioritize among such risks, if necessary, and
this must always be justified. This concludes the prioritization of risks. Next, we
prioritize among different paths that lead to the same risk.

As mentioned in Sect. 2, different sets of threat scenarios, i.e., different paths,
may lead to the same risk. Figure 5 shows the estimation of one path that leads
to UI1. Let us name this path P1. Suppose we have identified a second path
P2 that also leads to UI1. In P2, XSS injection is carried out via a man-in-
the-middle attack on the HTTPS connection between the client and the guest
book. Suppose we have carried out an estimation for P2 and arrived at likelihood
Rare because man-in-the-middle attacks on the HTTPS connection are unlikely
to be successful, due to guest-book’s usage of proper countermeasures, e.g., as
presented in [16]. P1 and P2 represent two separate paths that lead to UI1.
This means that the frequency for UI1 is the sum of the frequency interval in
P1 and the frequency interval in P2, which results in the new frequency interval
[50, 160>:1y. By mapping the new frequency interval to the likelihood scale in
Table 2, we see that it overlaps the likelihoods Possible and Likely. However, the
frequency interval is skewed more towards Possible than Likely. We therefore
choose to keep UI1 within likelihood Possible. We prioritize the paths according
to their likelihood contribution. P1 has a higher likelihood contribution (Possi-
ble) on UI1 than P2 (Rare). This concludes the prioritization of paths.

7 Step 4: Threat Scenario Test Case Design

Suppose, for the sake of the example, the following suspension criteria is given:
“Only test paths with likelihood contribution Possible or higher on risks within



risk level [5]”. We see from the prioritization in Step 3 that UI1 has risk level
[5], and that P1 has likelihood contribution Possible on UI1, while P2 has
likelihood contribution Rare on UI1. We select P1 for testing.

We specify our test cases by annotating sequence diagrams using the stereo-
types given in the UML Testing Profile [15]: The stereotype <<SUT>> is ap-
plied to one or more properties of a classifier to specify that they constitute the
system under test. The stereotype <<TestComponent>> is used to represent
a component that is a part of the test environment which communicates with
the SUT or other test components. Test components are used in test cases for
stimulating the SUT with test data and for evaluating whether the responses of
the SUT adhere with the expected ones. The stereotype <<ValidationAction>>
is used on execution specifications, on lifelines representing test components, to
set verdicts in test cases. The UML Testing Profile defines the following five
verdicts: None (the test case has not been executed yet), pass (the SUT ad-
heres to the expectations), inconclusive (the evaluation cannot be evaluated to
be pass or fail), fail (the SUT differs from the expectation) and error (an error
has occurred within the testing environment). The number of verdicts may be
extended, if required.

A path represents a manipulated behavior of the system under test that leads
to an unwanted incident. We design test cases with respect to paths. The test
objective, for a test case designed with respect to a path, is to verify the validity
of the manipulations posed on the system under test. In P1 the integrity of
guest-book’s source code is compromised due to an XSS injection on the guest
book database via the guest book form. The test objective for the test case
designed with respect to P1 is to verify the validity of these manipulations, i.e.,
to verify whether it is possible to successfully carry out the manipulations.

Figure 6 shows the test case designed with respect to P1. We annotate life-
lines GBForm and GBDatabase with stereotype <<SUT>> to specify that they
constitute the system under test. We annotate lifeline C with stereotype <<Test-
Component>> to specify that it is a part of the test environment which commu-
nicates with the SUT. We add an execution specification on lifeline C annotated
with stereotype <<ValidationAction>> to set the verdict for the test case. The
verdict is set to fail meaning that the SUT differs from the expected behavior.
In other words, if stored XSS injection is successfully carried out then the SUT
differs from the expected behavior, which should be to prevent XSS injections.

