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Abstract. Roll-on Roll-off shipping companies transport rolling cargo,
such as cars, trucks and large construction machines. When sailing, this
type of cargo must be attached to the deck using chains, to prevent
damaging the cargo. For each voyage including multiple port calls where
the cargo is loaded/unloaded, an important decision is to decide where
to place each vehicle (or unit), such that the time used on shifting is
minimized. Shifting means temporarily moving some vehicles to make
an entry/exit route for the vehicles that are to be loaded/unloaded at
a given port. As the vehicles are securely fastened to the deck, shifting
is a time-consuming procedure. We present the stowage plan evaluation
problem which is to determine the optimal vehicles to shift at each port
call, such that the time spent on shifting is minimized. Given a set of
alternative stowage plans for a voyage, the results from the stowage plan
evaluation problems are used to determine the best among these stowage
plans. We present a shortest path based heuristic for solving the problem.
Computational results show that the solution method is a powerful tool
for comparing stowage plans, due to its fast computing times and high
success rate, i.e. its ability to determine the better of two stowage plans.
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1 Introduction

Major improvements to the efficiency of maritime transportation have been made
during the last decades due to operations research. However, compared to other
segments in maritime transportation, the Roll-on Roll-off (RoRo) shipping seg-
ment has received little attention. RoRo vessels transport vehicles and other
types of rolling material between different regions of the world according to
predefined plans. Lower freight rates provide a challenging reality for the RoRo
shipping companies, due to a surplus of tonnage in the world’s deep sea fleet. We
seek to improve the profitability of the RoRo segment, by introducing a method
for evaluating different stowage plans. Better stowage plans may reduce the time
used to load and unload vehicles, and hence, the time spent in port.
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The problem addressed in this paper is the stowage plan evaluation problem
(SPEP). In RoRo transportation, a feasible stowage plan is not as good as any
other feasible stowage plan. A good stowage plan enables seamless loading and
unloading of the carried rolling units (hereinafter referred to as vehicles) by using
the least amount of time on moving vehicles unnecessarily, which is known as
shifting. Shifting means temporarily moving some vehicles to make an entry/exit
route for the vehicles that are to be loaded/unloaded at the given port. Given
a stowage plan for a voyage, the objective of the SPEP is to minimize the time
used on shifting at each port, by identifying the optimal vehicles to shift. The
time use for shifting a vehicle is treated as a cost, such that the quality of a
stowage plan is determined by its shifting cost, relatively to other stowage plans
carrying the same vehicles.

Figure 1 shows the placement of vehicles on a deck, during the deep sea leg
between Asia and Europe for a given voyage. Both stowage plans look structured,
but there is a major difference in the shifting cost. At the first port call in Europe,
all vehicles marked in blue are to be unloaded. In the upper stowage plan in
Figure 1, all blue vehicles are placed in the bow of the ship. When arriving at
the first port in Europe, two green and several yellow vehicles must be shifted in
order to unload all the blue ones. The second stowage plan has all blue vehicles
placed close to the ramp, and no shifts are required when unloading the vehicles.

Stowage planning has been widely studied in the context of container ship-
ping, see for example [1, 5, 6]. Minimizing the number of shifts is an important
objective, both in container shipping and RoRo transportation. In container
shipping, the containers are stacked on top of one another. When dispatching
a given container, containers stacked on top of it must be removed, i.e. shifted.
Here, which containers to shift at each port call are implicitly given by the
stowage plan. In RoRo transportation, which vehicles to shift to enable load-

Fig. 1: Two different stowage plans for a given deck and cargo list. The exit ramp
is marked with an arrow. Each colored square represents a vehicle and all vehicles
with the same color are unloaded at the same port. Unloading sequence: Blue,
green, yellow, orange. Thus, the blue vehicles are unloaded at the first unloading
port and the orange ones at the last port on the voyage.
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ing/unloading of the desired vehicles at each port call, must be determined. The
problem of deciding which vehicles to shift at each port (SPEP) is, to the au-
thors’ knowledge, new to the OR literature. There are, however, publications
dealing with the operational problem of creating stowage plans. Øvstebø et al.
[4] consider the RoRo ship stowage problem (RSSP). For a ship set to sail on a
given voyage, the problem is to decide which cargoes to carry, how many vehicles
to carry from each cargo, and how to stow the vehicles carried during the voyage.
They formulate the problem as a mixed integer programming (MIP) model and
present a specially designed heuristic method to solve the problem. For modeling
purposes, they divide each deck into several logical lanes, into which the vehicles
are lined. The vehicles enter the each deck at stern and are unloaded according
to the last in-first out (LIFO) principle. We argue that basing the shifting cost
calculations on a LIFO principle is too crude. In practice, vehicles enter the decks
using ramps placed somewhere on the deck and take the least inconvenient path
from its placement to the ramp when unloaded.

