
How to Support Customisation on SaaS: A
Grounded Theory from Customisation Consultants

Hui Song, Franck Chauvel, Arnor Solberg
SINTEF

Email: first.last@sintef.no

Bent Foyn
VISMA Software International AS

Email: bent.foyn@visma.com

Tony Yates
SuperOffice AS

Email: tony@superoffice.com

Abstract—This paper reports the initial result of a qualitative
research on how to support customization of SaaS (Software as a
Service). The research follows the grounded theory method, and
investigates the expectation of consultants who are specialized
in customising enterprise software systems. The resulted theory
contributes to the understanding of how customisation on SaaS
differs from the traditional one, and provides a high-level
guidance for SaaS vendors to prepare effective support for
customisation.

Keywords-Software Customisation, Grounded Theory, Soft-
ware as a Service

I. INTRODUCTION

Vital enterprise activities such as accounting, sales, human
resource management or customer relationship management
demand dedicated enterprise software. As every company is
unique, such software typically can not be applied as is. In fact,
more than 80% of companies are reported having moderate to
extensive customisations [1]. Such customisations go beyond
configurations in the way that they require development work
to implement ad hoc extensions. Customisation is often im-
plemented by a third-party consultant company, also known
as the partner of the independent software vendors (ISV).

Customisation is traditionally based on the assumption that
the software is deployed on the customer’s own premise, so
that the customer has full control of the system and is free to
customise it. The assumption no longer holds when enterprise
software moves to multi-tenant Software as a Service (SaaS),
because software is running in the cloud and controlled by
the SaaS vendor. As a result, some considers that SaaS
customisation is too complicated and should be abandoned.
The state of practice in SaaS advocates configuration over cus-
tomisation [2]. The two software vendors that commissioned
this research also started from configuration support on their
SaaS solutions. However, it appears that many of their partners
have a different view, thus, these vendors continuously receive
requests to support customisation on their SaaS products.

In general it is crucial for SaaS vendors to understand the
partner’s opinions on customisation, i.e., why customisation is
necessary for SaaS, how it differs from the on-premises time
and how the difference would reshape the way vendors support
customisation. However, it is a challenging task, because these
opinions are subjective expectations about an emerging object,

The final publication is available at IEEEXplore at http://dx.doi.org/10.
1109/ICSE-C.2017.136

and we need to summarize them into a usable theory to guide
the vendor’s future decisions.

This paper reports the initial result of a qualitative research
towards a grounded theory [3] that formalises how partners see
customisation on SaaS. The theory is elicited from interviews
of partners responsible for doing customisation. In short, we
found out that customisation is still important in a SaaS
context due to the gap between customers and vendors, but
it differs from traditional on-premises customisation, because
multi-tenancy alters the responsibilities between vendors and
their partners. As a result, SaaS vendors have to be more
actively involved in the new customisation activities, providing
effective tool support for customisation. The theory guides
vendors in designing and evaluating the possible tool support
from a high abstraction level. To illustrate how to use our
theory, we applied it to scrutinise the customisation solutions
provided by Salesforce and SAP.

The contribution of this paper is twofold. 1) We investigate
software customisation as a neglected software engineering
activity, and vision how it evolves and should be supported in
SaaS. 2) We apply qualitative research to software engineering
in a novel way, i.e., to study the subjective expectations of
human stakeholders in software development activities.

The remainder of the paper is structured as follows. Sec-
tion II summarises our approach to qualitative research and
Section III then presents our theory. Section IV applies it
to inspect how Salesforce and SAP support customisation.
Finally, Section V discusses selected related work before
Section VI explains the limitations and the future plans.

II. THE RESEARCH APPROACH

We undertook a qualitative research following Corbin’s
grounded theory method [4]. It is widely used in the social
sciences to systematically analyse qualitative data, through the
steps of open coding to extract concepts by reviewing the data,
and the theoretical sampling to define the relationships and
categories on the concepts. The steps are performed iteratively
as new data is appearing, until a theoretical integration is
reached, where no new concepts emerges.