8 Related Work

Although risk analysis, within risk-driven testing, is traditionally used as a basis
for planning the test process, few approaches also provide guidelines for deriving
test cases as part of the approach. These approaches explain the process of iden-
tifying, estimating and prioritizing risks either partly or by briefly mentioning
it. In [1, 10], risks are identified by making use of fault tree analysis, however,
there is no explanation on how to estimate and prioritize the risks. In [6], the
authors refer to fault tree analysis for identifying risks. There is no explanation



<<TestCom

ponent>>

C : Client

sd TestP1:Verdict

<<SUT>>

GBForm :

PHPForm

signGB(name,storedXSSinjection)

Integrity of GB

Source Code

<<SUT>>

GBDatabase:

MySQL

true

(UI1) Integrity of GB source code

compromised due to stored XSS injection

submit(name,storedXSSinjection)

selectAllGBEntries

allGBEntries

display(allGBEntries)

<<validationAction>>

fail

Fig. 6. Security test case designed w.r.t. the path represented in Fig. 4.

on how to estimate and prioritize risks. In [12], the authors refer to a risk analysis
approach published by NIST [21] for identifying security risks. However, there
is no further explanation on how to identify and estimate the security risks,
yet, security risks are prioritized with respect to a predefined risk assessment
matrix. In [23], security risks are identified solely by matching attack patterns
on the public interfaces of a SUT. The estimation and prioritization of risks are
only based on a complexity factor for specific operations in the SUT. In prac-
tice, other factors may be considered, e.g., vulnerability statistics and incident
reports. In [2], test cases are prioritized by calculating a risk exposure for test
cases, with the objective to quantitatively measure the quality of test cases. Risk
estimation is carried out by multiplying the probability of a fault occurring with
the costs related to the fault. However, there is no explanation about how risks
are identified. In [20], risks are estimated by multiplying the probability that
an entity contains fault with the associated damage. Similar to [2], this value
is used to prioritize test cases, and there is no explanation about how risks are
identified.

All of these approaches use separate modeling languages or techniques for
representing the risk analysis and the test cases: In [1, 6, 10], fault trees are used
to identify risks, while test cases are derived from state machine diagrams with
respect to information provided by the fault trees. In [12], high level risks are
detailed by making use of threat modeling. Misuse cases are developed with
respect to the threat models, which are then used as a basis for deriving test
cases represented textually. In [23], risk models are generated automatically by
making use of a vulnerability knowledge database. The risk models are used as
input for generating misuse cases, which are also identified in similar manner.
Misuse cases are used as a basis for deriving test cases. In [2, 20], a test case is



a path in an activity diagram, starting from the activity diagram’s initial node
and ending at its final node. In [2], risks are estimated using tables, while in [20],
risk information is annotated on the activities of an activity diagram, only in
terms of probability, damage and their product.

9 Conclusion

In order to bridge the gap between high level risks and low level test cases, risk-
driven testing approaches must provide testers with a systematic method for
designing test cases by making use of the risk analysis. Our method is specifically
designed to meet this goal.

The method starts after test planning, but before test design, according to
the testing process presented by ISO/IEC/IEEE 29119 [9]. It brings risk analysis
to the work bench of testers because it employs UML sequence diagrams as the
modeling language, conservatively extended with our own notation for represent-
ing risk information. Sequence diagrams are widely recognized and used within
the testing community and it is among the top three modeling languages applied
within the model based testing community [13]. Risk identification, estimation
and prioritization in our method are in line with what is referred to as risk
assessment in ISO 31000 [7]. Finally, our approach makes use of the UML Test-
ing Profile [15] to specify test cases in sequence diagrams. This means that our
method is based on widely accepted standards and languages, thus facilitating
adoption among the software testing community.

Acknowledgments. This work has been conducted as a part of the DIAMONDS
project (201579/S10) funded by the Research Council of Norway, the NESSoS
network of excellence (256980) and the RASEN project (316853) funded by the
European Commission within the 7th Framework Programme, as well as the
CONCERTO project funded by the ARTEMIS Joint Undertaking (333053) and
the Research Council of Norway (232059).

References

1. R. Casado, J. Tuya, and M. Younas. Testing Long-lived Web Services Transactions
Using a Risk-based Approach. In Proc. 10th International Conference on Quality
Software (QSIC’10), pages 337–340. IEEE Computer Society, 2010.