Recently, Hansen et al. [3] presented a mathematical model for the two-
dimensional RSSP, a simplification of the RSSP which arises if only one deck is
considered. They argue that dividing the decks into lanes, as done in [4], may be
too restricting, especially when the cargoes stowed are heterogeneous, i.e. they
have different sizes and shapes. The authors propose different objective functions
to influence the placement of the vehicles. While promising placement strategies
are provided, the shifting cost of the stowage plans is not calculated. Hence, based
on the reviewed literature, we identify the need for a method for evaluating and
comparing different stowage plans carrying the same cargoes along a voyage.

The purpose of this paper is to present the stowage plan evaluation problem
in RoRo transportation. We present a mathematical formulation of the problem
and propose a shortest path based heuristic for solving the problem. Even though
a solution to this problem may indicate which vehicles to shift at each port in
a practical case, this is not the purpose of this contribution. The problem of
deciding which vehicles to shift at each port is easily solved by the port workers,
who drive the vehicles on and off the ship. However, the problem is crucial when
deciding upon a stowage plan when planning a voyage. The SPEP is then solved
for each proposed stowage plan, where the shifting cost is used to determine the
best one. The stowage plans could both be provided by planners or a stowage
plan generator/heuristic.

The remainder of the paper is structured as follows: We present the problem
in Section 2. Section 3 presents a mathematical formulation of the problem.
Then, in Section 4, we explain our solution approach. Computational results are
presented in Section 5 and concluding remarks are given in Section 6.

2 Problem description

The SPEP considers a RoRo ship carrying a given set of cargoes along a voyage
with a predefined set of loading and unloading ports to visit. We take as input
a given stowage plan for the voyage, which states the number of cargoes, where
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to load and unload the cargo, the number of vehicles in each cargo, dimensions
of the vehicles, and where each vehicle is placed on the ship. Given this stowage
plan, the SPEP is to determine which vehicles to shift at each port call, to enable
all vehicles that are to be loaded/unloaded to reach their destination on the deck
(if loading) or to exit the ship (if unloading). Thus, the problem is to determine
an entry and exit route for each vehicle placed on the deck. An entry route for a
given vehicle is defined as the path from the entry/exit ramp to the location it
is to be placed on the deck, and vice versa for an exit route. Each possible route
is associated with a shifting cost, which depends on both the number of vehicles
placed along the route and the vehicle’s size. This cost is not necessarily a real
cost, but it reflects the cost of time used to move the vehicle. The cost of shifting
a vehicle varies, as larger vehicles usually require more effort to move. Objects,
such as pillars and ramps, and weight restrictions on the deck limit the possible
paths a vehicle can use when entering or exiting the deck. The shifting cost of
a stowage plan is given by the cost of shifting all blocking vehicles at each port
call, and the objective is to minimize this shifting cost.

Figure 2 presents an example of how the shifting cost is evaluated for different
vehicles in different settings, and two loading ports are considered. For the first
loading port, the entry route for one vehicle from cargo 2 is shown. The vehicle
passes through two vehicles from cargo 1, but the vehicles are not shifted. As
these vehicles are loaded in the same port, there always exists a loading sequence
where the loaded vehicles do not block each other. In this example, this can be
achieved by loading cargo 2 first, and then cargo 1. Thus, the shifting cost should
only be accounted for if the blocking vehicle is loaded at a previous port call, or
unloaded at a later port call. Note that as each deck is empty at the first loading

Fig. 2: Possible loading routes for some vehicles at different ports. Entry point
is marked with an E. The X’s indicate unusable space. Vehicles marked with
vertical lines must be shifted.
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port, the shifting cost for the first port will always be zero. This also applies to
the last port call, as all remaining vehicles are unloaded at this port.

Another important aspect is that each shift is only accounted for once at
each port. At the second loading port in Figure 2, two vehicles from cargo 3
use partly the same route, indicated by the arrows. Both vehicles’ entry route
requires that a vehicle from cargo 1 is shifted, as it is loaded at a previous port.
As the vehicle already is shifted to make way for one of the vehicles from cargo
3, e.g. the one furthest to the left, there is no reason to place it back on the deck
before the other vehicle from cargo 3 has been placed on the deck. Thus, the
shifting cost from the two routes add up to 4, and not 8, which is the sum of the
shifting cost for each of the two vehicles.

So to summarize, the SPEP deals with evaluating given stowage plans by
determining which vehicles to shift at each port call to minimize the shifting
cost of the plan. We consider the stowage plan for a single deck, as we assume
that there exists an open path from the entry point of the ship to each deck.
Then, when solving for several decks, the total shifting cost is then given by the
sum of shifting costs for each deck.

