Rapport

Flystøysoner etter T-1442/2016 for landingsplass ved NLSH Vesterålen

Forfatter(e)
Herold Olsen
Idar L. N. Granøien
Rapport

Flystøysoner etter T-1442/2016 for landingsplass ved NLSH Vesterålen

EMNEORD:
Beregninger; Flystøy;
Akustikk; Helikopter

VERSION
1.0

DATO
2017-11-14

Forfatter(e)
Herold Olsen
Idar L. N. Granøien

Oppdragsgiver(e)
Safetec Nordic AS

Oppdragsgivers REF.
Martin Hassel

Prosjektnr
102017007

Antall sider og vedlegg:
24

Sammendrag

Beregningene viser at det er ingen bygninger med støyomfintlig bruksformål innenfor støysonene relatert til retningslinjen, og også innenfor kartleggingsgrensene for flystøy relatert til Forurensingsforskriften

Utarbeidet av
Herold Olsen

Kontrollert av
Rolf Tore Randeberg

Gjendjev av
Bengt Holter

Rapportnr
2017:00619

ISBN
978-82-14-06736-1

Gradering
Åpen

Gradering denne side
Åpen
Historikk

<table>
<thead>
<tr>
<th>VERSION</th>
<th>DATO</th>
<th>VERSIONSBESKRIVELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2017-11-13</td>
<td>Utkast til rapport</td>
</tr>
</tbody>
</table>
Innholdsfortegnelse

1 INNLEDNING..5

2 GENERELT OM FLYSTØY...6

 2.1 Akustiske størrelser... 6
 2.2 Flystøyens egenskaper og virkninger ... 6
 2.2.1 Søvnforstyrrelse som følge av flystøy... 6
 2.2.2 Generell plage av flystøy ... 7

3 MILJØVERNDEPARTEMENTETS RETNINGSLINJE ..9

 3.1 Måleenheter ... 9
 3.2 Støysoner til arealplanlegging ... 9
 3.2.1 Definisjon av støysoner ... 9
 3.2.2 Utarbeidelse av støysonekart og implementering i kommunale planer 11
 3.2.3 Kartlegging av stille områder ... 11
 3.3 Beregningsmetode .. 11
 3.3.1 Dimensjonering av trafikkgrunnlaget .. 12
 3.3.2 Beregningsprogrammet NORTIM .. 12

4 KARTLEGGING I HENHOLD TIL FORSKRIFT TIL FORURENSNINGSLOVEN13

 4.1 Innendørs støy .. 13
 4.1.1 Beregning med normtall for fasadedempning ... 13
 4.1.2 Beregning med frekvensspekter ... 13
 4.2 Strategisk støykartlegging ... 14

5 OMGIVELSER ..15

 5.1 Digitalt kartgrunnlag og topografi ... 15

6 TRAFIKKSAMMENSETNING ..16

7 TRAFIKKMØNSTER ..17

8 BEREGNING OG RESULTATER FOR ALTERNATIV 1: TRAFIKK MED BÅDE AMBULANSE- OG
 REDNINGSHELIKOPTER ..18

 8.1 Støysoner etter retningslinje T-1442/2016 ... 18
 8.2 Resultater relatert til Forurensingsforskriften .. 19
9 BEREGNING OG RESULTATER FOR ALTERNATIV 2: TRAFIKK MED AMBULANSEHELIKOPTER ALENE..21
 9.1 Støysoner etter retningslinje T-1442/2016.. 21
 9.2 Resultater relatert til Forurensingsforskriften... 22
10 Litteratur..24

BILAG/VEDLEGG

[Skriv inn ønsket bilag/vedlegg]
1 INNLEDNING

Hos oppdragsgiver har kontaktperson vært Martin Hassel. Ved SINTEF Digital, faggruppe for akustikk, er prosjektet bearbeidet av Herold Olsen, med Rolf Tore Randeberg som kvalitetssikrer og Bengt Holter som prosjektansvarlig.

