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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.

Stein Tore Johansen & Jan Erik Olsen
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G Gibbs free energy [J/mol]
ABSTRACT H enthalpy [J/mol]
Fluidized bed membrane reactors have been proposed as a g gravitational acceleration [m/s’]
promising reactor concept for the production of ultra-pure kwes ~ WGS reaction rate constant [mol/(bar” kg, )]
hydrogen via Water Gas Shift (WGS). High-flux thin-film Kegwes WGS equilibrium constant  [-]
dense palladium-based membranes are used to selectively M molar weight [kg/mol]
extract hydrogen from the reaction medium, which shifts the n power in Sieverts’ law [-]
thermodynamic equilibrium towards the products’ side, p pressure [Pa]
increasing the conversion. A Two-Fluid Model (TFM) has p partial pressure [Pa]
been used to investigate the effect of hydrogen extraction via 2 n
perm-selective membranes on the WGS reaction rates in the Q me.mbrane permeance [mol/(m” s Pa)]
fluidized bed. A thorough TFM verification study was R universal gas constant [J/(mol.K)]
performed, which showed that the model is able to accurately Rwes  chemical reaction rate [mol/(kgcy )]
predict the concentration profiles for various types of n order Re Reynolds number [-]
and equilibrium chemical reactions. Also, the implementation S membrane mass source term [kg/(mz.s)]
of the WGS reaction rate in the TFM was checked. The results t time [s]
have shown a Clea}r positive effect of thei hydrogen peFmeation T temperature [K]
on the WGS reaction rates, both for \./emcal.ly and ho.rlzontally u velocity [m/s]
immersed membranes. In systems with horizontally immersed v volume [m3]
membranes, gas pockets that contain a very small amount of .
catalyst develop underneath the membrane tube, resulting in X molar fracFlon []
reduced local reaction rates. Densified zones on top of the Y mass fraction [-]
membrane tube show increased local reaction rates. Mass
transfer limitations from the emulsion phase to the membrane Greek Symbols
surface is the most pronounced effect that reduces the overall o hold-up fraction [-]
reactor performance. The developed model allows further B interphase drag coefficient [kg/(m3 9]
investigatir}g .different configurations and operation modes to y dissipation of fluct. energy ~ [kg/(m 53)]
further optimize the reactor’s performance. 0 granular temperature [m2 /Sz]
Keywords: Two-Fluid Model, Water Gas Shift, hydrogen, K conductivity of fluct. energy [kg/(m s)]
fluidized bed, membrane. U shear/dynamic viscosity [Pa.s]

P density [kg/m’]

T shear stress tensor [N/mz]
NOMENCLATURE Wcat catalyst mass fraction [-]
Latin Symbols .
A area [m’] Sub/superscripts
Awcs  pre-factor WGS reaction rate [mol/(bar kg, s)] ¢ cell
Bwss  Relative equilibrium ratio eq. [-] g gas
Cq drag coefficient [-] ! phase
C, constant for Gibbs calc. [J/(mol K*)] m m;n?brane .
C, constant for Gibbs calc. [J/(mol Kz)] mf minimum fluidization
Cs constant for Gibbs calc. [J/(mol K)] p particle
C, constant for Gibbs calc. [J/mol] ret rete.:ntate
D diffusion coefficient [m?s] S_ Sf’hd )
Eact Activation energy [J/mol] sim simulation
e restitution coefficient [-] tot total

w wall
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R.J.W. Voncken, I. Roghair, M. van Sint Annaland

INTRODUCTION

Hydrogen is industrially mostly produced via Steam
Methane Reforming (SMR) carried out in multi-tubular
packed bed reactors. First, methane reacts with steam to
form carbon monoxide and hydrogen at temperatures
around 1000 °C. Consecutively, the formed carbon
monoxide reacts with steam to form carbon dioxide and
hydrogen via the Water Gas Shift (WGS) reaction, given
by

CO +H,0 5 CO, + H, AH =-41 kJ mol ™
WGS is thermodynamically favoured at low
temperatures and kinetically favoured at higher

temperatures. Traditionally, WGS reactors consist of
two stages; in the first reactor most of the CO is
converted at 300-450 °C and in the second reactor the
remaining CO is converted at 200-300 °C. However, to
produce  hydrogen efficiently, low  hydrogen
concentrations are required to achieve high CO
conversions. Costly and energy intensive separation
units, such as pressure swing adsorption units, are
required to separate the hydrogen from the outlet gas
mixture. The process will have an additional cost and
energy penalty, if the unwanted byproduct CO, should
be separated from the gas mixture and stored
underground (Medrano et al. (2014)).

