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Abstract

An isogeometric analysis (IGA) based numerical model is presented for simulation of thermo-hydro-mechanically (THM) coupled
processes in ground freezing. The momentum, mass and energy conservation equations are derived based on porous media the-
ory. The governing equations are supplemented by a saturation curve, a hydraulic conductivity model and constitutive equations.
Variational and Galerkin formulation results in a highly nonlinear system of equations, which are solved using Newton-Raphson
iteration. Numerical examples on isothermal consolidation in plane strain, one-dimensional freezing and heave due to a chilled
pipeline are presented. Reasonably good agreements were observed between the IGA based heave simulations and experimental

results.
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1. Introduction

THM coupled numerical modeling is essential in several
areas of geo/poromechanics to understand the multi-physical
properties and responses of materials. The thermal, hydraulic
and mechanical properties of such materials interact with
each other resulting in a more complex overall behavior. A
schematic representation of such interactions is shown in Fig-
ure 1. For instance hydraulic processes alter the thermal regime
through convection, mechanical processes affect the hydraulic
regime by changing the porosity and so on.

THM coupled numerical modeling has been widely applied
in the geomechanics of the high temperature regime environ-
ment. Examples of such application areas include geothermal
energy extraction, safety assessment of nuclear waste reposito-
ries, oil and gas reservoir engineering, underground energy stor-
age and CO, sequestration; see for example Nowak et al. [24],
Hudson et al. [7], Wang and Kolditz [37], Rutqvist et al. [27],
Rutqvist et al. [28], Sanavia et al. [29], Wang et al. [38] and
Tong et al. [35]. On the other hand, fully coupled THM mod-
eling in frozen ground engineering is not as extensive. It is
known that the freezing and thawing phenomena of ground can
occur naturally, in cold regions, or artificially, as a construc-
tion technique in civil engineering. Some application areas in
natural ground freezing and thawing include frost heave predic-
tion, analysis and design of structures and foundations in cold
regions and study of seasonal variation of temperature on the

*Corresponding author
Email addresses: yared.bekele@ntnu.no (Yared W. Bekele),
kyokawa@kajima.com (Hiroyuki Kyokawa),
arne.morten.kvarving@sintef .no (Arne M. Kvarving),
trond.kvamsdal@math.ntnu.no (Trond Kvamsdal),
steinar.nordal@ntnu.no (Steinar Nordal)

Preprint submitted to Computers and Geotechnics

ground thermal properties. Artificial ground freezing on the
other hand is a technology that has been successfully applied,
over a long period of time, in the construction of structures on
weak and/or unstable water-bearing grounds. Specific applica-
tions include the construction of tunnels of various purposes,
the engineering of mines and pits, construction of underground
storage facilities and the construction of foundations for indus-
trial buildings on unstable ground. Artificial ground freezing is
also used even in cold regions to control the seasonal thawing
of frozen ground. The numerical proposed model in this paper
will be applicable, within reason, to both natural and artificial
ground freezing processes.
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Figure 1: Schematic representation of Thermo-Hydro-Mechanical
(THM) interactions, after [21].



