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Abstract

Wind and wave climatic simulations are of great interest in a number
of different applications, including the design and operation of ships and
offshore structures, marine energy generation, aquaculture and coastal
installations. In a climate change perspective, projections of such sim-
ulations to a future climate are of great importance for risk manage-
ment and adaptation purposes. This work investigates the applicability of
FIS/ANFIS models for climatic simulations of wind and wave data. The
models are coupled with a nonstationary time series modelling, which de-
composes the initial time series into a seasonal mean value and a residual
part multiplied by a seasonal standard deviation. In this way, the non-
stationary character is first removed before starting the fuzzy forecasting
procedure. Then, the FIS/ANFIS models are applied to the stationary
residual part providing us with more unbiased climatic estimates. Two
long-term datasets for an area in the North Atlantic Ocean are used in
the present study, namely NORA10 (57 years) and ExWaCli (30 years in
the present and 30 years in the future). Two distinct experiments have
been performed to simulate future values of the time series in a climatic
scale. The assessment of the simulations by means of the actual values
kept for comparison purposes gives very good results.
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INTRODUCTION

The ocean wave climate is important for the design and operation of ships and
other marine structures, which need to be designed, constructed and operated
in a way that can withstand the environmental forces. In order to account for
these forces, an understanding of the operating climate is of great importance.
In particular, the highest values of certain environmental parameters such as
wave heights impose structural stresses and responses and the structures need
to be dimensioned accordingly. Historical measurements of the wave climate
and long operational experience have resulted in the current understanding of
the wave induced forces on marine structures.

However, in recent years it has become increasingly evident that the climate
is changing [1]. Thus, knowledge and experience about the environmental forces
and how to handle them must be supplemented with simulations of how the
future climate will be. In particular, when structures are designed with an
expected operational lifetime of several decades, the potential changes in the
operating conditions due to climate change must be taken into account already
in the design stage of the structure.

Thus, there is an increasing need for very long-term wind and wave data
as climate projections require a baseline climatology against which to be com-
pared, especially in future climate scenarios produced by coupled models. Third
generation spectral wave models [2, 3] have been used for generating such kind
of reanalysis data sets [4–6]. See also [7], where a number of climatologies based
on regional models are cited.

In the present study, NORA10 [8] and ExWaCli [9] datasets are used. Es-
pecially the latter includes a number of future wave projections obtained by
running a WAM implementation [2, 8] with wind input derived from several
global circulation models [10]. A particular area in the North Atlantic Ocean is
selected and the wave model has been run, in each case, for a 30-year historical
period (1971-2000) and for a future period (2071-2100) assuming two different
future climate scenarios, i.e. RCP 4.5 and RCP 8.5 [11, 12].

There are a number of sources of uncertainties in any climate projections
into the future, and future projections of the wave climate is a result of several
modelling steps. Different modelling choices introduce uncertainties in each
modelling step. For example, to obtain future wave climate projections, one
must first run global climate models to get large-scale climate projections re-
lated to atmospheric pressures, wind fields and ice pressures. However, such
large-scale projections will be conditioned on projected external forcings, typ-
ically consistent with an emission scenario or a Representative Concentration
Pathway (RCP). Hence, the choice of emission scenario, global climate model
as well as initial conditions and exact parametrization of the climate model will
affect the results and are sources of uncertainties of these climate projections.
Moreover, to obtain wave climate projections one typically needs higher res-
olution regional climate projections of wind fields, and different downscaling
methods may give different results. With regional wind projections, one may
use numerical wave models to obtain wave projections and there are several
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Figure 1: Main steps in future wave climate projections (different modelling
choices introduce uncertainties in each modelling step)

different wave models that may give different results. All of this adds to the
uncertainty of any wave climate projection leading to an overall large variability
of future wave climate projections. See e.g. [13] for further discussions on the
uncertainties of future wave climate projections. If one is interested in the ex-
treme wave climate, extreme value analysis of the projected waves adds further
to the overall uncertainty [14]. See also Fig. 1.

The Coupled Model Intercomparison Project phase 5 (CMIP5) promotes a
set of coordinated global climate model experiments and forms the basis for
the IPCCs fifth assessment report (AR5) [15, 1]. It was completed in 2014
and model output from a number of different climate models have been made
available. The selection of model output to use in ExWaCli was partly pragmatic
and partly based on an assessment of the individual merits of alternative models
from the academic literature.

However, and because the numerical implementation of the wave models
requires great computational power and high CPU time, there is an increasing
interest for various soft computing techniques. Some researchers utilize Artificial
Neural Networks (ANN); see, e.g., [16–18]. Some others use Fuzzy Inference
Systems (FIS) in combination with Adaptive Neuro-Fuzzy Inference Systems
(ANFIS); see, e.g., [19–24]. These techniques require less computational effort
and they are easy to be applied.