Both packed bed membrane reactors (Tiemersma et al.
(2006)) and fluidized bed membrane reactors
(Fernandez et al. (2015)) have been proposed as
alternative reactor systems for hydrogen production via
WGS. This work will focus on the development of
fluidized bed membrane reactors (FBMRs) for hydrogen
production via WGS. In FBMRs, the reaction and
separation steps have been integrated in one single unit;
ultra-pure hydrogen is obtained from the reactor by
extracting it from the gas mixture with modern high-flux
hydrogen perm-selective supported palladium-based
membranes. The hydrogen extraction drives the reaction
equilibrium towards the products’ side, which will
increase the reaction rate and reactant conversion. The
WGS reaction is highly suitable for hydrogen
production in an FBMR, because hydrogen can be
produced at 400 °C, high enough to avoid problems
associated with membrane embrittlement and low
enough to circumvent problems related to the membrane
chemical/mechanical stability and membrane sealing.
Fluidized bed membrane reactors have already been
investigated by a.o. Adris et al. (1994), Gallucci (2008)
and Mleczko et al. (1996), and many others. Most of the
previous fluidized bed membrane reactor studies were
either focused on experimental demonstration or using
phenomenological models. More recently, various CFD
studies on fluidized bed membrane reactors have been
performed, which have mostly investigated the bed
hydrodynamics (De Jong et al. (2012), Tan et al. (2014)
and Medrano et al. (2015)). Only a few studies have
investigated FBMRs with CFD models focused on mass
transfer phenomena and chemical reactions (e.g.
Hommel et al. (2012), Voncken et al. (2015) and Helmi
et al. (2017)).
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The present work uses CFD simulations to visualize and
quantify the mass transfer phenomena and reaction rates
throughout FBMR systems in which hydrogen is
produced via WGS. The OpenFOAM v.2.3.0 solver
twoPhaseEulerFoam, a Two-Fluid Model (TFM), was
used to model hydrodynamics, mass transfer and
chemical reactions occurring in various fluidized bed
membrane reactor configurations. The chemical species
balances, selective membrane extraction and chemical
reactions are our own implementations that were
coupled to the TFM hydrodynamics. A thorough
verification was carried out for all these aspects. To
ensure the reaction terms have been implemented
properly, numerous simple chemical reactions in a batch
reactor have been simulated and compared to analytical
and numerical solutions. The more complex kinetics of
the WGS reaction have also been implemented in the
TFM and compared to a batch reactor model.

The objective of this research is to understand and
quantify the effect of selective hydrogen permeation on
the performance of fluidized bed reactors for hydrogen
production via WGS. The Numaguchi and Kikuchi
(1988) reaction kinetics for WGS were implemented in
the TFM. Both horizontally and vertically immersed
membrane configurations were studied. These results
were compared to the performance of a fluidized bed
reactor without membranes.

First, the model equations and the verification of their
implementation will be discussed. Special attention will
be given to the species balance and the reaction kinetics.
Next, the used simulation settings and geometries will
be presented. In the results section, the effect of the
extraction via the membranes on the reaction rates and
reactor performance will be discussed.

MODEL DESCRIPTION

The TFM considers the gas and solids phases as
interpenetrating continua. The most important governing
and constitutive equations are presented in equations 1
through 4, showing the continuity and Navier-Stokes
equations of both the gas and solids phases. The source
term S is added to the gas continuity equation to
account for the extraction of gas via the membranes,
which will be detailed later. The gas phase is considered
as an ideal, Newtonian fluid. The solids phase rheology
(solids pressure ps and stress tensor 7, is described with

closures from the Kinetic Theory of Granular Flow, for
which the granular temperature equation (4) is solved.

a(ij—itpi)+V>(0{i,0iui)=Sm, i=s,g (1
d(a,p,u

%’“‘)+V>(agpgugug) @)
:—anng)—ang—ﬂX(ug _us)+agpgg
a(aspsus)

T+V>(atspsusus)=—V XaT,) 3)

_asvp _Vps + ﬁ(ug - us)+ a,p9
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The fluid-particle drag is modelled according to
Gidaspow (1994), which combines the drag models by
Ergun et al. (1949) and Wen et al. (1966), where
Ergun’s model is valid for high solids hold-ups (above
20%) and Wen’s model is applied at lower solids hold-
ups (below 20%). The drag coefficient Cq is determined
based on the Reynolds particle number. The drag
models are described in equations 5 until 9.