One of the earliest studies in the fully coupled THM model-
ing of frozen soils was presented by Mu and Ladanyi [19]. They
made simplifying assumptions such as: the volume of soil par-
ticles remains constant in the freezing process, both unfrozen
and frozen soil are isotropic, unfrozen soil is an elastic body
with a constant Young’s modulus where the Young’s modulus
and yield point are independent of the strain rate and confining
pressure. The finite difference and finite element based sim-
ulation of unidirectional freezing was verified against experi-
mental data. Selvadurai et al. [31] presented a computational
model for frost heave with focus on soil-pipeline interaction and
calibrated the proposed framework using one-dimensional frost
heave tests. Another fully coupled THM model for frozen soil
was proposed by Li et al. [13]. The effective stress equation
for frozen soil was presented as a function of thermal stress,
ice swelling and pore pressure. A simple thermo-elastic con-
solidation and numerical modeling of a pile foundation were
studied by the proposed model. Nishimura et al. [23] presented
the formulation and application of the THM coupled finite ele-
ment analysis of frozen soil. The proposed fully coupled model
was applied to the analysis of frost heave prediction and rea-
sonably good agreements were obtained when compared with
experimental data. Liu and Yu [14] proposed a fully coupled
THM model under frost action where analogy of the soil wa-
ter characteristic curve from unsaturated soils was applied to
describe the freezing and drying processes. In the stress-strain
field, the total strain was defined as the sum of elastic, ther-
mal, phase change of water, change of matric potential and ini-
tial strains. Neaupane and Yamabe [20] also proposed a fully
coupled THM model for a frozen medium and successfully ap-
plied it to simulate a freeze-thaw experiment. Dall’ Amico et
al. [5] proposed a robust and energy-conserving model for a
freezing variably saturated soil. Based on the claim that the
energy balance equation shows a strongly nonlinear behavior,
they propose a globally-convergent Newton scheme where the
energy equation is expressed based on internal energy. Wang
et al. [39] discussed the numerical simulation of water-heat
coupled movements in a seasonally frozen soil. Neaupane et
al. [21] presented the simulation of a fully coupled THM sys-
tem in freezing and thawing rock. Peng et al. [25] proposed
a model for coupled heat, moisture and stress-field of satu-
rated soil during freezing. Recent studies on the subject include
consolidation of thawing permafrost by Qi et al. [26], a three-
phase THM finite element model for freezing soils by Zhou and
Meschke [40] and a fully coupled thermo-hydro-mechanical
model for rock mass under freezing and thawing condition by
Kang et al. [10]. Other related studies include those by Hans-
son et al. [6], Thomas et al. [34], Coussy [4], Newman and
Wilson [22] and Micholawski and Zhu [16].

In this paper, a fully coupled thermo-hydro-mechanical
(THM) finite element model for ground freezing and thawing
is proposed. The governing equations of the THM model are
derived based on porous media theory where the multiphase
medium is approximated as a continuum. The governing equa-
tions of the model are supplemented by other state equations
for temperature dependent variables such as degree of satura-
tion and hydraulic conductivity. Isogeometric analysis using B-

Splines is applied to solve the final system of equations numer-
ically. The higher continuities of B-Splines result in a locally
mass and energy conserving numerical implementation, unlike
the standard finite element method. In addition, we are able to
represent CAD (computer aided design) geometries in an “ex-
act” manner by applying isogeometric analysis; geometries are
only approximated through mesh generation when using the
standard finite element method. This, for example, could be
useful when simulating artificial ground freezing problems with
circular pipe sections.

The paper is structured as follows. The modeling approach
used for deriving the governing equations is briefly presented
in Section 2. The derivation of the governing momentum, mass
and energy balance equations for each phase and for the mix-
ture is discussed in Section 3. The supplementary equations
that complete the governing equations, such as the soil-water
characteristic curve and the hydraulic conductivity model, are
presented in Section 4. The fundamentals behind isogeometric
analysis and its important features in our current context are dis-
cussed in Section 5.1. Variational formulation of the governing
equations, spatial discretization using Galerkin’s method and
the numerical implementation are presented in Sections 5.2, 5.3
and 5.4, respectively. Numerical examples on isothermal con-
solidation, one-dimensional freezing and a frost heave problem
are presented in Section 6 and the theoretical and numerical
highlights of the proposed model are summarized in Section 7.

2. Modeling Approach

The three phase porous medium composed of solid grains,
water and ice is approximated as a homogeneous continuum as
shown in Figure 2.

According to porous media theory, the partial density of
phase « is defined in terms of its volume fraction n, and mate-
rial density p® as:

P% 1= NgPa ()
For a saturated frozen soil, the partial densities for the solid,

water and ice phases are, according to equation (1), given by:
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Figure 2: Multiphase porous medium modeled as a homogeneous con-
tinuum



PS = NgPg = (1 - n)p§

P" = nypw = nSypw =n(l -5 py 2)
p' = nipi = nSip;
where ng, ny and n; (with ng + ny + n; = 1) are the volume

fractions of the solid, water and ice phases, respectively, n is
the porosity, and S, and S; are the degrees of water and ice
saturation respectively. For a fully saturated frozen soil, Sy +
Si=1

The total density of the porous medium is given as the sum
of the partial densities of the component phases:

p=p +p +p" =(1—n)ps+nSipi +nSwpw  (3)

The derivation of the governing equations is performed with
respect to the solid phase and thus material time derivatives are
extensively used in the derivations. The material time derivative
of any differentiable function f“(x, ), varying in space x and in
time ¢, referring to a moving particle of the @ phase is given by:

D.f*  af®
Dt ot
In this case, material time derivatives of properties f“(x, ) re-
lating to the water and ice phases are performed with respect to
the solid phase. It can be shown that the material time derivative
of f*(x,1t) of phase @ € (w,1) with respect to the solid phase is
given by:
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where v* — v? is the relative velocity of phase @ with respect to

the solid phase.

