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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
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ABSTRACT

Fluidized bed and moving bed reactors are one of the most impor-
tant technologies in several branches of process industry. Espe-
cially, it is known since decades that iron can be reduced rapidly
and efficiently from iron carrier materials using such. The primary
energy sources and reducing agents are natural gas, coal, coke, pul-
verized coal, which are finally released as CO; and in a lesser ex-
tent as HyO to the environment. Iron reduction consumes about
70% of the energy during steelmaking therefore offering potential
in energy and CO; savings. Due to the limited accessibility for
measurements, simulation methods have become one of the most
important tools for optimizing the iron making processes. While the
two-fluid model (Schneiderbauer et al., 2012) would be a good can-
didate to attack the simulation of large-scale multi-phase processes
it lacks from a proper representation of the particle size distribu-
tion and the related physical phenomena. This, in turn, gives rise
to particle-based approaches, such as the coupling between CFD
and DEM methods, which can easily handle particle segregation,
particle growth and particle mixing. Furthermore, chemical reac-
tions can be evaluated per particle and it is not required to transfer
these reactions to a continuum representation. However, CFD-DEM
approaches require an appropriate coarse-graining to considerably
reduce their computational demands. We, therefore, present a gen-
eralization of the Lagrangian-Eulerian hybrid model for the numer-
ical assessment of reacting poly-disperse gas-solid flows (Schnei-
derbauer et al., 2016b) to fluidized beds used for iron ore reduction.
The main idea of such a modeling strategy is to use a combination
of a Lagrangian discrete phase model (DPM) and a coarse-grained
two-fluid model (TFM) to take advantage of the benefits of those
two different formulations. On the one hand, the DPM model un-
veils additional information such as the local particle size distribu-
tion, which is not covered by TFM. On the other hand, the TFM so-
lution deflects the DPM trajectories due to the inter-particle stresses.
This hybrid approach further enables the efficient evaluation of the
gas-solid phase reduction of iron ore at a particle level using DPM.
The predictive capability and numerical efficiency of this reactive
hybrid modeling approach is demonstrated in the case of a lab-scale
fluidized bed. The results show that the model is able to correctly
predict fractional reduction of the iron ore. The results further give a
closer insight about the temperatures and reaction gas consumption
due to the reduction process.

Keywords: fluidized bed, iron ore reduction, two-fluid model.

A complete list of symbols used, with dimensions, is re-
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NOMENCLATURE
Greek Symbols

B

drag coefficient, [ks/m’s)

p  Mass density, [ks/m?]

€ volume fraction, (-)

Mg Viscosity of gas phase, [Pas]
T Tortuosity, (-)

Latin Symbols

a,b,c Stoichiometric coefficients of relative species
A,B,C Species

A,  Particle surface area, [m?]

C;  Molar Concentration of species i, [mol/m?]
D;; Binary gas diffusion, [’/

d  Particle diameter, [m]

E, Activation energy, [&//mol]

fi  Local fractional reduction of the j'h layer, [*//mol|
Ga  Box filter defined by numerical grid, (-)
ko  Pre-exponential factor, [/s]

Ke; Equilibrium constant of layer j, (-)
ky  Mass transfer coefficient, [m/s]

kj  Reaction rate constant, [m/s]

m;  Mass of species i, [kg]

M;  Molecular mass of species i, [kg/mol]
N;  Number of moles of species i, [mol]
n Number density, [1/m?]

Nu  Nusselt number, (-)

Pr  Prandtl number, (-)

P, Total pressure, [bar]

R Universal gas constant, [&//molK]

Re  Reynolds number, (-)

r,  Particle radius, [m]

rj  Layer radius, [m]

Sc¢  Schmidt number, (-)

Sh  Sherwood number, (-)

T  Temperature, [K]

u velocity, [m/s]