2
au ap |u —u
B=150—-+1.75 g| 2 (. 2020) (5)
g p p
3 aap }
ﬂ:zcdgpg—us a " (@ <020 (6)

C,= ﬁ(no.ls Re!™)

for Re <1000 (7)
Re ’
P
C,=044 for Re >1000 (8)
pd ju —u
Re =a ———"— “| - ©)

p 9

Hq

Kinetic Theory of Granular Flow

To simulate the rheological properties of the solids
phase’s continuum approximation, various KTGF
closure equations are required. The closure equations
used in this work are summarized in Table 1.

Table 1: KTGF closures used for TFM simulations.

Quantity Closure

Solids shear viscosity Nieuwland et al. (1996)

Solids bulk viscosity Lun et al. (1984)

Solids pressure Lun et al. (1984)

Frictional stress Srivastava & Sundaresan (2003)
Conductivity of fluct. energy | Nieuwland et al. (1996)

Radial distribution function Ma & Ahmadi (1984)
Dissipation of gran. energy Nieuwland et al. (1996)

Further details on the TFM-KTGF can be found a.o. in
Lun et al. (1984), Kuipers et al. (1992), Gidaspow
(1994), Van Wachem (2000), Rusche (2003) and Van
Der Hoef et al. (2006). Details on the OpenFOAM TFM
can be found in Passalacqua et al. (2011) and Liu et al.
(2014).

Mass transfer, membranes and reactions

Mass transfer phenomena and extraction of hydrogen via
membranes were modeled with an approach similar to
that described by Coroneo et al. (2009), see equation 10.
Extraction of hydrogen via the membranes was modeled
via source term, S, to the species equation of hydrogen.
This membrane source term is applied to the
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computational cells adjacent to a membrane. The
membrane source term is calculated with Sieverts’ law,
which is commonly used to describe the hydrogen flux
through dense palladium membranes (see equation 11).
The parameters in Sieverts’ law are obtained from
experiments. The extraction of mass via a membrane
will also result in momentum extraction from the
system. Therefore, a boundary condition was added for
the membranes to ensure momentum leaves the system
via the membranes, see equation 12.

et p.Y,
%Jrv{agpgugﬂ)

=V{a,p,DVY;)+S, +R,

(10)

S, = =@M (Xipu) (xR | (D

_S,RT V.

U, = (12)
PMy,, A

The Numaguchi and Kikuchi (1988) kinetics for the

WGS reaction were implemented in the TFM model.

The reaction rate equation and their corresponding

parameters (reaction rate constants, pre-factors,

equilibrium constants) are presented in Table 2 and
Table 3.

Table 2: Chemical reaction rates for WGS.

P.. P
PCOPHZO _7;02 i
WGS
Rwes = kwes ) =
H,0

2

E
Kwas = Awes eXP[_RL-IC-tj

-A
Keq,WGS =exXp (%)

AG,e =CT +C,T>+C,T +C,

Table 3: Parameters for reaction rate expressions.

Parameter Value
Avcs 2.45x0% mol/(bar kge, s)
Eact 54.5x10° J/(mol K)
C, 176040 J/(mol K?)
C, ~1.065x07 J/(mol K?)
C, 48.04 J/(mol K)
C, 2.075x0° J/mol

Extraction of hydrogen via the membrane should move
the reaction away from equilibrium, towards the product
side. The relative equilibrium ratio will be used to
quantify the deviation from equilibrium (see equation
13). The addition of membranes to a fluidized bed is
expected to significantly lower the local equilibrium
ratio compared to a fluidized bed without membranes.
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PCO2 PH 2

Peo PHZO
K

Bues = (13)

eq,WGS

Boundary conditions

All simulations have been performed with a 2D
computational domain. For the gas mixture, a no-slip
boundary condition was applied to the left and right
walls, a constant gas velocity was imposed at the inlet,
an imposed pressure condition was set at the outlet and
the boundary condition of equation 12 was applied at the
surface of the membranes. For the solids velocity and
granular temperature, a Johnson & Jackson partial slip
boundary condition with a specularity coefficient of 0.50
was applied on the walls and the membranes (see
Johnson et al. (1987)).