We collected the data mainly through interviews. So far,
we have interviewed in total 10 first line consultants from 5
partner companies. The partners have been working for many
years (between 8 and 20) on customising the on-premises
products from the two vendors, but have no experience on

http://dx.doi.org/10.1109/ICSE-C.2017.136
http://dx.doi.org/10.1109/ICSE-C.2017.136

customising SaaS. This avoids the interviewees from confining
their opinions to specific customisations mechanisms. A team
with three co-authors of this paper, from a research institute
and the two vendors, attended all the interviews. We also
used documents from the partners’ websites, leaflets and
advertisements, as supplemented data.

We did open coding after each interview by reviewing
the meeting minutes and the voice records. After that, we
compared the new concepts with the existing ones to iden-
tify equivalent concepts and possible categories. We finally
identified four categories, and selected one central category
to explain the main difference of SaaS customisation. The
research team reported the progress and the periodic results
twice to an extended group of 15 people from the institute
and vendors, and integrated the feedbacks into subsequent
analysis. We have not yet reached a theoretical integration,
as new concepts still emerged in the last interview. The work
is still on-going, and the theory we report here is initial result.

III. THE RESULT

The Theory. Customisation remains important for SaaS, but
multi-tenancy changes stakeholders’ responsibilities. Partners
are no longer only responsible to customers, but have to rely
on the vendors to develop and deploy customisations. As
a result, partners have to drop the old way of developing
customisations freely, with ad hoc modifications scattered in
the product. Instead, they should adopt development with more
constraints and involvement from vendors, and focus more
on business. This transformation conflicts with the partner’s
traditional interests, i.e., to minimize the cost for customers,
to integrate the custom code seamlessly with the main product,
and to keep themselves flexible. Therefore, the critical success
factor for a customisation ecosystem is that the vendors should
offer not only highly customisable SaaS, but also effective
supporting tools that fit the new customisation activities and
in the same time compensate on these basic interests.

The theory is a summary of the concepts we elicited from
the interviews, which are classified into four categories. Here-
after, we highlight the name of each concept or category in the
sans-serif font. Figure 1 illustrates these four categories and
their relationship. The driving forces behind customisation
shape the traditional responsibilities between stakeholders,
but multi-tenancy changes them. The typical customisation ac-
tivities are directly determined by the responsibilities, and the
new ones may conflict with the fundamental driving forces.
The effective customisation capabilities and supports from
the vendors should fit the new activities and in the same time
compensate them on the driving forces. The categories and
their relations explain the theory at a high level, and we further
elaborate the theory by explaining the main concepts.

Driving forces. Customisation arises from the gap be-
tween customers and vendors: Vendors focus on generic
enterprise software but lack the knowledge and resource to un-
derstand every customer’s business. The loose relationship and
the geographic distances between the vendors and customers

driving forces

responsibilities
old new

activitiesold new

multi-tenancy

capabilities and supports

customisation

X

Fig. 1. Categories and their relationships

widen this gap. Partners bridge this gap: they have a deep
business background, a long-term relationship with customers,
and usually have consultants working locally with customers.
Therefore, partners can investigate together with the customers
on their specific needs. As long as this gap stands—SaaS itself
does not narrow it—it is necessary to have third-party partners
customise enterprise software. Configuration cannot replace
customisation because it disregards this gap by implying that
vendors can foresee and implement all possible features.

When doing customisation, partners follow three principles:
low cost, one product and flexibility. Low cost is the cus-
tomer’s main interest, and dominates the way partners work on
customisation. Second, customers should feel as if they were
using one product, instead of a loose composition of functions
or services. Last, partners want to be flexible and agile, so
that they can keep adapting themselves to new customers with
very different businesses and backgrounds.

Responsibilities. The three major stakeholders have dif-
ferent responsibilities, as illustrated in Figure 2.