Y;; Mass fraction of species i layer j, (-)
X; Molar fraction of species i, (-)
Sub/superscripts

g Gas phase

i species i

Jj layer j
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INTRODUCTION

The main conversion process to gain metallic iron from oxi-
dic iron compounds is the reduction of iron ores by suitable
reducing agents, where iron oxides are reduced to metallic
iron by gaseous reducing agents (CO and Hj). During the
reduction of iron ores, oxygen is removed accoring to the
thermodynamic equlibrium conditions, until the next oxida-
tion level is reached. The gaseous reduction of iron oxides as
well as the oxidation of the reducing agents can be described
by the following reaction mechanism (Valipour, 2009)

Fe Oy +yCO = xFe +yCO,,
Fe Oy +yH; = xFe + yH,0.

ey
@)

These equations reveal that the reduction reactions of iron
ores can be considered as elementary reactions, which means
that the number of moles of the gaseous components does
not change during the reactions. Thus, the equilibrium of
reactions is independent of the total pressure of the reaction
system and the chemical equilibrium conditions only depend
on temperature.

The leading process used in iron-making is the blast furnace,
which consists of a moving bed reactor with countercurrent
flow of the solid reactants against a reducing gas. In the lower
part the iron is molten and carburized. However, in the blast
furnace process iron ore fines, which build up around 80% of
the total iron ore, needs to go through a preparation step (i.e.
pelletizing or sintering process; Schenk (2011)). In contrast,
by using fluidized bed technology fine ores can directly be
charged into the reduction process. Such fluidized bed reac-
tors are used, for example, in the FINEX® process (Haber-
mann et al., 2000; Primetals Technologies Austria GmbH
and POSCO E&C, 2015). The FINEX® process, which was
jointly developed by POSCO (Korea) and Primetals Tech-
nologies (Austria), produces hot metal in the same quality
as traditional blast furnaces, however the coke making and
sintering of the fine ores are avoided. The iron-ores that are
charged into the process go through fluidized bed reactors
where they are heated and reduced to DRI (Direct Reduced
Iron), charged into the melter gasifier, where final reduction
and melting as well as the production of reducing gas by gasi-
fication of coal with oxygen takes place (Plaul et al., 2009).
Due to the limited accessibility for measurements, simula-
tion methods have become one of the most important tools
for optimizing the iron making processes (Valipour, 2009;
Natsui et al., 2014; Valipour et al., 2006; Fu et al., 2014).
However, either these numerical models neglect the impact
of the reduction of iron ore (Fu er al., 2014) or these are
restricted to very small scale processes such as, individual
pellets (Valipour, 2009; Valipour et al., 2006) or lab-scale
fluidized beds (Natsui et al., 2014). It has to be noted that
the latter utilized the CFD-DEM approach to model the gas-
solid flow, where the continuous phase is governed by com-
putational fluid dynamics (CFD) and the particle trajectories
are computed by using the discrete element method (DEM),
which is rather computationally demanding (Goniva et al.,
2012).

Since the total number of particles in fluidized bed reactors
is extremely large, it may be impractical to solve the equa-
tions of motion for each particle. It is, therefore, common
to investigate particulate flows in large process units using
averaged equations of motion, i.e. two-fluid models (TFM),
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which include the inter-particle collisions statistically by ki-
netic theory based closures of the particle stresses (Lun et al.,
1984; Schneiderbauer et al., 2012; Agrawal et al., 2001).
However, each representative particle diameter requires an
additional momentum and continuity equation, which con-
siderably raises the computational demand with increasing
number of particle diameters (Iddir and Arastoopour, 2005;
Schellander et al., 2013). One may restrict the calculations
to spatially constant particle size distributions to evaluate
the gas-solid drag force (Schneiderbauer et al., 2015a). To
overcome this deficiency of TFM, we follow our previous
work (Schneiderbauer et al., 2016a; Schellander et al., 2013;
Pirker et al., 2010; Schneiderbauer et al., 2015b; Pirker and
Kahrimanovic, 2009) and employ a hybrid model for the nu-
merical assessment of poly-disperse gas-solid fluidized beds.
The main idea of such a modeling strategy is to use a com-
bination of a Lagrangian discrete phase model (DPM) and a
TFM to take advantage of the benefits of those two different
formulations. On the one hand, the local degree of poly-
dispersity (i.e. the local particle size distribution), which is
essential for the evaluation of the gas-solid drag force, can be
obtained by tracking statistically representative particle tra-
jectories for each particle diameter class. On the other hand,
the computationally demanding tracking of the inter-particle
collisions can be obtained from the inter-particle stresses,
which are deduced from the TFM solution. These then ap-
pear in addition to the gas-particle drag as a body force in
the equation of motion of each DPM-trajectory. Thus, the
hybrid model represents a TFM simulation with additional
DPM particles, which are used, for example, to provide a
closure for the poly-disperse drag law. Finally, by employ-
ing the above Lagrangian-Eulerian hybrid model, the reduc-
tion of the iron ore as well as the corresponding reaction heat
can be computed based on the representative Lagrangian par-
ticles. This, in turn, includes the conversion of iron oxides to
iron.