Denne rapporten følger et standard format, hvor det først presenteres grunnleggende informasjon om støyregelverket i Norge og om beregningsprogrammet som benyttes. Deretter presenteres beregningsgrunnlaget og til sist resultatene fra beregningene.
2 GENERELT OM FLYSTØY

Hensikten med dette kapitlet er å gi en forenklet innføring om hvordan flystøy virker på mennesker. Framstillingen baserer seg på anerkjent viten fra det internasjonale forskningsmiljøet. Relevante måleenheter presenteres først.

2.1 Akustiske størrelser

L\textsubscript{AS maks}
Det A-veide maksimumsnivået for en støyhendelse (f.eks. en landing) målt med tidskonstant "slow", 1 sek. I flystøysammenheng benyttes ofte den forenklete skrivemåten \(L_{\text{maks}} \) eller \(L_{\text{max}} \), idet A-veiing og 1 sek integrasjonstid er underforstått.

L\textsubscript{pA}
Momentant A-veid lydtrykknivå

L\textsubscript{den}
Tidsveid ekvivalentnivå med 5 dB tillegg for kveld (19–23) og 10 dB tillegg for natt (23–07). Størrelsen skal normalt beregnes som et gjennomsnitt for hele året. Dette er hovedindeksen i det norske støyregelverket, og indeksen som anbefales av EU for å beskrive vanlig samfunnsstøy. I løpende tekst benyttes også skrivemåten DENL.

L\textsubscript{dn}
Tidsveid ekvivalentnivå med 10 dB tillegg for natt (22–07). Brukes internasjonalt på samme måte som DENL. I løpende tekst benyttes også skrivemåten DNL.

L\textsubscript{Aeq}
A-veid ekvivalentnivå. Korrekt skrivemåte i henhold til ISO er \(L_{\text{pAT}} \), der T angir midlingstiden, f.eks. døgn. I løpende tekst benyttes ofte \(L_{\text{Aeq}} \) eller bare LEQ. Andre brukte varianter av denne er \(L_{\text{day}}, L_{\text{evening}}, L_{\text{night}} \) eller tilsvarende norske døgnbenevnelser, der disse er definert gjennom periodene for \(L_{\text{den}} \).

MFNT
Statistisk representatív maksimum flystøynivå for en døgnperiode T. Denne benyttes for nattperioden (23-07). Krav til hyppighet er at maksimumsnivået må opptre minimum tre ganger per uke.

2.2 Flystøyens egenskaper og virkninger

Flystøy har en del spesielle egenskaper som gjør den forskjellig fra andre typer trafikkstøy. Varigheten av en enkelt støyhendelse er forholdsvis lang, nivåvariasjonene fra gang til gang er gjerne store og støynivåene kan være kraftige. Det kan også være lange perioder med opphold mellom støyendelsene. Flystøyens frekvensinnhold er slik at de største bidrag ligger i orets mest følsomme område og det er lett å skille denne lyden ut fra annen bakgrunnsstøy; så lett at man ofte hører flystøy selv om selve støynivået ikke beveger seg over nivået på bakgrunnsstøyet. Flystøy har også et betydelig innslag av lavfrekvente komponenter som gjør at den lett trenger inn i bygninger.

De to viktigste typer ulemper forbundet med flystøy er forstyrrelse av søvn eller hvile og generell irritasjon eller plage. Det er viktig å merke seg at fare for hørselsskader med få unntak begrenser seg til de personer som jobber nær flyene på bakken.

2.2.1 Søvnforstyrrelse som følge av flystøy

Det har vært bred internasjonal enighet om at *vekking* som følge av flystøy kan medføre en risiko for helsevirkninger på lang sikt, se litteraturlisten ref. [1, 2]. Det er *ikke* samme enighet på hvorvidt *endringer av søvnstadium* (sovnhygiene) har noen negativ effekt alene, dersom dette ikke medfører vekking.

Risiko for vekking er avhengig av hvor høyt støynivå en utsettes for (maksimumsnivå) og hvor mange støyhendelser en utsettes for i løpet av natten. Det er normalt store individuelle variasjoner på når folk
reagerer på støyen. Derfor brukes oftest en gitt sannsynlighet for at en andel av befolkningen vekkes for å illustrere hvilke støynivå og antall hendelser som kan medføre vekking, som illustrert i Figur 2-1.