In [25, 26], FIS/ANFIS models were applied for the first time to forecast fu-
ture values of the whole wave field (North Atlantic and Pacific Oceans). Usually
in Fuzzy Time Series (FTS) studies, the nonstationarity is neglected. In con-
trast, the authors in [27, 25, 26] consider that nonstationarity should be removed
from the initial time series, before starting the fuzzy forecasting procedure; es-
pecially in time series of wind and wave parameters where the nonstationary
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character is inherent due to the seasonal effect. So, in these works, fuzzy tech-
niques were combined with an existing nonstationary modelling of wind and
wave parameters to improve the forecasting procedure.

According to this modelling, the initial nonstationary series is decomposed
into a seasonal mean value, and a residual time series multiplied by a sea-
sonal standard deviation. The seasonal components are estimated using mean
monthly values, and the residual time series is modelled as stationary series; see,
e.g., [28, 29]. Then, the FIS/ANFIS models are applied only to the stationary
part.

In this way, the seasonal patterns, which contain all information concerning
changing trends in the climate, are estimated separately from the FIS/ANFIS
structure, which can be estimated by only a single point. This greatly decreases
the computational time of the calculations without significant loss of the ac-
curacy. Nonstationary modelling is finally used for the synthesis of the full
simulated time series.

The present work follows the methodology presented in [25, 26] but for a
significantly larger forecasting horizon; namely several years. Two distinct ex-
periments with respect to very-long (climatic) forecasting are performed based
on the two datasets mentioned above. Forecasting results are compared with
existing model values intentionally kept for validation of the methodology.

METHODOLOGY

Data used

Two datasets have been used for this study, as also mentioned in Introduction,
namely the NORA10 [8] and ExWaCli [9] datasets. The referred area is in
the North-eastern Atlantic Ocean, west of British Isles, and the computational
grids partially overlap; see Fig. 2. At each datapoint, three-hourly time series of
significant wave height, wave period and wind speed are available. The NORA10
dataset covers the period 1957.09.01–2014.08.31, i.e. approximately 57 years,
while ExWaCli dataset includes a historic period of 30 years (1971–2000) and
two future wave projections of 30 years for the period 2071–2100 assuming two
different future climate scenarios (RCP 4.5 and RCP 8.5). The span of the
datasets is depicted in Fig. 3.

Model setup

The present work closely follows the methodology described in [25, 26], according
to which the initial nonstationary time series of wind and wave parameters are
first decomposed as follows

Y (t) = m(t) + s(t) W (t), (1)

where m(t) and s(t) are deterministic periodic functions with a period of one
year, and W (t) is a zero-mean, stationary, stochastic process. The functions
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Figure 2: Data grid and points used (blue: NORA10, red: ExWaCli)

Figure 3: Time span and duration of datasets
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m(t) and s(t) are seasonal mean value and seasonal standard deviation, re-
spectively, and describe the exhibited seasonal patterns. The seasonal patterns
(mean value and standard deviation) are obtained by means of:

µ̃3(m) =
1

J

J∑
j=1

1

Km

Km∑
k=1

Y (j,m, τk), (2)

σ̃3(m) =
1

J

J∑
j=1

√√√√ 1

Km

Km∑
k=1

[
Y (j,m, τk)− µ3(j,m)

]2
, (3)

with m=1,2,. . . ,12. Note that, Y (j,m, τk) is a re-parametrization of Y (t), where
j is the year index and m represents the monthly time, and k = 1, 2, . . . ,Km.
In [30, 25], it has been shown that, periodic extensions of quantities µ̃3(m) and
σ̃3(m) are good estimates of periodic functions m(t) and s(t).

In this way, the information contained in the time series Y (t) is decomposed
into two parts:
◦ one determinstic [m(t), s(t)], containing info about features such as seasonal

variability, interannual variability, climatic trends, and evolving more slowly
in time, and

◦ one stochastic [W (t)], containing info about the dependency (correlation)
structure of the successive values of the series, and evolving more rapidly in
time.
The simulation procedure is applied to the second one, as only this part has

been modelled as a stochastic one. The first part (deterministic) is estimated by
means of the existing values and is used in the end to reconstruct the simulated
version Ŷ (t) of the initial nonstationary series.