In this paper, we employ a Eulerian-Lagrangian hybrid
model (Schneiderbauer et al., 2016a,b) to the direct reduction
of iron ore in fluidized beds. Here, the reduction is computed
based on representative Langrangian trajectories, where the
reduction model is based on literature (Hanel er al., 2015;
Valipour, 2009; Valipour et al., 2006; Natsui et al., 2014).

POLY-DISPERSE GAS-SOLID FLOWS
Two-fluid model (TFM)

In this work, we used a kinetic-theory based two-fluid model
(TFM) to study fluidized beds. Since these equations have
been extensively discussed in our previous work (Schneider-
bauer et al., 2013, 2012; Schneiderbauer and Pirker, 2014),
we do not repeat all the details here and solely present the
continuity and momentum equations for the solid phase be-
low:

0
= &Ps + V. (Sspsus) = R, 3)

ot
0 X
g(espsus) +V. (gspsusus) = —SSVP -V (zl:c +2tr) @
+ B(ug - us) +&Ps8-

Here, p;, €5 and u; denote density, volume fraction and local-
average velocity of the solid phase, respectively; Ry denotes
the rate of oxygen removal due to chemical reactions; p is the
gas phase pressure; u, is the local-average velocity of the gas
phase; [ is the microscopic drag coefficient, which is closed
by the poly-disperse drag law of Beetstra et al. (2007) (see
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table 1); g is the gravitational acceleration; finally, EIS‘C and
T are the stress tensors associated with the solids phase,
where the frictional contribution, ):ﬁf, arises from enduring
or multi-particle collision events in dense areas. The kinetic-
collisional part, ZEC, is closed using kinetic theory (Hrenya
and Sinclair, 1997; Lun et al., 1984), which requires an ad-
ditional equation for the granular temperature. It has to be
further noted that in our previous study (Schellander et al.,
2013) we considered an additional term on the right hand
side of the solids momentum equation, which accounted for
the impact of particle rotation (Magnus force). Particle rota-
tion is assumed to be non-significant in fluidized beds and is
therefore included in this work.

Lagrangian discrete phase model (DPM)

We follow our previous work (Schneiderbauer et al.,
2016a,b) and obtain the local volume fraction of the differ-
ent particle size classes €;; = x;€;, which is required for the
evaluation of the gas-solid drag force (compare with table 1),
by tracking statistically representative particle trajectories for
each particle diameter class along the solids flow obtained
from TFM. In particular, such a trajectory k represents ay
real particles, which are referred to parcels (Radl and Sun-
daresan, 2014). Thus, we obtain for the number density of
size class i

ni(x) = Z aiGa, (x—xp), 5)

ke®;

which is connected to the volume fraction € ; by
d;

€. =nT 6 6)

yielding
3
Xp = ﬂdg’i Zf @)

In equation (5), A, denotes the grid spacing of the Eulerian
grid and the set Z; contains all parcels of particle size class i.
We further obtain the local Sauter diameter, which is required
for the evaluation of the drag force and the kinetic theory

stresses, from
-1
Nep
X
(ds) = [Z dl.] )
i=1 Ys.i

where Ny, the number of particle size classes.
It remains to discuss the equation of motion of such a tracer
parcel k, which reads (Schneiderbauer et al., 2016a, 2015b)