Figur 2-1. 10 % sannsynlighet for vekking resp. søvnstadiumsendring. Sammenheng mellom maksimum innendørs støynivå og antall hendelser [1].

Figuren viser at man tåler høyere støynivå uten å vekkes dersom støynivået opptrer sjelden. Når det blir mer enn ca. 15 støyhendelser i søvnperioden er ikke antallet så kritisk lenger. Da er det 10 % sjanse for vekking dersom nivåene overstiger 53 dBA i soverommet.

2.2.2 Generell plage av flystøy

Sammenfatning av slike undersøkelser er også foretatt flere ganger og den mest omfattende og den som oftest refereres til er publisert av Miedema og Oudshorn, ref. [2]. Den vanligste parameteren som man rapporterer er hvor stor andel av befolkningen som sier seg svært plaget (highly annoyed) som funksjon av ekvivalent støynivå. Både L_{den} og L_{dn} er slike nivåforhold hvor det i tillegg gjøres en vekting av når på døgnet støyhendelsen forekommer. Den følgende figuren viser andel sterkt plaget som funksjon av L_{den} slik den er sammenfattet i [2].

Senere undersøkelser i Norge [5] viser at for fire av fem undersøkte flyplasser så er reaksjonene lavere enn kurven i Figur 2-2, mens én av de fem viser sterkere reaksjoner. De fire med lavere respons er Bodø, Sola, Tromsø og Værnes, mens reaksjonene rundt Gardermoen skiller seg ut i motsatt retning. Årsaken til høyere respons her er antatt å være todelt; dels et vedvarende konfliktnivå mellom flyplass og naboer rundt Gardermoen, dels at tettere trafikk medfører færre stille perioder hvor man får tatt seg inn igjen.

Figur 2-2. Middelkurve for prosentvis antall personer sterkt plaget av flystøy som funksjon av ekvivalent støynivå utendørs [2].
3 MILJØVERNDEPARTEMENTETS RETNINGSLINJE

3.1 Måleenheter

L_{den} er det mål som EU har innført som en felles måleenhet for ekvivalentnivå. Måleenheten legger forskjellig vekt på en støyhendelse i forhold til når på døgnet hendelsen forekommer. På kveld legges det til 5 dB til den reelle støyen og på natt adderes 10 dB. Et tillegg på 5 dB på ekvivalentnivået tilsvares at ett fly på kveld teller som drøyt tre på dagtid, mens ett fly på natt teller som ti på dag. T-1442/2016 følger den internasjonalt mest vanlige inndelingen av døgnet ved at dagtid er definert fra kl. 07 til 19, kveld er mellom kl. 19 og 23, mens natta strekker seg fra kl. 23 til 07.

Maksimumsnivået L_{5AS} er i definert som det lydnivå "som overskrides av 5 % av hendelsene i løpet av en nærmere angitt periode, dvs. et statistisk maksimalnivå i forhold til antall hendelser". Denne enheten kommer bare til anvendelse for hendelser som forekommer på natt mellom 23 og 07, og var ment å skulle erstatte måleenheten MFN på natt. L_{5AS} vil imidlertid ikke identifisere de nivå som kan skape problem for søvnforstyrrelse relatert til Figur 2-1. Antallet "hendelser" vil kunne variere fra flyplass til flyplass og fra område til område ved en og samme flyplass. Når dimensjonerende nivå defineres til å være en prosentsats, vil man derfor ikke uten videre vite hvor mange hendelser dette representerer.

Retningslinje T-1442/2016 definerer ikke begrepet "hendelse". Det betyr at det ikke er gitt hvor mye støy som skal til for at man skal inkludere noe som en hendelse. I veileden til T-1442/2016 er det angitt at L_{5AS} beregnes som MFN_{23–07}.

3.2 Støysoner til arealplanlegging

3.2.1 Definisjon av støysoner

Støysonene ble definert slik at det i ytterkant av gul sone kan forventes at inntil 10 % av en gjennomsnitts befolkning vil føle seg svært plaget av støyen. Det betyr at det vil være folk som er plaget av støy også utenfor støysonene.