For on-premises systems, partners act as a complete dele-
gation of the vendors: They retail the product to customers,
adapt or complement its functions. They then help customers
to use it and fix any subsequent problems. The partner and
their customer have a shared quality responsibility on the
customisation, which minimises the cost during customisa-
tion. Upgrades are also a shared responsibility: Partners may
do some debugging and fixing work on their customisations
when upgrading the main product, but many customers choose
to keep the old versions for a long time. There is no direct
responsibility from vendors to customers.

For SaaS however, the vendors host the product for all
customers together with their customisations. This forces the
vendors to directly face the customers, and to take direct
responsibility for the function and quality of both their main
product and any customisations. When customers meet a
problem, they would first contact the vendor instead of the
partner, because the partner may even not have access to
their running product instance. Under this setting, the partners
have to take the new responsibility for the quality of their
customisation to the vendors. A customisation with bad quality
not only harms the vendor’s reputation, but also disturbs other
customers who are hosted by the same cloud premises.

The change of responsibility is the core category [4].
It explains how SaaS customisation is different from the
traditional one, and is the root rationale behind our theory

customer

partner

vendor

quality
new version

correct use
function

fixing

main function
new version
dev support

customer partner

vendor

function..........
new version......

fixing...
quality

 quality
 assistant fixing
extended functions

dev support

correct use

on-premises SaaS
Fig. 2. Responsibilities between stakeholders in customisation

about how vendors should react to the change, which we will
explain by the following two categories.

Activities. Customisation comprises typical software de-
velopment activities. The change of responsibilities will
dismiss some customisation activities and encourage new ones.

For on-premises systems, customisation is an ad hoc de-
velopment. A customisation project starts from bidirectional
training, where the customer learns how to use the vendor’s
product while the partner learns the customer’s business. This
training exposes customisation needs that the partner will then
implement. When possible, the partner directly modifies the
product code or works on the database. Before delivering
the customised product, partners and customers would do a
joint-testing together, in order to share the quality responsi-
bility. The result, so called “custom code”, includes numerous
pieces scattered over the code base of the vendor’s product.
Partners prefer to keep minimal legacy between different
customisation projects, without caring about reusable code,
documents, license, etc.

For SaaS however, customisation is more like a supplement
to the main product, because it is the vendor who now
directly faces the customers. Partners have to work under
the constraints set up by the vendor, and deliver custom
code as wrapped components that the vendor can easily
integrate into the running instance. The customisation needs to
go through a vendor-involved testing process to enforce the
partner’s responsibility for quality. SaaS also provokes new
activities, e.g., custom code reuse and non-programmer
customisation: Since the custom code of different customers
are running on the same product instance, in the same cloud
premises, it is much easier to reuse the customisation between
different customers or even different partners. Besides, as
Cloud hides infrastructure details, partners can focus on the
business aspects and, eventually, non-programmers such as
sale or training staff may build customisations.

The change on activities is conflicting with the fundamental
driving forces. The drop of ad hoc development would
increase the cost. The vendor’s involvement, either with their
constraints or in vendor-involved testing, would disregard
the gap, and harm the parnter’s flexibility. The reuse of
custom code will cause more legacy to partners which is
bad for flexibility. Only customisation by non-programmers
may help considering both the gap and the low cost.

Capability and support. Customisation capabilities de-
fine how vendors allow partners to customise their product.
According to the level of intrusiveness, typical capabilities
include code modification directly on the product, managed

components running on an engine within the product, and
external add-ins running on their own infrastructures.