Then, the FIS/ANFIS forecasting methodology described in [25], is applied
to the stationary part W (t). The membership functions to form the fuzzy input
sets are simple linear functions and the FIS systems are established assuming
the following IF-THEN rules:

(a) wind speed WS :
WS(t+ 1) = f1

(
WS(t)

)
(4)

(b) significant wave height HS :

HS(t+ 1) = f2
(
WS(t), HS(t)

)
(5)

Finally, using Eq. (1), the simulated time series Ŵ (t) is combined with the

estimated seasonal components m(t) and s(t) to give a simulated version Ŷ (t)
of the initial nonstationary series.

Measuring forecasting quality

To evaluate forecasting performance, the following error measures have been
used:
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Figure 4: Sketch of the procedure followed in the two experiments (1: Training,
2: Input, 3: Simulated datasets)
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(a) Root Mean Square Error (RMSE) defined as

RMSE =

√√√√1

I

I∑
i=1

|e(ti)|2 (6)

(b) Mean Absolute Percentage Error (MAPE) defined as

MAPE =
1

I

I∑
i=1

∣∣∣∣ e(ti)a(ti)

∣∣∣∣ , (7)

where
e(ti) = a(ti)− f(ti) (8)

denotes the forecasting error at time ti between forecasts f(t) and actual
values a(t).

(c) Mean Absolute Scaled Error (MASE) defined as

MASE =
1

I

I∑
i=1

|q(ti)| , (9)

where

q(ti) =
e(ti)

1
N

∑N
n=2

∣∣X(tn)−X(tn−1)
∣∣ , (10)

where {X(tn), n = 1, 2, . . . , N} are the existing values, used for training of
the fuzzy time series model.

(d) Root Mean Square Scaled Error (RMSSE) defined as

RMSSE =

√√√√1

I

I∑
i=1

|q(ti)|2 (11)

(e) Bias:

Bias =
1

I

I∑
i=1

[−e(ti)], (12)

(f) Scatter Index (SI) in %:

SI =

√
RMSE∑I
i=1 a(ti)

× 100, (13)
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(g) Correlation coefficient R2:

R2 =

∑I
i=1

(
f(ti)− a

)(
a(ti)− a

)
√∑I

i=1

(
f(ti)− a

)2∑I
i=1

(
a(ti)− a

)2
, (14)

where

a =
1

I

I∑
i=1

a(ti). (15)

Results from all error measures are calculated and given in the next section,
showing the accuracy of the proposed forecasting methodology.

NUMERICAL RESULTS

In the present work, first results for a point-wise study are presented. Further
results for the whole field, shown in Fig. 2, are under way and they will be
published in due time. Two points from the two datasets have been chosen with
neighbouring coordinates, so that the results could be directly comparable; see
Fig. 2.

Two experiments have been designed. In both experiments the following
simulation procedure has been applied:

1. A dataset Y1 is chosen as the Training set.

2. Decomposition (1) is applied to Y1.

3. Residual part W1 is used as input for the estimation of the structure and
the parameters of the FIS/ANFIS system.

4. A second dataset Y2 is chosen as the Input dataset.

5. Step 2 is applied to Y2.

6. Residual partW2 is used as input for the simulation based on the FIS/ANFIS
system estimated in Step 3.

7. Output Ŵ3 of the simulation is combined with the deterministic part of
Y2 estimated in Step 5 and the final simulated time series Ŷ3 is obtained.

This procedure is also summarized in Fig. 4. Note that, although the determin-
istic part Determ 2 is estimated in the present work by means of the existing
time series, it can be replaced in a later stage by other estimates that will be
obtained concerning the future trends of that time period.

In Experiment 1, the first part of the NORA10 dataset (1957–1970) has
been chosen as the Training set, based on which the FIS/ANFIS structure is
estimated. Then, one simulation is obtained for the historic period (1971–2000)
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and two for the future one (2071–2100). See also Fig. 5 where the setup of
Experiment 1 is shown. The results of the three simulations are compared with
the three ExWaCli datasets (ExHist, ExR45, ExR85).

In Experiment 2, the historic part of ExWaCli dataset (1971–2000) has been
chosen as the Training set for the estimation of the FIS/ANFIS structure. Then,
one simulation is obtained for the historic period (2001–2014) and two for the
future one (2071–2100). See also Fig. 6 where the setup of Experiment 2 is
shown. The results of the three simulations are compared the first one with the
last part of NORA10 dataset and the other two with the two future ExWaCli
datasets (ExR45, ExR85).

In Tables 1 and 2, the error measures of wind speed and significant wave
height, respectively, are given for Experiment 1. The corresponding measures
for Experiment 2 are given in Tables 3 and 4.

In all cases, the results are very good. For example, there is a very good
correlation between the simulations and the actual values of the order 91–95%
(wind speed) and 98% (wave height). The bias is almost zero and the root-
mean-square is of the order of magnitude of some centimetres for wave height
and less than 2 m/s for wind speed. Experience with more data points will
reveal if the slightly higher errors in the case of wind speed are significant or
not.