De to støysonene er i retningslinjen definert som vist i
Tabell 3-1. Det fremgår at hver sone defineres med to kriterier. Hvis ett av kriteriene er oppfylt på et sted, så faller stedet innenfor den aktuelle sonen – det er med andre ord et "eller" mellom kolonnene.
Tabell 3-1. Kriterier for soneinndeling. Ytre grense i dB, frittfeltsverdier.

<table>
<thead>
<tr>
<th>Støykilde</th>
<th>Støysone</th>
<th>Utendørs støynivå</th>
<th>Utendørs støynivå i nattperioden kl. 23 – 07</th>
<th>Utendørs støynivå</th>
<th>Utendørs støynivå i nattperioden kl. 23 – 07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flyplass</td>
<td>Gul sone</td>
<td>L$_{den}$ 52 dB</td>
<td>L$_{5AS}$ 80 dB</td>
<td>Rød sone</td>
<td>L$_{den}$ 62 dB</td>
</tr>
</tbody>
</table>

3.2.2 Utarbeidelse av støysonekart og implementering i kommunale planer

Ansvar for utarbeidelse av kart som viser støysonene legges til tiltakshaver ved nye anlegg, mens anleggseier eller driver har ansvar for eksisterende anlegg. De ansvarlige oversender kartene til kommunen og har også et ansvar for å oppdatere kartene dersom det skjer vesentlige endringer i støysituasjonen. Normalt skal kartene vurderes hvert 4.–5. år.

Det skal utarbeides støysonekart for dagens situasjon og aktivitetsnivå og en prognose 10–20 år fram i tid. Kartet som oversendes kommunen skal settes sammen som en verste situasjon av de to beregningsalternativene.

Kommunene skal inkludere og synliggjøre støysonekartene i sine arealplaner. Retningslinjen har flere forslag til hvordan dette kan gjøres. For varige støykilder er det foreslått å legge sonene inn på selve kommuneplankartet som støybetinget restriksjonsområde. Det anbefales at kommunene tar inn bestemmelser tilknyttet arealutnyttingen innenfor støysonene og at det skal stilles krav til reguleringssplan for all utbygging av støyomfintlig bebyggelse innenfor rød og gul sone.

Følgende regler for arealutnytting er angitt i retningslinjen:

- **Rød sone**, nærmest støykilden, angir et område som ikke er egnet til støyfølsomme bruksformål, og etablering av ny støyfølsom bebyggelse skal unngås.
- **Gul sone** er en vurderingssone, hvor støyfølsom bebyggelse kan oppføres dersom avbøtende tiltak gir tilfredsstillende støyforhold.

3.2.3 Kartlegging av stille områder

Kartlegging av stille områder er omtalt i et eget kapittel i retningslinjen. Kommunene anbefales å synliggjøre avgrensende områder som er viktige for rekreasjonsaktivitet i sine arealplaner som grønne soner. I tettbebygget defineres stille områder som eksempelvis parker, kirkegårder, skog som har et støynivå som er under L$_{den}$ på 50 dBA. Utenfor tettbebygd strøk settes nivågrensen til 40 dBA.

3.3 Beregningsmetode

Vurdering av flystøy etter Miljøverndepartementets retningslinjer gjøres kun mot støysonegrenser som er beregnet, dvs. at man ikke benytter målinger lokalt for å fastsette hvor grensene skal gå. Den beregningsmodellen som benyttes i Norge (se avsnitt 3.3.2), er imidlertid basert på en database som representerer sammenfatning av et omfattende antall målinger. Skulle beregningene vært erstattet med målinger, så måtte det gjøres meget lange målereser for å oppnå samme presisjonsnivå som det beregningsprogrammet gir.