®)

dupﬁk B 1

- _ Fpoly
dr Tc,k(uS up’k)+ et

©))
where u,, i denotes the velocity of the Lagrangian tracer par-
cel k, us the solids velocity, g the gravitational acceleration
and T4 is a collisional time scale required to accelerate a

single particle to the average solids velocity (Syamlal et al.,
1993; Schneiderbauer et al., 2016a, 2015b)

Nyp . V2 oor:
1 3(1+e)€s||up’kiux||fo,(ds,wds,,) 80K (10
J

‘cc,k N 4 dik + ds3]

Here, e ~ 0.9 is the coefficient of restitution, Ny, is defined
in equation (8), d; ; the particle diameter of class j and x; is
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defined in table 1. go jx denotes the radial distribution func-
tion, which accounts for the poly-disperse mixture of hard
spheres (Iddir and Arastoopour, 2005). Note that equation
(10) accounts for the contribution coming from the inter-
particle stresses, i.e. inter-particle collisions. These are de-
termined by the coarse-grained TFM solution and affect the
trajectories of the tracer parcels by the collisional time scale
Te k-

Since the tracers show different particle diameters F EOly is
the acceleration of a single particle of diameter dj; within
the local poly-disperse mixture of particles (units force per
unit parcel mass, i.e. ms~2) due to the gas-solid drag force.
Thus, the acceleration of parcel k due to the drag force can
be written as (Schneiderbauer et al., 2016a)

poly __ 1
F. =
XkEsPs

(11)

Pr (”g - “pak)v

where By is presented in table 1. Note that here B is com-
puted based on the Reynolds number computed from the lo-
cal velocity of the tracer instead of the local velocity of the
solid phase.

DIRECT REDUCTION OF IRON ORE

In the following, we briefly present the reduction model. For
more details the reader is referred to Kinaci et al. (2017).

Species Transport and Heat Transfer

The local concentration of the reactant i is described by a
transport equation for a corresponding species Y; of the gas
phase, which reads

dggP,Y;

ot 12)

+ V- (8gpgiti) = —VeoJi+e, R,

where p, is the density of the gas phase given by the equation
of state for ideal gases and R&; accounts for net rate of gener-
ation/destruction of species i by chemical reactions. Finally,
the diffusion flux J; is written as

Ji=—pgDm,iVYi— DT,i$7 (13)
8

where D,,; is the mass diffusion coefficient for species i
and Dr is the thermal (Soret) diffusion coefficient (ANSYS,
2011).

To describe the conservation of energy in fluidized bed reac-
tors, a separate transport equation is solved for the specific
enthalpy, Ay, of each phase:

—5 + V- (egpqughg) =Zy: Vg —V-q,+S;+ Qgs,

(14)
where the heat flux g, is modeled by using Fouriers law
q, = k,VT; and S, accounts for the reaction heat. In case of
the gas phase the heat conductivity k, is computed employ-
ing a weighted average of the individual heat conductivities
of the monomers. For the heat exchange between the gas
and the solid phase, Qg;, we employ the correlation proposed
by Gunn (1978). Assuming constant specific heats ¢, , the
phase temperature and phase enthalpy are correlated as fol-
lows

0g,p4hy
t

hg = cpqTy. (15)
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Table 1: Summary of microscopic poly-disperse drag coefficient of Beetstra et al. (2007), which has been adapted in our previous work
(Schneiderbauer et al., 2015a). Here, & denotes the filtered gas volume fraction, (dy) the Sauter diameter, €, the volume fraction of
particle size class i and Ny, the number of particle size classes.