Numerical schemes and accuracy

The temporal discretization was done with the second
order Crank-Nicolson scheme. All simulations were run
with an adjustable time-step, with a maximum time-step
of 1’107 s. The time-step was selected each iteration
based on a maximum Courant number of 0.1. A
combination the second order Gauss linear and Van
Leer scheme was used for the spatial discretization. The
model’s absolute tolerances for all quantities were
within 1'10™"! each iteration.

VERIFICATION, GEOMETRIES AND SETTINGS

Reaction verification

The hydrodynamics and mass transfer parts of the model
have been carefully verified and validated in our earlier
works, see Medrano et al. (2015), Voncken et al. (2015)
and Helmi et al. (2017). Gas flow profiles, packed bed
pressure drop, convection-diffusion and diffusion only
systems have all been verified with their respective
analytical solutions. The fluidized bed’s bubble
properties and the membrane’s hydrogen flux have been
validated with experimental data. To verify whether the
WGS reaction terms were implemented correctly,
different types of basic reactions were compared to their
analytical solutions. Furthermore, the WGS reaction has
been simulated with the TFM and compared to a simple
MATLAB numerical batch reactor model.

A first and second order reaction have been performed
in a gas only batch reactor. The TFM mass fraction
profiles in Figure 1 match very well with the analytical
solution. The mass fraction profiles for an equilibrium
reaction with two species reacting to a product was also
predicted correctly by the TEM (Figure 2).

The implementation of the WGS reaction rate equation
was then checked by simulating a simple gas batch gas
reactor system with the TFM, and comparing it with a
gas batch reactor system in MATLAB. For this gas only
verification study the catalyst efficiency for the WGS
reaction was removed from the reaction rate equation.
Figure 3 shows that the TFM results for WGS compares
well with the gas batch reactor results obtained from the
MATLAB code. These results verify that the TFM can
be used to simulate various types of chemical reactions
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and can predict the resulting concentration profiles
accurately. To ensure equilibrium concentrations are
correctly predicted by the TFM, the WGS verification
simulation will be run for a longer period of time in
future studies.

—First order Analytical
* First order TFM

08 —Second order Analytical
—_ » Second order TFM
5
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[
i}
-
' 0.4
v
i}
=

0.2

[+
0 0.5 1 1.5 2

Time [s]

Figure 1: Analytical solution and TFM simulation result for a
first and second order reaction.
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Figure 2: Analytical solution and TFM simulation result for a

three species equilibrium reaction A + B = C.
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Figure 3: TFM simulation and batch reactor model
comparison for the WGS reaction.

Geometries and model settings

To quantify the effect of hydrogen extraction via a
membrane on the reaction rate, systems with and without
membranes were simulated. Both vertically and
horizontally positioned membranes were looked into.
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Fully 2D simulations have been performed. The
geometries of all simulations are presented in Table 4
and Figure 4. The horizontal membrane’s diameter was
set to 3.5 mm. Only one horizontal membrane has been
simulated to show the effects that can occur in the
system, in general, tube banks are best to be used to
avoid hydrogen bypassing. The bed depths are only
important for the calculation of the membrane area and
do not hold any physical meaning in these 2D cases. The
simulation settings can be found in Table 5. The vertical
membrane was always placed at the left boundary. The
horizontal membrane was placed at half of the reactor
width.

Table 4: Geometries of all TFM WGS simulations.

Case Width Height Depth
Vertical/no 0.0356m | 0.0712m | 0.016m
membrane
Neens vert./no 40 30 )
memb.
Horizontal

0.0356 m | 0.0712m | 0.032 m
membrane
Neenis horizontal 40 30 )
memb.

Table 5: Summary of simulation settings for the WGS cases.

T TETTTTTTT

Figure 4: A fluidized bed: (left) without membranes; (middle)
with a membrane at the left boundary; (right) with a
horizontally immersed membrane. Dimensions are in mm.

= ==40
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d, 250 pm
Do 1700 kg/m’
€ops B 0.97 -
U/Up¢ 3 -
D 1.010™ m%/s
Qud 43107 mol/(m’sPa")
n 0.50 -
T 678 K
X2 0.1 -
XCH4 0.1 -
XHZO 035 -
Xco 0.35 -
Xcoz 0.1 -
Weat 0.10 -
Poutlet 3 bar
| Poerm 0.01'10° Pa
tsim 10 S
At 510° s
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RESULTS

Water Gas Shift

This section presents the results obtained by simulating
fluidized beds with and without membranes in which the
WGS reaction takes place. The reaction rate and
equilibrium ratio will be used to assess the effect of the
membrane on the system. The different types of
membranes are not directly comparable, because they
have different amount of hydrogen bypass and because
the horizontal membrane affects the hydrodynamics.
However, the effects that occur in these reactors can be
described.