Målinger kan nyttes som korrigerende supplement ved kompliserte utbredelsesforhold, ved spesielle flygeprosedyrer, eller når beregningsprogrammet eller dets database er utilstrekkelig.
3.3.1 Dimensjonering av trafikkgrunnlaget

3.3.2 Beregningsprogrammet NORTIM

NORTIM beregner i en og samme operasjon de aktuelle måleenheter som er foreskrevet i retningslinjen L_{den} og $MFN_{23,07}$ (som erstatning for L_{5AS}). Andre støymål som beregnes er blant annet ekvivalentnivået, L_{Aeq}, for hvert døgnsegment i det dimensjonerende middeldøgn. Beregningsresultatene fremkommer i tabellariske oversikter og/eller som støykurver (sonegrenser) som kan tegnes i ønsket målestokk. Alle resultatene leveres på SOSI filformat.

Ved bruk av en liste over substitutter for flytyper som ikke ingår i databasen, kan det beregnes støy fra omlag 650 forskjellige typer fly. I tillegg er det mulig å legge inn brukerdefinerte data for fly- og helikoptertyper som ikke er definert i databasen. I slike situasjoner hentes data fra andre anerkjente kilder eller egne målinger.
4 KARTLEGGING I HENHOLD TIL FORSKRIFT TIL FORURENSNINGSLOVEN

4.1 Innendørs støy

Forurensningsforskriften fastsetter grenseverdier som skal utløse kartlegging og utredning av tiltak mot støy. Kartleggingsgrensen er satt til døgnekvivalent nivå (L_{A_{eq},24h}) på 35 dBA innendørs når bare en støytype dominerer. Dersom flere likeverdige kilder er til stede, senkes kartleggingsgrensen for hver støykilde med 3 dB til 32 dBA.

4.1.1 Beregning med normtall for fasadedempning

Flystøy beregnes primært for utendørs nivå. Det må derfor gjøres forutsetninger om hvor stor støyisolasjon (demping) husets fasader medfører for å kunne gjøre resultatene om til innendørsnivå. Fasadeisolasjon varierer med frekvensinhold i støyen. Lave frekvenser (basslyder) går lettere gjennom, mens høye frekvenser (diskant) dempes bedre. Ettersom frekvensinhold er forskjellig fra flytype til flytype, vil støy fra disse ha ulik støydemping gjennom en fasade. Basert på Norges Byggforskningsinstituttets utredning om fasadeisolasjon [17], som er revidert av Brekke og Strand [18], er det valgt tre forskjellige normtall for fasadeisolasjon avhengig av hvilke flytyper som er støymessig dominant på hver flyplass. Grenseverdi for kartlegging baseres på hustyper ført opp i 1970 eller senere. Tabell 4-1 viser grenseverdiene for beregnet utendørs døgnekvivalent nivå (L_{A_{eq},24h}).

<table>
<thead>
<tr>
<th>Flyplasstype</th>
<th>Støymessig dominerende flytype</th>
<th>Minimum fasadeisolasjon i vanlig bebyggelse</th>
<th>Kartleggingsgrense relativt til frittfeltsnivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regionale flyplasser</td>
<td>Propellfly</td>
<td>19 dBA</td>
<td>54 dBA (35+19)</td>
</tr>
<tr>
<td>Stamruteplasser / militære flyplasser</td>
<td>Jagerfly</td>
<td>25 dBA</td>
<td>60 dBA (35+25)</td>
</tr>
<tr>
<td>Stamruteplasser</td>
<td>Støysvake jetfly</td>
<td>27 dBA</td>
<td>62 dBA (35+27)</td>
</tr>
</tbody>
</table>

Tiltak på bygninger skal gjøres dersom innendørs støynivå overstiger 42 dBA døgnekvivalent nivå. En tentativ tiltaksgrense vil derfor ligge 7 dB over den kartleggingsgrense som for hvert tilfelle framkommer av tabellen over.

4.1.2 Beregning med frekvensspekter

innendørsnivået ikke kunne erstatte en faglig utredning som tar hensyn til den aktuelle bygningskonstruksjonen i hvert enkelt tilfelle.