All the three capabilities are possible for SaaS, but our
theory indicates that additional support is required to fit the
new activities and to avoid violating the fundamental driving
forces. We briefly discuss some potential supports that
emerged from the interviews. If a vendor want to allow code
modification, then code analysis, rewriting and generation
tools are needed to enforce the constraints, simplify the reuse
and release the burden of vendor-involved testing. This in
turn rescues partners from the pitfalls on cost and flexibility.
Non-programmer customisation will be very difficult to
achieve in this direction, but a set of powerful templates could
be helpful. Following the direction of managed components,
the tools on code analysis and generation are still important but
can be lighter, because some constraints and reuse support
can be built-in to the engine and the language. A well-designed
Domain-Specific Language (DSL) with proper business ab-
straction is promising for non-programmer customisation.
However, vendors should avoid embedding too much into the
engines or the languages to disregard the gap. Following the
direction of external add-ins, partners can have the flexibility
to choose where the services are hosted and how to implement
them. There is much less constraints to consider, and also less
to be tested by the vendors. However, a pitfall could be that
partners end up with paying too much cost on hosting and
maintaining the small services, and violating the one product
policy. A compromising option would be to host the “external”
services on the vendor’s cloud. There are also common tool
supports that are important across capabilities. A powerful
IDE with automatic building tools will lower the cost on
wrap-up, reuse and constraints. An online development tool
integrated with the main product will speed up development
of minor customisation or experiment of writing small pieces
of custom code. An on-demand testing environment will help
the partners accept vendor-involved testing.

IV. APPLICATION OF THE THEORY

We applied the theory to inspect the customisation support
of two commercial SaaS solutions from Salesforce1 and SAP2.

Salesforce allows both “customisation within the cloud” in
their Apex language, and “customisation outside the cloud”
through their REST API, corresponding to managed com-
ponents and external add-ins, respectively. The vendor
recommends the first way, unless an external legacy system
need to be integrated. Some advanced support tools are
provided along with this capability. The Apex language and
the limited libraries embed the constraints. In the same time,
Salesforce provides strong compilers and warning systems
to reduce the cost for developers to obey these constraints.
The migration tool automatically wraps the scattered custom
code into a manageable package, which reduces the cost for
component wrapping and reuse. The disadvantage is that

1developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
2https://discuss.asug.com/docs/DOC-42313/version/1

developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://discuss.asug.com/docs/DOC-42313/version/1

even a minor customisation will have to be implemented
as an Apex class in a standard package, which harms the
partner’s flexibility. Salesforce has an online workbench with
intuitive wizards for developers to compose and experiment
with Apex. It is a promising step towards non-programmer
customisation, but so far the composed pieces are not yet
stand-alone customisation. Salesforce enforces developers to
write test cases for their custom code, which are executed
automatically in cloud to eliminate the manual testing by
vendors. This increases the partner’s flexibility, even though
writing test cases has some cost. Salesforce lacks the support
for the one-product principle. There is a clear separation
between the main product and the custom code: They are
not written in the same language nor executed by the same
engine. A possible improvement would be to rewrite part of
the standard product in Apex, and open them to the partners
for direct modification.

SAP supports customisation of their products on the SAP
HANA platform, with the “in-app extensibility” (managed
components) and the “side-by-side extensibility” (external
add-ins). The in-app extensibility on SaaS is limited to basic
functions such as adding custom fields or simple business
rules, whereas more complex customisation is still only avail-
able on the on-premises version. Therefore, SAP regards
side-by-side extensibility as their by-default customisation
capability, which is the opposite of Salesforce. By running
the customisation in the customer’s own premises or third-
party cloud, SAP does not need to set constraints on re-
source consumption, which benefits the partner’s flexibility.
But such solution innately violates the one-product policy,
and increases the cost for customers. As a compensation,
SAP provides a UI framework (SAP fiori) to standardise the
user experience between the main product and the custom
extensions, as well as the HANA cloud connector to simplify
and unify the connection between external clouds and SAP’s
own one. To the best of our knowledge, SAP does not provide
dedicated tools for the wrapping and reuse of custom code,
and the vendor-involved testing. Moreover, since the partners
have to care about many technical issues, such as the API
and the hosting environment, it is hard to foresee a way
to support non-programmer customisation. As we have
discussed before, a promising solution could start from hosting
custom code directly on their own cloud.