3 Mathematical formulation

Building on the previous work in [3], the SPEP is based on a grid representation
of the given deck, where I is the set of rows and J the set of columns over a
deck, indexed by i and j, respectively. A square (i, j) represents a physical area
on the deck where the vehicles may be placed, where square (1,1) is defined as
the square located at the stern of the ship’s port side. We define the parameter
Eij to be 1 if square (i, j) is the entry/exit point on the deck. Let C, indexed
by c, be the set of cargoes carried along the voyage. Each cargo c consists of Nc

identical vehicles (or units). The set of vehicles Vc includes all vehicles v from
cargo c. The length and width of each vehicle in cargo c, in squares, are given
by SL

c and SW
c , respectively. Let P be the set of ports visited along the voyage,

indexed by p. Each cargo c ∈ C is to be loaded at port PL
c and unloaded at

port PU
c . We assume a given stowage plan for the voyage is provided, and define

parameter Pijcvp to be 1 if vehicle v from cargo c occupies square (i, j) when
departing from port p. Further, let PC

ijcvp be 1 if the lower left corner of vehicle
v from cargo c is placed in square (i, j) when departing port p. The feasible
stowage plan is now given by the parameters Pijcvp and PC

ijcvp.
To represent the SPEP, we present a fixed-charge multicommodity network

flow formulation of the problem and define the following additional notation.
Let N be the set of all squares (i, j) and Nc ⊆ N\Uc be the set of squares (i, j)
a vehicle from cargo c may use on its entry/exit route. The set Uc includes all
squares that cannot be used by vehicles from cargo c, which typically are squares
where pillars and other blocking objects are placed and squares where the weight
restrictions are violated. Each cargo c has a graph Gc = (Nc,Ac) associated with
it. The set of squares Nc and the set of arcs Ac ⊂ Nc × Nc define the feasible
movements for the vehicles in cargo c. Further, the set Cp includes all cargoes
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placed on the deck at port p. This set can further be divided into two disjoint
sets: CRp includes all cargoes placed on the deck at port p, given that the port is

either the loading port or the unloading port of cargo c, i.e. p = PL
c or p = PU

c .
Thus, this set includes all cargoes that are to be routed on or off the ship in
the given port p. Next, the set CNp includes all cargoes placed on the deck at
port p, given that the port is neither the loading port nor the unloading port of
cargo c, i.e. p 6= PL

c and p 6= PU
c . If any of these cargoes is shifted at port p, a

shifting cost CS
c is imposed. The shifting cost is based on the vehicle’s area, i.e.

CM
c = SL

c S
W
c , as it is usually more time-consuming to move larger vehicles than

smaller ones. It is assumed that a shifted vehicle is moved off the deck during
the port call and returned to the same location after the loading/unloading.

Let Bij be the set of all neighboring squares to square (i, j), i.e. Bij = {(i +
1, j), (i−1, j), (i, j+1), (i, j−1)}. A vehicle is allowed to move one square forward,
backward, left or right from each square (i, j). By allowing sideways movement,
some of the proposed entry and exit routes may be infeasible in practice, as most
vehicles have a given turning radius and are unable to move sideways. However,
it should be emphasized that the stowage plan evaluation is mainly conducted
to compare alternative stowage plans and not to actually determine the optimal
loading and unloading routes for each vehicle. Hence, it can be argued that this
modeling choice is reasonable and sufficient.

We associate with each square (i, j) ∈ N , cargo c, and port p, an integer
number Dijcp representing its supply/demand. If Dijcp > 0, square (i, j) is a
supply square for cargo c at port p; if Dijcp < 0 square (i, j) is a demand square
for cargo c at port p with a demand of −Dijcp; and if Dijcp = 0, square (i, j) is
a transshipment square for cargo c at port p. If we are to load four vehicles from
cargo 3 at port 4 and the entry point is square (1,1), then we have a supply of
four, represented by D1123 = 4. Further, we have a demand of -1 at the squares
where the vehicles are to be stowed, given by the parameter PC

ijcvp for each of

the vehicles, i.e. Dijcp =
∑

v∈Vc
−PC

ijcvp. Similarly, for a cargo’s unloading port,
the exit square gets a demand of −Nc, and Dijcp = 1 for all squares where the
lower left corner of a vehicle from cargo c is stowed. We define the parameter
Aijcdvp to be 1 if a vehicle from cargo c, placed in square (i, j), uses a square
where vehicle v from cargo d is placed at port p. If a 2×2 sized vehicle from
cargo c temporarily uses square (1,1) for its entry route, this vehicle also uses
the squares (1,2), (2,1) and (2,2). If a vehicle v from cargo d is placed in any of
these four squares, then A11cdvp = 1, which imply that the vehicle v from cargo
d must be shifted, if a vehicle from cargo c uses square (1,1).