_ - .~ NW i[Fpoly(yi)
B = 18ugE,E F (€, Reiyy) | Y~ |,

with

€,00(dy)|[uy — g
Re(q) = <Pg (ds)[ug H7

Hg

s

Foly (vi) = Egyi +&5y? +0.0648,y7,

- o 10€
F(ES,Sg,RE:(dQ) = d

8

and the dimensionless parameters

é—3+ég(l+l.5§1/2)+

2
ds.i

i=1

—~ e —~ 0343
0.413Re(y, (&' +38E +8.4Re
&3 - ———(1148,)/2
248} 1+ 1038,VR6<01(V>+ “)/
9 yl <ds>

Thermochemical Aspects

Modelling direct reduction of iron ore can be related to equi-
librium phase diagrams. One such diagram demonstrates
the reduction processes of the iron-oxygen-carbon system,
which is also called the Baur-Glaessner Diagram. In this di-
agram, the stabilities for the iron-oxides and iron phases are
depicted as a function of temperature and CO/CO, (H,/H>O)
mixture with the available correlations for the equilibrium
constant from literature and the ones calculated.

The concentration molar fraction of the relative gas species
can be determined with the use of the equilibrium constant

as
XCo,

Xco

= Kere,0,,co, (16)

thus the molar fraction of the mixture can be defined with,

Kere,0,,co
e i T 17
Xcoy = ke Kere.0,.co (17)
or
1
Xco = k. (18)

— Re T
1 + Kere,0,,co

in which k. represents the total content of carbon in the sys-
tem that can be expressed with

Xco +xco, = ke. (19)
As a more advanced method one might consider a four-
component gas mixture of CO, Hp, CO; and H,O to be repre-

sented in a single Baur-Glaessner Diagram with an abscissa
of CO + H;, or H,O + CO;, content.

Reaction Kinetics

The most common types of representation models for the
non-catalytic reactions of solids submerged in fluids is the
shrinking particle model (SPM) and the unreacted shrink-
ing core model (USCM) (Levenspiel, 1999), where the un-
reacted shrinking core model is accepted as the most pre-
cise model to represent direct reduction of iron ore (Valipour
et al., 2006; Valipour, 2009; Natsui et al., 2014). In particu-
lar, the three layer unreacted shrinking core model developed
by Philbrook, Spitzer and Manning (Tsay ez al., 1976) is able
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to represent the three interfaces of hematite/magnetite, mag-
netite/wustite and wustite/iron. For further details about the
current implementation of the USCM the reader is referred

to Kinaci et al. (2017).

According to Tsay ef al. (1976) the removal rate of oxygen
is determined through the following mechanisms: (i) The re-
ducing gas is transported through the gas film onto the par-
ticle surface (F); (i1) diffusion through the porous iron layer
(B3); (iii) reactants react with wustite at the wustite/iron in-
terface and form iron (A3); (iv) remaining reactants diffuse
through the wustite layer to the wustite/magnetite interface
(B2); (v) reaction with magnetite at layer surface forming
wustite and gaseous products (A,); (vi) remaining reactants
diffuse through the magnetite layer to the magnetite/hematite
interface (B1); (vii) reaction with hematite core forming mag-
netite and a gaseous products (A); (viii) The gaseous prod-
ucts diffuses outwards through the pores of the pellet. Since
each step is a resistance to the total reduction of the pellet, the
reduction pattern of a single pellet can be considered to fol-
low a resistance network such as an electrical resistance cir-
cuit network. The solution of this resistance network yields

the reaction flow rate of ¥;; of the gas species for the relative
layers yields:

From hematite to magnetite:

Vii = ([A3(A2+B2+B3+F) + (A2 +By) (B3 + F))(Y — V()
—[A3(Ba+ B3 +F) + B2 (B3 + F)|(Y — Y, 7)
1
Wi’

(20)
—[A2 (B3 +F))(Y —¥3))

From magnetite to wustite:

Vi = ([(A1 +B1 +B2)(A3 + B3+ F) + A3 (B3 + F)|(Y - ¥59)
— [B2(A3 + B3+ F) + A3 (B3 + F)|(Y — 1)
1

—[(A1+B1)(B3 +F))(Y - Y;q))ﬁ’