3. Governing Equations

In this section, the governing partial differential equations
of the proposed THM coupled model are presented. The three
main governing equations for the saturated frozen soil are the
linear momentum balance equation, the mass balance equation
and the energy balance equation. These governing equations
are supplemented by the modified Clausius-Clapeyron equa-
tion for thermodynamic equilibrium, the soil-water character-
istic curve for the degree of water saturation as a function of
pressure and temperature and a constitutive law for the stress-
strain behavior of the solid skeleton.

3.1. Linear Momentum Balance Equation

The linear momentum balance equation is the equation of
motion or equilibrium equation for the mixture. For a phase «
of the mixture, it is given by:

D v*
Dt

Voo +p"h+ ) PP =p, ©)
B

where 0 is the partial stress of phase @, PP are the inter-

phase interactive forces between phase a and phase 8 and b
are the body forces for phase @. The equilibrium equation for

the whole mixture is obtained as a summation of the individual
equilibrium equation of each phase. Assuming a static problem,
this results in:

V-o+pb=0 7

where o are the total stresses and b are the body forces. The
Bishop type effective stress in terms of the pore water and ice
pressures p% and p' is given by:

o =0+p I+Si(p - pII 8)

where I is an identity matrix. The mechanical equilibrium
equation in terms of the effective stresses can thus be written
as:

Vo' = Vp" = V(Si(p' - p¥)) +pb = 0. ©)

The effective stress is further linked to strain via a constitutive
model. A simple constitutive model is presented in Section 4.4.

3.2. Mass Balance Equation

The general form of the mass balance equation for a phase
a, considering phase change from phases S to phase « (with a
mass exchange per unit volume of MP?), is given by:

Dy p?®
Dz

+ PV 4 ZMﬁ“ =0. (10)
B

The mass balance equation for each phase is then derived and
the equations for water and ice are derived with respect to the
solid phase. The mass balance equation for the solid phase with
the assumption of incompressible solid grains gives the time
change of porosity as a function of solid displacement as:

Dy

Dsps_ n S
Dy =0= Dt_(l nV - v (11)

Summation of the individual mass balance equations for water
and ice, together with the use of equation (11), gives the mass
balance equation for the pores as:

(uSwHOS DT ¥ 4oy ) D+ p T+ ¥ow' =0 (12)
where we have used the fact that the mass exchanges between
water and ice cancel each other out i.e. AM;, + AM,,; = 0.
We have assumed herein that all phases are incompressible (no
volume change under isotropic compression) and that the spa-
tial variation of density (density gradient) is negligible for all
phases. In Eq. (12), w and w’ represent the water and ice fluxes
relative to the solid phase. The water flux, for flow driven by
pressure gradient and gravity, can be expressed using Darcy’s
law as:

W= -k (Vp" - pyb) (13)
Y

where k is the hydraulic conductivity matrix, which is a func-
tion of both pressure and temperature, and y" is the unit weight



of water. A relative hydraulic conductivity model is required to
control the evolution of k and this is presented in Section 4.3.
The ice flux relative to the solid phase is usually neglected
but a relationship between w’ and w can be derived such that:
,_Si

w' = Ew = Ow. (14)

The above equation implies that some water flux is used for
phase change between water and ice according to the current
degree of ice saturation.

3.3. Energy Balance Equation

The general energy balance equation for a phase a, consider-
ing energy change due to phase change from phase 5 to phase
a, is given by:

D,e”
P e [_ZMM] FAQN = Vg 4 Q" (15)
B

where e” is the specific internal energy of phase «, Qgh is the
additional energy causing phase change, ¢“ is the conductive
heat flux for phase a and Q, is the sink or source term of energy
for the same phase, which can be assumed to be equal to zero
for a closed system. The internal energy of phase @, in terms of
its heat capacity c, and the temperature 7 is defined as:

e’ :=c¢,T. (16)