The arc flow variable fijklcp represents the flow sent from square (i, j) to a
neighboring square (k, l) of cargo c at port p. Finally, binary variables ycvp take
value 1 if vehicle v from cargo c is shifted at port p.

The model is solved for every port except the first and the last port along the
voyage, since no vehicles are shifted in these ports. Let PS = P\{first port, last port}
be the set of ports where shifting may occur. The resulting shifting cost for a
voyage is the sum of the shifting costs for each port. We can now formulate the
SPEP problem for each p ∈ PS as the following mathematical program:
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SPEP(p ∈ PS): min zp =
∑
c∈CN

p

∑
v∈Vc

CM
c ycvp (1)

subject to∑
(k,l)∈Bij

fijklcp −
∑

(k,l)∈Bij

fklijcp = Dijcp c ∈ CRp , (i, j) ∈ Nc (2)

Aklcdvp

∑
(i,j)∈Bkl

fijklcp ≤Mcydvp c ∈ CRp , (k, l) ∈ Nc, d ∈ CNp , v ∈ Vd (3)

fijklcp ≥ 0 c ∈ CRp , ((i, j), (k, l)) ∈ Ac (4)

ycvp ∈ {0, 1} c ∈ CNp , v ∈ Vc (5)

The objective function (1) is to minimize the cost of shifting vehicles at port p.
The flow balance constraints (2) state that the outflow minus inflow must equal
the supply/demand of the square i for each cargo c. Constraints (3) are the
capacity constraints. If a given vehicle v from cargo d blocks the flow of vehicles
from cargo c into square (k, l) at port p, given by Aklcdvp, then the blocking
vehicle v from cargo d must be shifted to enable flow into the square, i.e. the
shifting variable ydvp = 1. An upper bound on Mc is given by Nc, i.e. the number
of vehicles in cargo c. Constraints (4) and (5) define each variable’s domain.

Figure 3a illustrates an optimal solution to the SPEP, obtained by solving
model (1)-(5), for an example instance. Here, exit routes for the two vehicles of
cargo 1 are to be decided, for a given unloading port. Vehicles from cargoes 2
and 3 must be shifted if routes passing through them are used, as they are to be
unloaded at a later port call. The cheapest way to unload the two vehicles from
cargo 1 is to shift the marked vehicle from cargo 3. This vehicle has a shifting
cost of 9, i.e. the vehicle’s area, resulting in a shifting cost of 9 for this port.

4 Shortest path solution method

When determining a stowage plan by using either an exact or a heuristic solution
method, the SPEP becomes an important sub-problem that may have to be
solved a large number of times to evaluate and compare the shifting costs of
alternative stowage plans. Therefore, it can be important to solve the SPEP
very quickly. The SPEP model, defined in Section 3, consists of a large number
of the continuous flow variables, but relatively few binary variables (one for each
vehicle that may be shifted). Due to this, small instances are easily solved by
a commercial solver. However, for the large grid resolutions required for solving
realistically sized problems, even solving the LP-relaxation of the SPEP model
can be too time-consuming for practical use. Thus, we propose a heuristic method
based on solving shortest path problems, which can be solved efficiently.

The SPEP deals with deciding which vehicles to shift, considering all cargoes
that are to be loaded or unloaded at a given port. Instead of considering all
cargoes that are to be loaded/unloaded at a port simultaneously, we consider
one vehicle at the time. Thus, for a given vehicle in both its loading and unloading
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(a) Optimal solution from the
SPEP model

(b) Feasible routes, proposed
by the heuristic in Section 4

Fig. 3: Exit routes for the two vehicles in cargo 1 (C1) are to be decided, for a
given unloading port. Vehicles marked with vertical lines are shifted.

port, the problem is to decide which vehicles to shift, such that this vehicle may
be loaded/unloaded. The objective is to minimize the shifting cost. This problem
is equivalent to finding the cheapest entry/exit path, where the cost of moving
from one square to another is dependent on whether we need to shift any vehicles
due to the move, i.e. a shortest path problem (SPP).

When using the shortest path approach to solve the example instance in
Figure 3b, we evaluate the exit routes for each vehicle individually. This results
in a total shifting cost of 12, i.e. three shifted vehicles with an area of four squares.
The solution to the left has shifting cost of 9, as explained in the previous section.
It can be shown that the shortest path approach gives an upper bound on the
shifting cost for a given port.

The remainder of this section is structured as follows. Section 4.1 describes
the procedure of creating the graphs on which the SPPs are solved. Then, in
Section 4.2, the procedure of solving a shortest path problem on the graphs are
discussed and we present some additional strategies for improving the upper
bound on the shifting cost.