2. Y. Chen, R.L. Probert, and D.P. Sims. Specification-based Regression Test Se-
lection with Risk Analysis. In Proc. 2002 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’02), pages 1–14. IBM Press, 2002.

3. Damn Vulnerable Web Application (DVWA). http://www.dvwa.co.uk/. Accessed
August 11, 2013.

4. G. Erdogan, Y. Li, R.K. Runde, F. Seehusen, and K. Stølen. Conceptual Frame-
work for the DIAMONDS Project. Technical Report A22798, SINTEF Information
and Communication Technology, 2012.

5. V. Garousi and J. Zhi. A survey of software testing practices in Canada. Journal
of Systems and Software, 86(5):1354–1376, 2013.



6. M. Gleirscher. Hazard-based Selection of Test Cases. In Proc. 6th International
Workshop on Automation of Software Test (AST’11), pages 64–70. ACM, 2011.

7. International Organization for Standardization. ISO 31000:2009(E), Risk man-
agement – Principles and guidelines, 2009.

8. International Organization for Standardization. ISO/IEC/IEEE 29119-1:2013(E),
Software and system engineering - Software testing - Part 1: Concepts and defini-
tions, 2013.

9. International Organization for Standardization. ISO/IEC/IEEE 29119-2:2013(E),
Software and system engineering - Software testing - Part 2: Test process, 2013.

10. J. Kloos, T. Hussain, and R. Eschbach. Risk-based Testing of Safety-Critical Em-
bedded Systems Driven by Fault Tree Analysis. In Proc. 4th International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW’11),
pages 26–33. IEEE Computer Society, 2011.

11. M.S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis: The CORAS
Approach. Springer, 2011.

12. K.K. Murthy, K.R. Thakkar, and S. Laxminarayan. Leveraging Risk Based Testing
in Enterprise Systems Security Validation. In Proc. 1st International Conference on
Emerging Network Intelligence (EMERGING’09), pages 111–116. IEEE Computer
Society, 2009.

13. A.C. Dias Neto, R. Subramanyan, M. Vieira, and G.H. Travassos. A Survey on
Model-based Testing Approaches: A Systematic Review. In Proc. 1st ACM Inter-
national Workshop on Empirical Assessment of Software Engineering Languages
and Technologies (WEASELTech’07), pages 31–36. ACM, 2007.

14. Object Management Group. Unified Modeling Language (UML), superstructure,
version 2.4.1, 2011. OMG Document Number: formal/2011-08-06.

15. Object Management Group. UML Testing Profile (UTP), version 1.2, 2013. OMG
Document Number: formal/2013-04-03.

16. R. Oppliger, R. Hauser, and D. Basin. SSL/TLS session-aware user authentication
- Or how to effectively thwart the man-in-the-middle. Computer Communications,
29(12):2238–2246, 2006.

17. Open Web Application Security Project (OWASP).
https://www.owasp.org/index.php/Cross-site Scripting (XSS). Accessed Septem-
ber 5, 2013.

18. OWASP Top 10 Application Security Risks – 2013.
https://www.owasp.org/index.php/Category:OWASP Top Ten Project. Ac-
cessed September 6, 2013.

19. PHP manual. http://php.net/manual/en/pdo.prepared-statements.php. Accessed
September 6, 2013.

20. H. Stallbaum, A. Metzger, and K. Pohl. An Automated Technique for Risk-based
Test Case Generation and Prioritization. In Proc. 3rd International Workshop on
Automation of Software Test (AST’08), pages 67–70. ACM, 2008.

21. G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide for Infor-
mation Technology Systems. NIST Special Publication 800-30, National Institute
of Standards and Technology, 2002.

22. XAMPP. http://www.apachefriends.org/en/xampp.html. Accessed August 11,
2013.

23. P. Zech, M. Felderer, and R. Breu. Towards a Model Based Security Testing Ap-
proach of Cloud Computing Environments. In Proc. 6th International Conference
on Software Security and Reliability Companion (SERE-C’12), pages 47–56. IEEE
Computer Society, 2012.