Accordingly, the specific internal energies for the solid, water
and ice phases can thus be expressed as:

w

e =c¢T, eV =c,T, e =¢T a7

where ¢, ¢y, and ¢; are the respective specific heat capacities
for each phase. After formulating the specific energy balance
equations for the solid, water and ice phases and making the
same assumptions as in the mass balance equation, summation
of the individual equations gives the energy balance equation
for the three-phase medium as:

DT DS
(pc)eﬁﬁ+a-VT+Lff stW:—V~q+Q (18)

D
where @ = (pc),qyW is an advective heat transfer vector, Ly is
the latent heat of fusion and we have the volumetric parameter

£ as:
npi

=—F. 19
¢ SW+%Si (19)

The effective heat capacity for the mixture and the advective
heat transfer coefficient are given by:

(OC)egr = PPcs + PV Cw + pici
= (1 = n)pscs + nS wowew + nSipici (20)
(PC)adv = pwCw + Opic;

The total conductive heat flux, assuming isotropic thermal con-
ductivity, can be expressed using Fourier’s law as:

g=-AVT. 1)

The overall thermal conductivity A for the multiphase porous
medium can be obtained as the geometric mean of the individ-
ual thermal conductivities using, [2]:

A=Al s =Sy (22)

where A, Ay, and A; are the thermal conductivities of solid, wa-
ter and ice respectively.

The current paper focuses on a saturated frozen soil (solid,
water and ice phases) and the governing equations are derived
accordingly. Unsaturated soils under freezing and thawing con-
ditions involve solid, water, air and ice phases. Numerical mod-
eling of problems involving unsaturated soils requires modi-
fication of the governing equations considering all the phases
involved. For instance, the presence of an air phase requires
modification of the mass balance equation for the pores by con-
sidering the individual mass balance equation for the air phase.
The introduction of air pressure due to the air phase also neces-
sitates modification of the effective stress formulation which is
used in the linear momentum balance equation. The energy bal-
ance equation also requires modification to consider the effects
of the air phase on the heat capacity and heat transfer phenom-
ena in the soil.

4. Supplementary Equations

4.1. Modified Clausius-Clapeyron Equation

The thermodynamic equilibrium between ice and soil in a
freezing soil is described by the modified Clausius-Clapeyron
equation, see [15]. The ice and water pressures in this equation
are related by:

p=p -l m(l) 23)
Pw T()
where T,=273.15 K is the reference temperature and the re-
lation is derived considering atmospheric pressure conditions.
The equation is valid for practical temperature and pressure
ranges of interest, [18].

4.2. Soil-Water Characteristic Curve

The other most important relation required to supplement
the governing equations is the degree of water saturation as a
function of pressure and temperature, i.e. S, = f(pV,T), also
known as the soil-water characteristic curve in unsaturated soil
mechanics terminology. Based on van Genuchten’s [36] model
for unsaturated soils, and as modified in Nishimura et al. [23]
and Zhou and Meschke [40], the soil-water characteristic curve
for freezing and thawing porous media may be written as:

Sy=1-5me [1 - {1 +(ap! —pw))ﬁ} 7] (24)

where §"** is the maximum degree of ice saturation for numer-
ical reasons and a, 8 and vy are model parameters. Using the
Clausius-Clapeyron equation, Eq. (23), which expresses p' in
terms of p%, into Eq. (24) results in:
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Figure 3: Effects of the saturation model parameters «, 8 and y: Degree of water and ice saturation versus temperature for different combinations
of the model parameters. The solid lines represent S, and the dashed lines are for S;. The parameter « has a unit of MPa™' while 8 and y are

dimensionless.
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The rate of change of S, can thus be expressed as:
0Sw 0SwopY 0Sy oT opY oT
W ZwaE v E g F e 26
o opr o Tar o ovar TSt (29

where S, and S may, respectively, be referred to as isothermal
and non-isothermal water capacities.

The model parameters «, 8 and y can be selected for a given
material based on experimental data. The effects of these model
parameters on the degree of saturation are illustrated in the plots
in Figure 3 as a function of temperature. A fixed value is used
for the pore water pressure p% and it can be shown that the ef-
fect of p% on the degree of water saturation S, is very limited
compared to temperature. The variations in the saturation plots
for different saturation model parameters indicate the possibil-
ity of representing the behaviour of various types of soils, fine-
grained or coarse-grained, during freezing and thawing. Differ-
ent soil types may become ice-rich or ice-poor during freezing.