4.2 Strategisk støykartlegging

Strategisk støykartlegging gjennomføres for å tilfredsstille EU direktiv 2002/49/EC REF, befolkningens behov for informasjon og som grunnlag for handlingsplaner. Forskriften gir i vedlegg minstekrav til hva som skal beregnes og rapporteres. Denne del av kartleggingen gjelder for utendørs nivå og det er krav til flere støykarter, samt opptelling av antall boliger og andre bygninger med støyomfintlig bruksområde innenfor intervaller av støynivå for både L_{den} og L_{night}.

Strategisk støykartlegging skal utføres på flyplasser med mer enn 50 000 civile bevegelser per år. I dette tallet inngår ikke militær trafikk eller skoleflyging, men denne trafikken skal likevel regnes med når kartleggingen foretas.
5 OMGIVELSER

5.1 Digitalt kartgrunnlag og topografi

Beregningsprogrammet NORTIM kan ta hensyn til topografi ved beregning av støykart. For denne beregningen er topografi hentet fra Kartverket sine gratis tjenester. Topografien er representert med en punktetthet på 10×10 meter.

NORTIM kan også ta hensyn til den lydskjermende effekten til veller, bygninger o.l. For denne beregningen er det ikke tatt hensyn til slik skjermering av lyd.

For presentasjon av flygetraséer, resultater, o.l. brukes et bakgrunnskart hentet fra Kartverket sine gratis WMS-tjenester. I denne rapporten presenteres alle kart i kartsystemet UTM Euref89 sone 33.

Figur 5-1. Landingsplass markert med et rosa merke. M 1:10 000
TRAFIKKSAMMENSETNING

Oppdragsgiver har angitt at landingsplassen vil trafikkeres av ambulansehelikopter type H145 med 80 bevegelser (40 landinger og 40 avganger) per år, samt redningshelikopter type AW 101 med 24 bevegelser (12 landinger og 12 avganger) per år. Det er beregnet to alternative trafikksituasjoner; en med både ambulansehelikopter og redningshelikopter, og en der redningshelikopter er utelatt. Det antas at trafikkfordelingen over døgnet er sammenliknbar med landingsplasser ved andre sykehus. Det er opplyst at 30 % av trafikken vil foregå om natten. Det er derfor antatt at 56 % av flygningene skjer på dagtid (07–19), 14 % på kveld (19–23) og 30 % på natt (23–07).

Det er antatt standard inn- og utflygingsprofiler. I tillegg er det lagt inn prosedyrer for nedkjøling og oppstart (med helikopteret stående på bakken). Det er antatt gjennomsnittlig 3 minutter for nedkjøling og 3 minutter for oppvarming i forbindelse med hver landing og avgang. Antall operasjoner per år for de to alternative beregningene er gitt i Tabellene 6-1 og 6-2.

Tabell 6-1. Antall operasjoner per år for både ambulanse- og redningshelikopter.

<table>
<thead>
<tr>
<th>Helikoptertype</th>
<th>Operasjon type</th>
<th>Antall operasjoner</th>
</tr>
</thead>
<tbody>
<tr>
<td>H145</td>
<td>Landing</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Avgang</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Nedkjøling/oppvarming</td>
<td>240 (minutter)</td>
</tr>
<tr>
<td>AW 101</td>
<td>Landing</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Avgang</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Nedkjøling/oppvarming</td>
<td>72 (minutter)</td>
</tr>
</tbody>
</table>

Tabell 6-2. Antall operasjoner per år ambulansehelikopter alene.

<table>
<thead>
<tr>
<th>Helikoptertype</th>
<th>Operasjon type</th>
<th>Antall operasjoner</th>
</tr>
</thead>
<tbody>
<tr>
<td>H145</td>
<td>Landing</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Avgang</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Nedkjøling/oppvarming</td>
<td>240 (minutter)</td>
</tr>
</tbody>
</table>
7 TRAFIKKMØNSTER
Basert på skisser oversendt fra oppdragsgiver er flymønsteret ved landingsplassen lagt inn i beregningsmodellen slik det er vist i Figur 7-1 under. Det er lagt inn en statistisk spredning, dvs. at trafikken fordeles på hovedtrasséene (svart) og seks spredetraséer (grå) per hovedtrasé i hht. en standardisert metode. Trafikken fordeles med en tilnærmet Gaussisk fordeling. Det er antatt 50/50 fordeling i bruk av nordgående og sørgående rute.