Reaction rate and equilibrium

The instantaneous and time-averaged reaction rates, and
the time-averaged relative equilibrium ratio for a regular
fluidized bed, fluidized bed with a vertical membrane
and fluidized bed with a horizontal membrane are
displayed in Figure 5. From the plot showing spatial
distribution of the instantaneous reaction rates the
position of the gas bubbles can be easily discerned as
areas with reduced reaction rates related to the lower
catalyst concentration inside the bubbles. The time-
averaged reaction rates near the vertical membrane (the
red line in the second row of Figure 5) are a factor 2 to
2.5 higher than the ones in a regular fluidized bed
without membranes. The reaction is also further from its
equilibrium state near the membrane than elsewhere in
the reactor, which shows that the membrane flux is so
high that kinetic and mass transfer limitations start to
play a role.

Temporary gas pockets with low catalyst content occur
underneath horizontally immersed membranes (Medrano
et al. (2015)). Similar to bubbles, lower reaction rates
are expected inside gas pockets compared to elsewhere
in the reactor. This reduction in reaction rate is slightly
visible in the time-averaged reaction rate plots for the
horizontal membrane case. When the membrane tube is
placed lower in the bed and closer to the wall the effect
of gas pockets on a catalytic reaction rates is more
pronounced (not shown). Contrary to the gas pockets,
densified zones on top of the horizontal membrane
increase the reaction rate locally with about a factor 4 to
5 compared to regular fluidized beds. However, despite
the increased driving force, the hydrogen flux is still
lowest on top of the horizontal membrane. Further
investigation is required to quantify the mass transfer
limitations in these densified zones and the effect of the
position of the membranes in the bed.

Hydrogen concentrations and membrane geometry

Figure 6 shows the hydrogen mole fraction profiles for
a fluidized bed with a vertically and a horizontally
immersed membrane. In both systems the membranes
suffer from mass transfer limitations from the emulsion
phase towards the membrane surface. Insufficient
hydrogen is supplied to the membrane, so its flux is
significantly lower than its maximum theoretical flux,
which is referred to as concentration polarization.
Caravella et al. (2009) and Helmi et al. (2017) have
shown that concentration polarization are to be expected
for systems with high flux membranes to extract one
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chemical component from a gas mixture. Extraction of
hydrogen increases the reaction rate and thus the
hydrogen production. Clearly, the mass transfer rates of
reactants and hydrogen towards the membrane is
insufficient to maintain high hydrogen concentrations
near the membrane, which are required to keep the
driving force for permeation and the fluxes high.

The differences in hydrogen mole fraction profiles
clearly shows how differently vertically and horizontally

immersed membranes behave. The vertically immersed
membrane is able to extract a large amount of hydrogen,
hereby causing severe concentration polarization via a
vertical concentration boundary layer. The undersize of
the horizontally immersed membranes is hardly limited
by concentration polarization due to the direction of the
gas flow, whereas the top has a high degree of
concentration polarization, partially due to densified
(defluidized) zones (see Voncken et al. (2015)).
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Figure 5: Instantaneous and time-averaged WGS reaction rates and time-averaged relative equilibrium ratio.
Membranes are portrayed in red.
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Figure 6: Hydrogen mole fraction profiles for fluidized bed
reactors with a horizontally and vertically immersed
membrane. The membranes are portrayed in red.

CONCLUSION

A TFM with mass transfer, membranes and reactions
was verified with various simple reactions such as n®
order, multi-species equilibrium reactions and Water
Gas Shift. The verified TFM was then used to simulate
WGS in fluidized beds without and with membranes.
The membranes increase the reaction rate by a factor 2
to 5, depending on the geometry and orientation of the
membrane. The extraction of hydrogen shifts the
equilibrium of the reaction, especially in the vicinity of
the membrane. For systems with vertically immersed
membranes vertical mass transfer boundary layers
develop, whereas for systems with horizontally
immersed membranes, gas pockets with reduced
reaction rates and densified zones with increased
reaction rates prevail. Future studies will focus on the
quantification of the concentration polarization effects
and extend the investigations to Steam Methane
Reforming.
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