@2n

From wustite to iron:
Yii=([(A1 +B1)(A2+ B2+ B3+ F)+Ax(By + B3 + F))
(Y —v;) = [A2(B3 + F)| (Y = ¥{)
1

—[(A1+B1)(Bs +F)](Y*Yz“’))ﬁ

(22)

where the index i denotes the gas-species i (i.e. either CO
or Hy). Furthermore, A; represents the relative chemical re-
action resistance term, B; the relative diffusivity resistance
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term, j represents the layers hematite, magnetite and wustite
and i the reducing gas species. F is the mass transfer re-
sistance term, which is defined with 1 /kf. Y is the bulk
gas mole fraction and Y7 the relative layer equilibrium mole
fractions. The denominator W3 ; is expressed as

Ws;=[(A1+B1)(A3(A2+B2+ B3+ F)+ (A2 +B2) (B3 + F))
+A2(A3(B2+ B3+ F) + Ba(B3 + F))]

(23)
The chemical reaction resistance term A ; can be expressed
as

1 1
=53k (1= &)

in which j represents the reduction layer, i the reducing gas,
k the reaction rate constant and f; is the local fractional re-
duction of the relative layer that is calculated as

A\ 3
fi=1- (”) . (25)
Tg

The diffusivity resistance term Bj; can be calculated for
the relative iron oxide component as (Valipour et al., 2006;
Valipour, 2009)

Aji=

(24)

By = |Lfn) U2l 7 | (26)
’ (1= fu)3 (1= f)3 Den],
Boi= (1= £u)) (1= fu)’ re. RN
L A=)~ fu)3 Dem],
[ h)s e
BW.,,—[ (l_fw)% De,, ;’ (28)

in which De; represents the diffusion coefficient of the rela-
tive layer.

With the use of the reaction flow rate ¥;; the relative mass
flow rates between layers can be defined as

dm,' .
—r = GMiAYj ;. (29)

Mass and Heat Transfer Coefficient

The mass transfer coefficient ky which is used in the deter-
mination of the mass transfer term can be calculated through
the Sherwood number or the Nusselt number as

krd

Sh = D
‘ (30)

Nu = k—f

k )

where d is the diameter of pellet, D, the diffusion coeffi-
cient and k the thermal conductivity. A number of correla-
tions for determining the Sherwood number exist in litera-
ture. Lee and Barrow (Lee and Barrow, 1968) proposed a
model through investigating the boundary layer and wake re-
gions around the sphere leading to a Sherwood number of

Shy = (0.51Re% +0.02235Re%78) 5033, (31)

where Sc stands for the Schmidt number and defined as J%.
In more recent works from Valipour (Valipour, 2009) and
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Nouri et al. (Nouri et al., 2011) the Sherwood and Nusselt
numbers are expressed as

Sh =2+ 0.6Re*>S5c"33,

Nu=2+0.6Re" P03, 42
Pr represents the Prandtl number and is expressed as the spe-
cific heat times the viscosity over thermal conductivity cu/k.
However, since fluidized beds usually show very dense re-
gions we use the correlation proposed by Gunn (1978) to
compute the Nusselt number and consequently the heat trans-
fer coefficient.

Diffusivity Coefficient

Diffusivity of a gaseous species depends on properties such
as the pore size distribution, void fraction and tortuosity. For
example, according to Tsay et al. (1976) a pore size of 2u
to Su the Knudsen diffusion has been found to be 10 times
faster than molecular diffusion, therefore in their work the
Knudsen diffusion has been neglected, since slowest process
mostly determines the final reaction rate. Thus, the effective
binary gas diffusion was calculated with

€
D¢ =D12% (33)

where € represents the dimensionless void fraction, T the tor-
tuosity. (Valipour, 2009; Valipour et al., 2006) has used the
Fuller-Schettler-Giddings equation to determine the effective
diffusivity as

1077T1‘75 L_FL)OS
(B 0}y My M

D;;= (34)

in which the v is the diffusion volume of the relative species,
M is the molecular weight, P, the total flow pressure and T
the temperature in Kelvin.