4.1 Creating the graphs

For this SPP heuristic, we are not concerned with finding the shortest path
in distance, but rather the cheapest path, i.e. the entry/exit route that gives
the lowest contribution to the shifting cost. The cheapest paths can be found
by solving a one-to-one shortest path problem for each vehicle’s loading and
unloading port. It is not possible to solve a single one-to-many SPP for each
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port, where the cheapest path for each entering or exiting vehicle is calculated,
as edge costs are dependent on the size of the vehicle traversing the edge. We
explain this using a 2×2 sized vehicle and a 4×4 sized vehicle, both initially
placed with their lower left corner in square (1, 3), as illustrated in Figure 4.
Then, we evaluate the edge cost associated with moving one square to the left
for both vehicles. For the smallest vehicle, the edge cost is zero, as moving from
square (1, 3) to (1, 2) does not impose any shifts. However, the largest vehicle
uses a square where another vehicle is placed. The edge cost equals the cost of
shifting the blocking vehicle, which in this case is six, i.e. the vehicle’s area.

Since the edge costs depend on the size of the cargo, a graph Gcp = (Nc,Ac)
must be created for every cargo, for their loading and unloading port PLU

c =
{PL

c , PU
c }. We do not need to create a graph for each vehicle, as all vehicles

within a cargo have the same dimensions. Let Nc be the set of squares (i, j) a
vehicle from cargo c may use on its entry/exit route. The set of edges Ac defines
the feasible movements for the vehicles, i.e. maximum four directed outgoing
edges per square. We add the edge ((i, j), (k, l)) to the set of edges Ac, for all
(i, j) ∈ Nc and (k, l) ∈ Bij .

Each time an edge is added to the set Ac, the corresponding edge cost CE
ijklcp

is calculated. For this edge ((i, j), (k, l)), let VI be the set of vehicles that may be
shifted and occupy any of the squares (̄i, j̄), ī = i..i+ SL

c − 1, j̄ = j..j + SW
c − 1.

Similarly, let VN be the set of vehicles that may be shifted and occupies any of
the squares (k̄, l̄), k̄ = k..k+SL

c −1, l̄ = l..l+SW
c −1. Then, all vehicles that must

be shifted due to the move from (i, j) to (k, l) are given by the set VS = VN\VI ,
i.e. all vehicles that occupy some of the squares in the new position which was
not occupying any of the squares in the initial position. The edge cost CE

ijklcp

equals the cost of shifting all vehicles in the set VS .
Evaluating the move shown in Figure 4 for the large 4×4 vehicle, the cost

of using edge ((1, 3), (1, 2)) is six. The use of edge ((1, 3), (1, 2)) implies that the
lower left corner of the vehicle is moved from square (1,3) to (1,2), as shown
in Figure 4. Initially, no vehicles that may be shifted are placed in the squares
occupied by the vehicle, and the set VI is therefore empty. After the move to
square (1,2), square (4,2) is used by the moving vehicle. The blue 3×2 vehicle
is placed in this square and must be shifted due to the move. Thus, the blue
vehicle is added to the set VN . The set of vehicles to shift due to the move from

Fig. 4: The cost of moving a vehicle from a square to a neighbor square depends
with the size of the moving vehicle.
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square (1,3) to (1,2) are now given by the vehicles in the set VS = VN\VI , which
includes the blue vehicle with a shifting cost of six, giving a edge cost of six.
Continuing the example, we now state that a new move from square (1,2) to
square (1,1) is free, as the cost of shifting the blue vehicle is already accounted
for by the move from square (1,3) to (1,2). For this new move, the blue vehicle
initially occupies one of the squares used by the 4×4 vehicle and is added to
the set VI . The blue vehicle is also added to the set VN , as it uses one or
more of the same squares as the 4×4 vehicle after the move to square (1,1). As
both sets include the blocking vehicle, the set VS = VN\VI is empty. Thus, no
shifting cost is imposed due to this move. One final note regarding this procedure
is that vehicles that are to be loaded or unloaded in the same port are never
added to the sets VI and VN . As mentioned in Section 2, there always exists a
loading/unloading sequence, where none of the loading/unloading vehicles block
the other loading/unloading vehicles.

4.2 Shifting cost calculations

Given the graphs created in the previous section, we can now calculate an upper
bound on the shifting cost. For each vehicle at its corresponding loading and
unloading port, a one-to-one SPP can be solved on the graph created for the
cargo the vehicle belongs to. For a given vehicle at its loading port, the loading
cost is given by the value of the vehicle’s corresponding target node from the SPP
solution, where the entry square is the start node. For the vehicle’s unloading
port, the unloading cost is given by the vehicle’s target node, which is the exit
square. The sum of the loading and unloading cost for all vehicles in all cargoes
gives an upper bound on the shifting cost of the stowage plan. However, this
upper bound can be poor, as several of the shifted vehicles may be accounted
for more than once. This section presents three strategies which improve both
the computational time and the solution quality of the shifting cost evaluation.
The Dijkstra-NoDec procedure given in [2] is used for solving the SPPs.