Figur 7-1. Traséer for inn- og utflyging, inkludert sideveis spredning. M 1:10 000.
BEREGNING OG RESULTATER FOR ALTERNATIV 1:
TRAFIKK MED BÅDE AMBULANSE- OG REDNINGSHELIKOPTER

Beregninger med NORTIM gjøres i et rutenett rundt landingsplassen med punkttetthet på 64 x 64 fot (ca. 19,5 x 19,5 meter). Beregningshøyde er 4 meter over bakken. Beregningsområdet strekker seg ut over de områder som har ekvivalentnivå høyere enn 50 dBA. Innenfor beregningsområdet gjøres det punktberegninger for alle støyomfintlige bygninger.

8.1 Støysoner etter retningslinje T-1442/2016

Resultatene fra støyberegningene vises på de følgende kart. I følge retningslinje T-1442 skal støysonekartet lages med grunnlag i støykoter for enhetene \(L_{den}\) og \(L_{5AS}\) (MFN23-07). Støykotene for \(L_{den}\) er vist i Figur 8-1. Beregningsmetoden for \(L_{5AS}\) forutsetter i praksis at det er minst 3 støyende hendelser om natten i løpet av en gjennomsnittlig uke. Trafikkmengden i dette alternativet er lavere enn denne grensen. Beregning av \(L_{5AS}\) faller derfor bort.

![Figur 8-1. L_{den} 52 og 62 dBA. M 1:5 000.](image)

Det er ikke nok trafikk på natt til at \(L_{5AS}\) (MFN23-07) bidrar til støysonene. Det betyr at yttergrensene til rød og gul sone er gitt av kotene for \(L_{den}\) 62 og 52 dBA. Støysonekartet for landingsplassen er vist i Figur 8-2.

Om landingsplassen er å betrakte som et nytt tiltak, bør det etter anbefaling i T-1442 kartlegges innendørs støyinnvå i alle bygninger med støyfølsomt bruksformål innenfor gul sone. Retningslinjen anbefaler da at krav til innendørs støyinnvå settes til lydklasse C i NS8175. Tabell 8-1 viser antall bygg som ligger i sonene.
Merk at opptelling av antall bygninger skjer maskinelt ut fra koordinatene til bygningens referansepunkt slik det er registrert i matrikelen. Figur 8-2 viser at dele av sykehuset åpenbart ligger i gul sone, og deler av fasaden er helt opp mot grensen til rød sone. Dette fanges altså ikke opp av opptellingen fordi referansepunktet for denne store bygningen tilfeldigvis ligger like utenfor gul sone.

Tabell 8-1. Antall bygninger med støyfølsomt bruksformål innenfor støysonene.

<table>
<thead>
<tr>
<th>Sone</th>
<th>L$_{den}$ 50 - 52 dB</th>
<th>Boliger</th>
<th>Skolebygninger</th>
<th>Helsebygninger</th>
<th>Fritidsboliger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gul</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rød</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

8.2 Resultater relatert til Forurensingsforskriften

For tiltak som ikke er nye, gjelder kravene i Forurensingsforskriften. I dette kapitlet er det vist støykoter og opptellinger av antall boliger og bosatte, i hht. disse kravene. Antall bosatte beregnes ut fra antall boliger og et fylkesjustert gjennomsnittstall for antall personer bosatt per bygningstype.

Som beskrevet i kapittel 4 skal kartlegging og tiltak skje på bakgrunn av innendørs ekvivalentnivå. NORTIM beregner i utgangspunktet bare utendørs støytnivå. Ved å ta utgangspunkt i et lavt estimat av fasededemping
til boliger med standard utførelse (Tabell 4-1) kan det beregnes hvilke utendørs støynivelvå som tilsvarer kartleggings- og tiltaksgrensene gitt i forskriften. For helikopterlandingsplasser blir kartleggingsgrensen L_{Aeq24h} 54 dBA, mens tentativ tiltaksgrense blir 61 dBA. Dersom andre støykilder bidrar like mye som landingsplassen blir kartleggingsgrensen 51 dBA. Støykotene for disse tre nivåene er vist i Figur 8-3.