For instance for 8 = 2.5 and y = 8.0, the saturation curve with
« = 0.1 MPa™! represents a soil that freezes slowly whereas the
one with @ = 0.5 MPa™! represents a soil that freezes quickly.

4.3. Hydraulic Conductivity Model

The hydraulic conductivity of the porous medium changes
continuously during the freezing/thawing process depending on
the degree of water saturation i.e. as a function of tempera-
ture. To calculate the hydraulic conductivity at a given temper-
ature, a relative hydraulic conductivity parameter is introduced
into Darcy’s law, [23]. The modified Darcy’s law and the cor-
responding relative hydraulic conductivity parameter are given
by:

w

ke
-k (VPW _wa)
;yW

mq2
VSuft=(1-5")]
where m is a model parameter. The variation of k; with degree
of water saturation for selected values of m is plotted and shown

in Figure 4. The model parameter may be selected for a given
soil base on experimental data of hydraulic conductivity. For
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example, the curve for m = 0.5 may represent an ice-rich soil
whereas the one for m = 2.5 fits better for an ice-poor soil.
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Figure 4: Relative hydraulic conductivity versus degree of water satu-
ration.

4.4. Constitutive Equations

The general stress-strain relation in incremental form can be
written as:

do’ = D(de — de®™ — de") (28)

where do”’ is the effective stress increment, D is the constitutive
tangent stiffness tensor, de is the total strain increment, dePh is
the strain increment due to phase change and de' is the ther-
mal strain increment. The thermal strain is usually very small
when compared to the strain due to phase change and may be
neglected.

The constitutive equation proposed for the soil skeleton here
is a simple nonlinear elastic relation with temperature depen-
dent parameters. The tangent stiffness for linear elasticity (for
stresses and strains in Voigt notation) is given by

where
Dy =0-2vI+vl,
Dy = 1 —221/1, (30)

where E is the Young’s modulus, v is the Poisson’s ratio and /
is a matrix of ones. These strength parameters are temperature
dependent and simple nonlinear relations are derived as a func-
tion of degree of saturation, which is a function of temperature
according to the soil-water characteristic curve. The Young’s
modulus E of the porous medium at a given temperature may
be expressed as:

E\S
E= (E) E, 31)
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Figure 5: Strength parameters E and v as a function of degree of ice
saturation.

where E; and E; are the Young’s moduli of ice and solid skele-
ton respectively, S; is the degree of ice saturation and 7 is a
model parameter. A similar expression for the Poisson’s ratio
v of the porous medium as a function of the Poisson’s ratios of
ice, v, and solid skeleton, v, is given by:

y = (1) e (32)

Vs

The strength parameter 7 may be chosen for a given material
based on experimental data. If we assume for example that E; =
6 GPa, E; = 9 GPa, vy = 0.4 and v; = 0.2, the overall Young’s
modulus E and Poisson’s ratio v may be plotted as a function
of degree of ice saturation for different values of 7, as shown in
Figure 5. Depending on the initial porosity of the soil and its
freezing characteristics, the strength of the soil after freezing is
initiated may increase at a different rate. As an example, the
curve for a strength model parameter = 0.2 shows a faster
increase in strength when freezing is initiated than the one for
n=10.

The thermal strain increment as a function of the thermal ex-
pansion coefficient of the solid skeleton and temperature incre-
ment is given by:



ds” = %dTI. (33)
The volume expansion of the soil due to phase change is ac-
counted for by the strain due to phase change, &, and is a
function of the porosity and the degree of ice saturation. An
expression for gy, can be derived by formulating the volumet-
ric strains egh as a function of n and §;. Assuming isotropic
expansion, the rate of volumetric expansion may be derived
from the mass balance of ice and water during phase change,
ie. 2 {(pwVw) + (iV)} = 0, to give:

ésh — "(Pw - Pl) DsSi . (34)
prw + PiSi Ds

The incremental strain due to phase change may then be written
as:

ot
S

de = %( dSi] I (35)

5. Isogeometric Analysis

5.1. Introduction

Since its first introduction by Hughes et al. [9], isogeometric
analysis (IGA) has been successfully applied to several areas of
engineering mechanics problems. The fundamental aim for the
introduction of IGA was the idea of bridging the gap between fi-
nite element analysis (FEA) and computer-aided design (CAD).
The main concept behind the method is the application of the
same basis functions used in CAD for performing finite element
analysis. In the process of its application to various engineering
problems, IGA has shown advantages over the conventional fi-
nite element method, for instance the ease of performing finite
element analysis using higher order polynomials.