4.2.1 Reducing the number of SPPs

In order to speed up the solution procedure, we propose to solve a one-to-many
SPP for each cargo’s loading and unloading port, instead of many one-to-one
SPPs for each vehicle’s loading and unloading port. This is possible, as all vehi-
cles in a cargo have the same dimensions, and thus, the same edge costs. When
solving for a loading port, the start node is set to entry square on the deck.
The target nodes are the nodes where the lower left corner of the vehicles in the
cargo are to be placed, provided by the stowage plan. The shortest path for each
vehicle in the cargo is now given by the shortest path between the start node and
the vehicles target node. When solving for an unloading port, the exact same
procedure is used. We use the fact that the shortest path from the exit to a vehi-
cle’s location is always the same as the shortest path from the vehicle’s location
to the exit. So, for an unloading port, we also seek the shortest path from the
exit square to each vehicle’s location, which can be solved as a one-to-many SPP.
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Even though each SPP takes more time to solve, as we now solve one-to-many
SPPs, we have reduced the number of SPPs needed to be solved from two times
the number of vehicles to two times the number of cargoes, which improves the
overall computational time.

4.2.2 Route backtracking

We know that the vehicle’s target node gives the cost of loading/unloading a
vehicle. However, two or more vehicles may use a loading or unloading route
which shifts the same vehicles. If the loading cost of both vehicles A and B are
six, this could for example imply that a given vehicle C, with a shifting cost of
six, is shifted for both vehicles A and B. We use the fact that each vehicle is
only shifted once at each port and backtrack the loading/unloading routes for
all vehicles loaded/unloaded in at a port, recording the unique shifted vehicles
at each port. A better bound is then given by the sum of the cost of shifting
each of the recorded vehicles. In the example above, the bound now becomes six,
and not 12, where the latter is the sum of vehicle A and B’s loading cost.

4.2.3 Dynamically updating the edge costs

At each port, there are usually several cargoes that are to be loaded or unloaded,
and we solve an SPP for each of these, one at the time. By continuously sharing
information about which vehicles that are shifted, we can improve the upper
bound of the shifting cost. As an example, assume two cargoes are to be loaded
at a port. An SPP is solved for the first cargo, and three vehicles must be shifted.
When solving the SPP for the second cargo, we can now set the edge costs where
these three vehicles are placed to 0, as they must be shifted regardless of the
solution for the second cargo. Now, the SPP solution for the second cargo may
utilize this and choose alternate routes for the vehicles. The routes may be more
expensive when considering only this cargo, but as these vehicles are shifted
anyway, the routes contribute less to the overall shifting cost. When imposing
this strategy, the order in we solve the SPPs becomes important. Based on
preliminary testing, the cargoes should be ordered based on the area of the
vehicles they consist of. Consider a large truck driving from A to B. If we shift
the vehicles blocking the truck’s route, both the truck and a small car can use this
route. This does not apply the other way around. Thus, evaluating the cargoes
with the largest vehicles first is both logical and computational promising.

Dynamically updating the edge costs can also be used to improve the shifting
cost estimation within each cargo. We know that as soon as a vehicle has found
its shortest path to the entry square, all other vehicles in the cargo could also use
this path as part of their route, with no additional cost, as the vehicles have the
same size. Thus, each time the shortest path between the start node and a target
node has been found during the one-to-many SPP procedure, we force this path
to be used by the vehicle placed in the corresponding target node. Then, an edge
is added between this target node and the start node, with an edge cost of zero.
This means that the vehicles placed at the remaining target nodes could either
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find the shortest path to the entry square or the shortest path to one of the fixed
vehicle’s target nodes. This strategy is especially valuable when several vehicles
within the same cargo are placed together. Once the shortest path for one of
these vehicles to the exit is found, e.g. vehicle A, the other vehicles may move
to vehicle A’s location, and the shortest path is found. Note that if a vehicle is
not placed nearby vehicle A, it can still use the path from vehicle A to the exit
as a partial path of its route at no additional cost.

5 Computational study

The mathematical model presented in Section 3 is implemented in Mosel and
solved using Xpress-IVE 1.28.12. The SPP heuristic described in Section 5 is
coded in Java. All computational experiments have been run on a PC with Intel
Core i7-6500U processor and 16 GB of RAM running Windows 10.