![Figur 8-3. Kartleggings- og tiltaksgrenser i henhold til forurensingsforskriften. Kotene viser L_{Aeq24h} 51, 54 og 61 dBA. M 1:10 000.](image-url)

Det er ingen bygninger med støyomfintlig bruk innenfor de viste grensene
9 BEREGNING OG RESULTATER FOR ALTERNATIV 2: TRAFIKK MED AMBULANSEHELIKOPTER ALENE

Beregninger med NORTIM gjøres i et rutenett rundt landingsplassen med punkttetthet på 64 x 64 fot (ca. 19,5 x 19,5 meter). Beregningshøyde er 4 meter over bakken. Beregningsområdet strekker seg ut over de områder som har ekvivalentnivå høyere enn 50 dBA. Innenfor beregningsområdet gjøres det punktberegninger for alle støyomfintlige bygninger.

9.1 Støysoner etter retningslinje T-1442/2016

Resultatene fra støyberegningene vises på de følgende kart. I følge retningslinje T-1442 skal støysonekartet lages med grunnlag i støykoter for enhetene L_{den} og L_{5AS} (MFN23-07). Støykotene for L_{den} er vist i Figur 9-1. Beregningsmetoden for L_{5AS} forutsetter i praksis at der er minst 3 støyende hendelser om natten i løpet av en gjennomsnittlig uke. Trafikkønsen i dette alternativet er lavere enn denne grensen. Beregning av L_{5AS} faller derfor bort.

![Figur 9-1. L_{den} 52 og 62 dBA. M 1:5 000.](image)

Det er ikke nok trafikk på natt til at L_{5AS} (MFN23-07) bidrar til støysonene. Det betyr at yttergrensene til rød og gul sone er gitt av kotene for L_{den} 62 og 52 dBA. Støysonekartet for landingsplassen er vist i Figur 9-2.

Om landingsplassen er å betrakte som et nytt tiltak, bør det etter anbefaling i T-1442 kartlegges innendørs støyinnvå i alle bygninger med støyløs som bruksformål innenfor gul sone. Retningslinjen anbefaler da at krav
til innendørs støynivå settes til lydklasse C i NS8175. Det er ikke registrert noen bygninger med støyomfintlig bruk innenfor gul sone.

Merk at figur 9-2 viser at delet av sykehuset åpenbart ligger i gul sone. Dette er ikke fanget opp av den maskinelle registreringen fordi referansepunktet for bygningen ligger utenfor gul sone.

![Map of the area](image)

Figur 9-2. Støysonekart etter T-1442/2016 for landingsplassen. M 1:10 000.

9.2 Resultater relatert til Forurensingsforskriften

For tiltak som ikke er nye, gjelder kravene i Forurensingsforskriften. I dette kapitlet er det vist støykoter og opptellinger av antall boliger og bosatte, i hht. disse kravene. Antall bosatte beregnes ut fra antall boliger og et fylkesjustert gjennomsnittstall for antall personer bosatt per bygningstype.

Som beskrevet i kapittel 4 skal kartlegging og tiltak skje på bakgrunn av innendørs ekvivalentnivå. NORTIM beregner i utgangspunktet bare utendørs støynivå. Ved å ta utgangspunkt i et lavt estimat av fasededemping til boliger med standard utførelse (Tabell 4-1) kan det beregnes hvilke utendørs støynivå som tilsvarer kartleggings- og tiltaksgrensen gitt i forskriften. For helikopterlandingsplasser blir kartleggingsgrensen L_{Aeq24h} 54 dBA, mens tentativ tiltaksgrense blir 61 dBA. Dersom andre støykilder bidrar like mye som landingsplassen blir kartleggingsgrensen 51 dBA. Støykotene for disse tre nivåene er vist i Figur 9-3.

Det er ingen bygninger med støyomfintlig bruk innenfor de viste grensene
10 LITTERATUR