Especially, by comparing the forecasting performance of the two experiments
for the future scenarios RCP4.5 and 8.5, one can conclude that both are in a very
good agreement with the actual values of the datasets, which means that both
datasets (NORA10 and ExWaCli.historic) can be equally well used as Training
dataset for the estimation of the parameters of the FIS/ANFIS procedure after
the appropriate deseasonalization. As an example, the relative difference of the
two estimates for the HS as a percentage of the actual values is plotted for the
two climatic scenarios in Figs. 7 and 8. In both cases, the relative difference is
between -5% and 10%.

The estimation procedure for each experiment is very quick and takes 30
sec in a personal PC with Intel R©CoreTM i5-5200CPU @2.20 GHz and 4.0 GB
RAM.

Finally, one can argue that the present results may not seem in line with
other published work in the climate community [31, 32], where higher uncer-
tainty levels are present. However, this is due to the fact that the present results
are not directly comparable with the others, because the simulation procedure
basically concerns only the stochastic part (containing the correlation structure)
and not the deterministic one (containing among others the long-term trends).
Thus, the present methodology can be combined in the future with other existing
tools, such as the dynamical models and/or other statistical models, to enhance
the accuracy of the existing predictions of the wave climate by decreasing the
computational cost.
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Figure 5: Setup of Experiment 1

Figure 6: Setup of Experiment 2

11



Table 1: Error measures for wind speed, Experiment 1

dataset ExHist ExR45 ExR85
RMSE 1.341 1.296 1.314
MAPE 0.154 0.147 0.146
MASE 1.003 1.002 1.003
RMSSE 1.400 1.397 1.404
R2 0.953 0.954 0.953
SI (%) 13.715 13.512 13.643
Bias -0.005 -0.006 -0.005

Table 2: Error measures for wave height, Experiment 1

dataset ExHist ExR45 ExR85
RMSE 0.269 0.268 0.263
MAPE 0.047 0.046 0.046
MASE 0.843 0.833 0.811
RMSSE 1.321 1.364 1.324
R2 0.990 0.989 0.990
SI (%) 7.785 8.126 7.986
Bias -0.003 -0.003 -0.003

Table 3: Error measures for wind speed, Experiment 2

dataset ExR45 ExR85 NORA10
RMSE 1.290 1.308 1.802
MAPE 0.140 0.139 0.187
MASE 0.991 0.992 0.984
RMSSE 1.391 1.398 1.389
R2 0.954 0.954 0.913
SI (%) 13.453 13.584 18.383
Bias 0.000 0.001 -0.002

Table 4: Error measures for wave height, Experiment 2

dataset ExR45 ExR85 NORA10
RMSE 0.258 0.254 0.308
MAPE 0.046 0.045 0.057
MASE 0.826 0.808 0.865
RMSSE 1.316 1.279 1.339
R2 0.990 0.991 0.985
SI (%) 7.836 7.714 9.142
Bias 0.001 0.001 -0.008
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Figure 7: Relative difference of the two estimates with respect to actual values
for scenario RCP4.5 (1: Exp1, 2: Exp2, A: actual values)

Figure 8: Relative difference of the two estimates with respect to actual values
for scenario RCP8.5 (1: Exp1, 2: Exp2, A: actual values)
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CONCLUDING REMARKS

Climatic simulations of significant wave height and wind speed have been ob-
tained for the first time, based on a newly introduced procedure in [25, 26] where
predictions were given for shorter periods. According to this, the well-known
Fuzzy Inference Systems (FIS) in combination with Adaptive Neuro-Fuzzy In-
ference Systems (ANFIS), coupled with a nonstationary time series modelling,
is applied to obtain the forecasts.

Two datasets have been used; namely NORA10 (1957–2014) and ExWa-
Cli (1971–2000 and 2071–2100), covering an area of the North-eastern Atlantic
Ocean, west of British Isles with partially overlapping computational grids.

Two forecasting experiments have been designed and performed. In the first
one, the training set was the period 1957–1970 of the NORA10 dataset and the
forecasts cover the periods 1971–2000 and 2071–2100. In the second one, the
period 1971–2000 of ExWaCli dataset is the training set and the forecasts cover
the periods 2001–2014 and 2071–2100.

The obtained forecasts are verified by means of actual values kept for com-
parison purposes. The calculated error measures show a very good performance
demonstrating the feasibility of this methodology. In addition, the small amount
of computational time needed makes it an attracting complementary tool in the
process of obtaining future simulations in a climatic scale, which is in line with
the current demand of using enhanced computational tools [33].
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