We briefly present the fundamentals behind B-Splines and
NURBS in the next section and highlight the features of IGA
that are important in our context.

5.1.1. Fundamentals on B-Splines and NURBS

We start the discussion on B-Splines and NURBS by first
defining a knot vector. A knot vector in one dimension is a non-
decreasing set of coordinates in the parameter space, written
E = {&1,E, o Enrpr1), Where & € R s the i knot, i is the
knot index, i = 1,2,..,n+ p + 1, p is the polynomial order,
and n is the number of basis functions. Knot vectors may be
uniform or non-uniform depending on whether the knots are
equally spaced in the parameter space or not.

A univariate B-Spline curve is parametrized by a linear com-
bination of n B-Spline basis functions, {N;,} . The B-Spline
basis functions are recursively defined starting with piecewise
constants (p = 0):

Nio() = {1 if§ <€<é&in (36)

0 otherwise.

For higher-order polynomial degrees (p > 1), the basis func-
tions are defined by the Cox-de Boor recursion formula:

£ g £

N; = -
,p(f) §i+[7 _ é:i §i+[)+1 - §i+1

Nip-1(6) + Nip1p-16. (37

B-Spline geometries, curves, surfaces and solids, are con-
structed from a linear combination of B-Spline basis functions.
Given n basis functions N;, and corresponding control points
P, eRYi=1,2.,na piecewise polynomial B-Spline curve
is given by:

CE = ) Nip©P:. (38)

i=1
Similarly, for a given control net P;;,i = 1,2,..,n,j =
1,2, ...,m, polynomial orders p and ¢, and knot vectors & =

(€1, &2, s éniprr ) and H = {01, M2, ..., Tmag+1}, @ tensor product
B-Spline surface is defined by:

n m

SEmM =D > NipOMgP; . (39)

i=1 j=1

B-Spline solids are defined in a similar way as B-Spline sur-
faces from tensor products over a control lattice.

NURBS are built from B-Splines to represent a wide array
of objects that cannot be exactly represented by polynomials.
A NURBS entity in R? is obtained by the projective transfor-
mation of a B-Spline entity in R?*!. The control points for the
NURBS geometry are found by performing exactly the same
projective transformation to the control points of the B-Spline
geometry.

A detailed treatment of B-Splines and NURBS can be re-
ferred from Cottrell et al. [3].

5.1.2. Important Features in Current Context

IGA has a number of advantages over FEA such as the abil-
ity to represent exact CAD geometries of structures or domains
during analysis, non-negative basis functions and isoparamet-
ric mapping at patch level. In the context of the current work,
we focus on the features of IGA that are especially important.
These features are the improved continuity of filed variables
because of the smoothness of the basis functions and the ability
to perform simulations with high continuity and high regularity
meshes. Next, we will look into these features closely.

Continuity: One of the most distinctive and powerful fea-
tures of IGA is that the basis functions will be C”™" con-
tinuous across knot spans (analogous to elements in FEA),
where p is the polynomial degree and m is the multiplic-
ity of the knot. This means that the continuity across knot
spans can be controlled by the proper choice of p and m.
The continuity can be decreased by repeating a knot - im-
portant to model non-smooth geometry features or to facil-
itate the application of boundary conditions. For instance,
quadratic (p = 2) splines are C' continuous over non-repeated
knots while quadratic Lagrange finite element bases are only
CY continuous. If we consider the quartic (p = 4) basis
functions constructed from the open, non-uniform knot vector
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Figure 6: Different continuities across knot spans, after [3].

2=1{0,0,0,0,0,1,2,2,3,3,3,4,4,4,4,5,5,5, 5,5}, we get dif-
ferent continuities across knot spans as shown in Figure 6.

k-refinement: IGA and FEA both allow %- and p-refinements
i.e. increasing the number of knot spans by knot insertion (in-
creasing the number of elements in FEA) and raising the poly-
nomial order. The non-commutativity of knot insertion and
polynomial order elevation results in a type of refinement that
is unique to IGA, called k-refinement. This is achieved by per-
forming polynomial order elevation followed by knot insertion.
This results in a high continuity mesh with the least number of
degrees of freedom i.e. high regularity.