Reaction Rate Coefficient

For many reactions the rate expression can be expressed as
a temperature-dependent term. It has been established that
in these kinds of reactions, the reaction rate constant can be
expressed with the Arrhenius’ law (Levenspiel, 1999) as fol-
lows E

=) (35)
in which ko represents the frequency factor or the pre-
exponential factor, E, the activation energy, R the univer-
sal gas constant and 7' the temperature. The values for the
pre-exponential factor and the activation energy can be found
through various works (Tsay et al., 1976; Valipour, 2009).

IMPLEMENTATION

Since the motion equation of the Lagrangian particles (equa-
tion (9)) does only account for collision implicitly by using
equation (10) the total volume fraction of the tracer parti-

k = koexp(

cles, g, = ):fi‘i n,-ndf‘i /6 (compare with equation (5)) may
exceed the maximum packing locally. This, in turn, may
yield an unphysical accumulation of tracer particles in dense
regions. Thus, we introduce an additional repulsive mech-

anism F EaCk (units ms~2), which prevents the Lagrangian
tracer particles from forming dense aggregates exceeding the
maximum packing fraction. Finally, the reduction model is
evaluated at each parcel at each parcel time step. The result-
ing mass transfer and reaction heats have to be mapped to
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the Eulerian grid to compute &; (equations (3) and (12)) and
Sy (equation (14)). For more details the reader is referred
to equations (26) and (28) in our previous study (Schneider-
bauer et al., 2016b). Finally, it has to be noted that in the
case where no tracer particle is in a specific numerical cell
we apply a diffusive smoothening approach to the exchange
fields locally (i.e. to the Sauter mean diameter; Pirker et al.
(2011)).

For the numerical simulation we use the commercial finite
volume CFD-solver FLUENT (version 16). For the dis-
cretization of all convective terms the QUICK (Quadratic
Upwind Interpolation for Convection Kinematics) scheme
is used. The derivatives appearing in the diffusion terms
are computed by a least squares method and the pressure-
velocity coupling is achieved by the phase coupled SIM-
PLE algorithm (Cokljat er al., 2006). The trajectories of
the Lagrangian tracer particles (equation (9)) is integrated af-
ter each fluid flow time step using a third-order Runge-Kutta
method. Further it has to be noted that the gas velocity and
the solid phase velocity in equation (9) are linearly interpo-
lated to the particle positions by using a first order Taylor
approximation. For fluidized bed simulations we employ a
time step size of 0.001. More details on the implementation
can be found in our previous studies (Schneiderbauer et al.,
2016a,b).

RESULTS

To validate the presented reduction model, we investigate
the direct reduction of hematite ore within a lab-scale flu-
idized bed with 68 mm diameter (Spreitzer, 2016). The small
dimensions of the vessel allow to use very fine grid spac-
ings (i.e. =~ 2 mm), which resolve all relevant heterogeneous
structures, and therefore no sub-grid corrections are required
(Schneiderbauer et al., 2013; Schneiderbauer and Pirker,
2014). The pressure in the fluidized bed was 140000 Pa and
the superficial gas velocity 0.25ms~!. The detailed process
conditions are given in tables 2, 3 and 4. According to table
3 we use four different types of tracer parcel representing the
different size fractions. In total we found that 120000 tracer
parcels are appropriate to gather sufficient statistics (Schnei-
derbauer et al., 2016a,b).

Table 2: Experimental conditions for the different reduction steps.
The concentrations of the reactants are given in volume

percent.
Rl (W—oFe) R2(M—>W) R3(H-M)
o 13.4% 15.9% 13.0%
H,0 3.4% 6.8% 6.8%
Cco 37.0% 37.4% 30.3%
Co, 14.0% 27.4% 26.4%
N, 32.2% 12.4% 23.5%
TP°C] 720 750 480

Table 3: Particle size distribution of the iron ore.

dp fraction [vol. %]
0—0.063 0
0.063—0.125 154
0.125-0.25 33.2
0.25-0.5 28.6
05-1 22.8

Figure 1 shows snapshots of the solid volume fraction, the
mass fraction of CO, the mass fraction of CO, and the frac-
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Table 4: Parameters for DRI-model (Hanel ef al., 2015).