5.1 Test instances

Each instance represents a feasible stowage plan for a given deck, cargo list,
and grid resolution, where the placement of each vehicle is given. The deck
information gives the layout of the deck, location of entry/exit square, and gives
the unusable spaces. Four decks are used in this computational study, where
decks A and B are fictional, and decks C and D are real deck layouts. Four
different grid resolutions are used, i.e. 50×19, 100×38, 150×56, and 200×75.
The ratio between the number of rows and columns is based on the length and
width of a car equivalent unit (CEU), which has an approximate length-width
ratio of 4:1.5. Each stowage plan has a space utilization factor (SUF), i.e. the
total area of all vehicles divided by the deck’s area. The SUFs used are 0.8 and
>0.9. When creating an instance, the vehicles are either randomly placed on the
deck (R) or placed in a logical manner (L) according to objective function (3)
in [3]. Finally, the cargo list contains information about the number of cargoes,
loading and unloading port of each cargo, and each vehicle’s size and weight. Two
cargo lists are tested for each possible combinations of the mentioned aspects.

We identify a test instance by its name Rows-Columns-Deck-SUF-Placing-
Cargo List. 150-56-D->0.9-R-2 means an instance with a grid resolution of
150×56 on the real deck D with cargo list number 2, where more than 90%
of the deck’s area is occupied by vehicles and the vehicles are randomly placed.

For the test instances, we have set the upper limit on computing time to
7,200 seconds for both the solution methods. As a SPEP problem is solved for
each port except the first and last port, the computing time is distributed evenly
among these ports. Thus, for an instance with six ports, the maximum computing
time for each of the ports 2-5 are 1,800 seconds.

5.2 Comparison of SPEP model and SPP heuristic

To compare the performance of SPEP and the SPP heuristic, we have tested
both methods on 64 instances. Table 1 presents a summary of the results, where
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the average results from cargo lists 1 and 2 for each instance are presented. As
the SPEP model is solved for every port for each instance, a positive gap may be
reported even though the solution time is less than the maximum computation
time. The percentage of the gap closed is calculated as (zu − zb)/zb where zu is
the best solution and zb is the best bound.

In Table 1, we have reported the SPP results from the SPP heuristic using
all improvement strategies, denoted SPP A. To evaluate the effect of the im-
provement strategies discussed in Section 4.2, we have tested the base heuristic
(SPP B), i.e. without any of the strategies, where the average gap and solu-
tion time are 488% and 0.55 seconds, respectively. These results are significantly
worse than SPP A’s results and are therefore not reported in the table. For the
instances solved to optimality by Xpress, SPP A found solutions with an average
gap of 8.5%. 37 of the 64 instances were solved to optimality by Xpress, using
the SPEP model. The SPP heuristic found a solution proved optimal by the
SPEP model in two of the 37 instances.

Even for the smallest grid resolution, the SPEP model’s computing times
are too long for practical use. The SPP heuristic performs significantly better,
reducing the average solution times to less than 0.1 seconds, which is acceptable
in its intended context, i.e. as a sub-problem when determining a stowage plan.
For both methods, grid resolution has the highest impact on solution time.

Table 1: Average gaps and solution times per group of instances. Each group
consists of two instances with different cargo lists.

Vehicles logically placed Vehicles randomly placed
SPEP SPP A SPEP SPP A

Group of instances
Avg.
gap(%)

Avg.
CPU (s)

Avg.
gap(%)

Avg.
CPU (s)

Avg.
gap(%)

Avg.
CPU (s)

Avg.
gap(%)

Avg.
CPU (s)

50-19-A->90 0.0 12.72 16.4 0.01 0.0 229.82 12.4 0.01
50-19-A-80 0.0 6.22 2.3 0.01 0.0 22.66 5.6 0.01
50-19-B->90 0.0 20.67 9.2 0.01 0.0 408.17 4.6 0.01
50-19-B-80 0.0 46.40 7.7 0.01 0.0 365.21 6.5 0.01
100-38-C->90 3.2 1050.93 6.6 0.03 0.0 397.58 7.7 0.03
100-38-C-80 0.0 299.22 8.1 0.03 0.0 391.90 8.1 0.04
100-38-D->90 8.5 840.57 13.0 0.04 23.6 3077.87 30.1 0.05
100-38-D-80 0.0 341.50 8.2 0.03 13.2 1763.38 17.8 0.05
150-56-C->90 0.0 116.74 8.8 0.08 0.0 877.34 8.5 0.09
150-56-C-80 0.0 95.81 1.8 0.07 4.5 1350.81 9.5 0.10
150-56-D->90 7.4 1224.54 28.3 0.08 75.2 4315.77 97.8 0.12
150-56-D-80 16.0 933.72 29.9 0.09 57.4 4240.85 79.6 0.12
200-75-C->90 15.8 4819.01 25.6 0.18 29.3 3457.04 39.9 0.16
200-75-C-80 6.8 3072.33 6.9 0.16 34.1 3451.87 38.8 0.17
200-75-D->90 58.3 5117.53 54.7 0.20 82.4 4629.67 75.3 0.23
200-75-D-80 22.7 2317.14 29.1 0.22 99.7 4882.36 85.9 0.22