Comparing the two solutions, Salesforce appears to better
satisfy the partner’s expectation on SaaS customisation. This
conclusion is consistent with the market positions of the two
solutions: Salesforce is a native cloud-based CRM system and
develops the customisation support with cloud thinking from
the beginning, whereas the SAP platform is still under the
transformation from on-premises to cloud.

V. RELATED WORK

This work relates to the qualitative research approaches
in empirical software engineering. A close work is Rothen-
berger and Srite’s investigation, combining grounded theory
and case studies, on the factors that influence the degree of

customisation on ERP systems [5]. More generally, researchers
used the grounded theory method to investigate how an
agile development team control the quality [6], how much
architecting is proper for different agile teams [7], etc. More
approaches can be found in a survey by Stol et al. [3]. These
approaches investigates how developers work currently, in
order to find best practices or to improve the current processes.
This paper presents a novel attempt, i.e., to understand and
theorize developers’ expectation of working in new contexts.
The attempt is valuable considering the fast-changing technical
trends.

There are research approaches to enabling customisation of
multi-tenant SaaS. Walraven et al. [8] added customisation
support to multi-tenant middleware based on dynamic depen-
dency injection. Mietzner et al. [9] enables customisation by
managing variability at runtime based on software product line
techniques. Our work, at this stage, does not focus on any
concrete technical solutions for the SaaS customisation, but
rather on understanding the users expectations to guide the
preparation of such solutions.

VI. CONCLUSION AND DISCUSSION

This paper reports the first step of an qualitative research
to theorise how customisation, as a software development
activity, is evolving when enterprise software is moving from
on-premises deployment to multi-tenant SaaS. The initial
result is a theory that provides a high-level guidance for SaaS
vendors to decide how they should participate and support
their partners in doing customisation.

The initial result has limitations due to the small data scale.
The theory is based on only 10 interviewees, who are from
the same country and work with only two vendors. The result
is not complete, and can be specific to the products or the
market. However, the work is just started, and we will collect
and analysis more qualitative data from a wider scope in the
next step.

The result is not well evaluated. A long term evaluation plan
is to apply the theory to guide the two vendors in designing
their customisation environment. Finally, the acceptance and
feedback from their partners on this environment will evaluate
the correctness and usefulness of the result.

REFERENCES

[1] “Maintaining ERP Systems: The Cost of Change, White Paper by IDC:
International Data Corporation,” Tech. Rep., may 2013.

[2] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su, “Software as a service:
Configuration and customization perspectives,” in Congress on Services
Part II, 2008. SERVICES-2. IEEE. IEEE, 2008, pp. 18–25.

[3] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in International
Conference on Software Engineering, 2016, pp. 120–131.

[4] J. Corbin and A. Strauss, Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. SAGE Publications, 2014.

[5] M. A. Rothenberger and M. Srite, “An investigation of customization
in ERP system implementations,” IEEE Transactions on Engineering
Management, vol. 56, no. 4, pp. 663–676, 2009.

[6] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. R. Bergersen, and T. Dybå,
“Teamwork quality and project success in software development: A
survey of agile development teams,” Journal of Systems and Software,
vol. 122, pp. 274–286, 2016.

[7] M. Waterman, J. Noble, and G. Allan, “How much up-front? A grounded
theory of agile architecture,” in International Conference on Software
Engineering, vol. 1, 2015, pp. 347–357.

[8] S. Walraven, E. Truyen, and W. Joosen, “A middleware layer for flexible
and cost-efficient multi-tenant applications,” in International Conference
on Distributed Systems Platforms and Open Distributed Processing, 2011,
pp. 370–389.

[9] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability modeling
to support customization and deployment of multi-tenant-aware software
as a service applications,” in ICSE Workshop on Principles of Engineering
Service Oriented Systems. IEEE Computer Society, 2009, pp. 18–25.

	Introduction
	The Research Approach
	The Result
	Application of the Theory
	Related Work
	Conclusion and Discussion
	References