H—M M—-W W—Fe
ko [m/s] 160 29 6
Hy | E,[J] 68600 75000 65000
Kel] | e n+1033% o3P 4374 0468
ko [m/s] 437 45 17
COo | E,[I] 102000 86000 68000
Ke[-] SRTA304 RH2IT g 1097

tional reduction of individual parcels during the conversion
of hematite to magnetite. On the one hand, figure 1a unveils
that the bed is operated in the bubbling regime to optimize
the solid mixing, the gas-solid contact as well as the reaction
heat removal. On the other hand, figures 1b — 1d clearly re-
veal the removal of oxygen from the hematite ore due to the
conversion of CO to CO,, which increases the fraction re-
duction of the individual iron ore particles. In particular, the
content of CO considerably decreases as the gas passes the
particle bed while the content of CO; increases.

Figure 2 shows the cumulative distribution function of the
fractional reduction. The figure indicates that after about
150 s approximately 50% of the hematite ore was converted
to magnetite. In particular, the smallest particles are already
converted after 150 s while the larger particles still contain
hematite (figure 3). This is clear, since the larger particles
contain much more hematite ore than compared to their sur-
face area than the smaller particles.

Finally, figure 4 shows the fractional reduction as a func-
tion of time for the different reduction steps. Both, experi-
ment and simulation unveil that the conversion of hematite
to magnetite (R3) is the fastest reduction step (Hanel ef al.,
2015). After approximately 500 s the fractional reduction ap-
proaches a plateau, where the fractional reduction is about
11.1%. Here, the total amount of hematite was already con-
verted to magnetite. The subsequent conversion from mag-
netite to wustite is known to be the second fasted reduction
step, which is also correctly predicted by the presented con-
version model. Again, the fractional reduction approaches a
plateau region, where the fraction reduction is about 33.3%,
which is in fairly good agreement with the experiment. It has
to be noted that we stopped the simulations after reaching
the plateau regions of fractional correction during R3 and R2
and extrapolated the fractional correction in time in figure 4
till the next reduction step to reduce the computational de-
mands. The final reduction step, where wustite is converted
to metallic iron, unveils the slowest conversion rate. This
is also indicated by the kinetic parameters given in table 4.
Similar to the previous reduction steps, the present model is
able to correctly predict the conversion of wustite to iron.

CONCLUSION

We have presented the application of our previously pub-
lished hybrid-TFM (Schneiderbauer et al., 2015b; Schellan-
der et al., 2013; Pirker and Kahrimanovic, 2009; Schneider-
bauer et al., 2016a,b) to the conversion of iron ore to iron
using fluidized bed technolgogy. Such a modelling strat-
egy enables the efficient numerical analysis of reactive poly-
disperse gas-phase reactors without requiring computation-
ally demanding multi-fluid models, which are coupled to
population balance approaches.

To conclude, the results clearly show that the reactive hybrid-
TFM is able to picture the correct conversion rates within
the fluidized bed. Nevertheless, the conversion model has to
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(a) (b)

(c) (d)

Figure 1: Snapshots at t =228 s (i.e. within R3) of a) the solid volume fraction, b) the mass fraction of CO, c¢) the mass fraction of CO; and d)

the fractional reduction of individual parcels.
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Figure 2: Snapshots of cumulative distribution of the fractional re-
duction during the conversion of hematite to magnetite.
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Figure 3: Snapshots of the fractional reduction as a function of the
particle diameter during the conversion of hematite to
magnetite.

be verified further against more different gas compositions.
Le. future efforts will concentrate on the numerical analysis
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Figure 4: ractional reduction as a function of time for the different
reduction steps.

of different process conditions and their detailed evaluation
against experimental data. Finally, large-scale applications
should be investigated, where sub-grid corrections will be
required to account for the unresolved small scales on the be-
haviour of the fluidized bed and the conversion rates (Schnei-
derbauer, 2017).
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