Avg. 8.7 1269.69 16.0 0.08 26.2 2116.39 33.0 0.09
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The columns to the left in Table 1 present the results for the instances where
the vehicles are placed logically. Considering the SPEP model’s results, we see
that both the average solution time and the gap are lower when the vehicles are
logically placed, than for the randomly generated stowage plans. For the SPP
heuristic, we see that the solution times are approximately the same for both
placement methods, while the gap is higher when vehicles are randomly placed.

5.3 Comparing stowage plans

We stress that the intended use of the SPP heuristic is to compare stowage plans,
not determine the actual shifting cost of a stowage plan. Even though the gaps
reported in the previous section was relatively high, this is acceptable as long
as they are consistently low/high for all the stowage plans. Thus, the important
aspect is that the solutions from the SPP heuristic follow the same trend as the
SPEP model’s solutions, with respect to the shifting cost evaluated. The quality
of the SPP heuristic should be, and is here, determined by its ability to decide
which is the better stowage plan, given a set of stowage plans.

To test the quality of the SPP heuristic, the following decision problem is
used: Given two stowage plans A and B, which is better? The two stowage
plans are evaluated by both the SPEP model and the SPP heuristic, where the
better stowage plan is the one with the lowest shifting cost. The SPP heuristic
succeeds if it reports the same best stowage plan as the SPEP model. Ten groups
of instances are used to test the SPP heuristic’s quality. All instances within each
group have the same grid resolution, deck, SUF, and cargo list, but the vehicles’
placement differ. Each group consists of 50 randomly generated stowage plans.
The decision problem is asked for every unique pair of stowage plans out of the
50 plans, resulting in C(50, 2) = 1225 decision problems. The success rate equals
the number of successful evaluations divided by the number of combinations.

Table 2: SPP heuristic’s success rate (SR) per group of instances.
SPP B SPP A

Group of instances
SR (%),
t = 0.0

SR (%),
t = 0.0

SR (%),
t = 0.025

SR (%),
t = 0.05

50-19-A-80-R-1 62.0 88.9 94.4 97.3
50-19-A-80-R-2 64.5 87.4 92.3 95.7
50-19-A->90-R-1 70.7 91.1 95.7 98.4
50-19-A->90-R-2 78.6 93.8 96.9 98.8
100-38-C-80-R-1 71.5 91.1 96.5 99.2
100-38-C-80-R-2 67.1 86.4 93.7 97.0
100-38-C->90-R-1 53.7 88.3 94.1 97.2
100-38-C->90-R-2 64.8 90.4 95.8 99.0
150-56-C-80-R-1 68.1 91.7 95.0 97.9
150-56-C->90-R-1 64.3 86.5 92.9 96.3

Avg. 66.5 89.6 94.7 97.7
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Table 2 presents a summary of the test results. Without any improvement
strategies, i.e. SPP B, we see that the average success rate is 66.5%, which is
not much better than random guessing (50%). However, with the improvement
strategies (SPP A), the average success rate improves to 89.6%. The two right-
most columns in Table 2, show the success rate when both answers to the decision
problem are accepted if relative difference in shifting cost below a certain tol-
erance value t. The relative difference in shifting cost between stowage plans A
and B is given by |z(A)− z(B)|/min{z(A), z(B)}. Based on the results, SPP A
will successfully identify the better stowage plan 97.7% of the times on average,
given that the two stowage plans have a relative difference in shifting cost greater
than 5%. This is certainly an acceptable result for the method’s intended use,
i.e. as a subroutine in a solution method for generating stowage plans.

6 Concluding remarks

This paper has introduced the stowage plan evaluation problem, which is solved
to compare different stowage solutions for a voyage in Roll-on Roll-off liner ship-
ping. We have presented a mathematical formulation describing the problem. To
efficiently solve the problem we proposed a shortest path based heuristic.

Our computational tests indicate that the shortest path based heuristic is
a promising method for comparing different stowage plans. The problem of de-
termining the better of two stowage plans was on average successfully solved 9
out of 10 times by the heuristic. In the case where stowage plans with less than
5% difference in shifting cost were considered equally good, the average success
rate increased to 98%. In addition to a high average success rate, short compu-
tation times was reported for the proposed solution method. These promising
results enable the solution method to be used as a subroutine in a stowage plan
generator, which is an interesting venue for future research.
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