5.1.3. Mixed isogeometric formulation

A mixed formulation is constructed by first defining the knot
vectors and basis functions defining the geometry of the do-
main. The polynomial order defining the geometry is used
as the polynomial degree for one of the field variables and is
raised by the desired degree for the other field variable. In
our context, the polynomial orders for the pressure and tem-
perature, p, and pr, are defined by the geometry construction
and the polynomial order for the displacement, p,, is raised
by one. All polynomial orders can then be raised to the de-
sired degree starting from the initial definition. For example, a
simple two-dimensional geometry defined by the knot vectors
2 =1{0,0,1,1} and H = {0,0, 1, 1} implies p, = pr = 1 and
pu = 2 with 4 and 9 control points, respectively. The number
of control points, location of degrees of freedom in IGA, on a
B-Spline surface for different polynomial degrees is shown in
Figure 7.

5.2. Variational Formulation

We first define the initial and boundary conditions before pre-
senting the variational formulation of the governing equations.
The initial conditions for the displacement, pore water pressure
and temperature at time ¢ = 0 are:

u=u, pY = pY T=T, inQandon” (40)

where Q and T are the domain and its boundary, respectively.
The boundary conditions could be of Dirichlet type on I'p or

Neumann type (fluxes and tractions) on I'y, where IpUT'y =T.
The Dirichlet boundary conditions may be defined as:

u=u onIY}
pY =_ﬁw onI? 41)
T=T onl}
The Neumann boundary conditions are defined as:
o-n=t onT7,
w-n=g" onT¥ (42)
g n=gq +A(T-T,) onT}

where £ is the traction boundary condition and n is the outward
unit normal vector to the boundary. The water and heat fluxes
at the boundary are represented by g* and Z]T, respectively. The
thermal conductivity and temperature of the surrounding envi-
ronment are denoted by A, and T, respectively.

We can now derive the weak formulations of the three main
governing balance equations, Eq. (7), (12) and (18). Multiply-
ing the rate form of the linear momentum balance equation by
arbitrary velocities dv, integrating over the domain Q and ap-
plying the divergence theorem gives the weak form as:

f G-V -6vdQ = f tovdl (43)
Q r

u
N

where ¢ is the Neumann traction on the boundary I}, & = %’

and t = %. The rate of change of the total stress is derived from
the effective stress relationship. Using the constitutive relation
given in Eq. (28) into the effective stress formulation in Eq. (8),
a generic form of the rate of change of total stress can be derived
as:

oo o™\ op¥ (oo o™\ oT

d=Dé+|—-D—|—+|=-D— |+ 44

(apw opY ) ot (6T orT ) ot et

wherein we have neglected thermal and other strains. The weak
form of the equilibrium equation can now be written as:
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Figure 7: Number of control points for a given element on a simple B-Spline surface with different polynomial degrees. The element is highlighted

and the blue squares represent control points.

ph
pi+ (27 _ pde) ot
apV apY o

oo Dasvh oT
or oT | ot

]V SvdQ = f tovdl.  (45)
ry

The weak form of the mass balance equation is derived by mul-
tiplying Eq. (12) by an arbitrary pressure dp and integrating
over the domain Q to give:

DsSw
f [(prw _",DiSi)V v +”(Pw —Pi) -
Q Dt

+(pw + 0p)V - w]SpdQ = 0. (46)

Applying the divergence theorem, using Eq. (26) and rearrang-
ing gives the weak form of the mass balance equation as:

IMV-vséde+‘f”(pw )S ai(; dQ
Q

Pw + 6pi pw+0p;i " ot
oT
+f”(pw £i) g —6de+fV6p-—rk-VdeQ
Pw+991 ot Q Y

k
—fVép-—;k-pwbsz—f q"6pdl’
Q Y h

where g" is the water flux on the Neumann boundary I,

The energy balance equation, Eq. (18), is a form of an
unsteady advection-diffusion equation and may require stabi-
lization during numerical implementation. Oscillations in the
temperature solution may occur in cases where heat transfer
is dominated by convection and stabilization may need to be
performed using various established approaches. One of the
most commonly used stabilization methods is the Streamline
Upwind/Petrov Galerkin (SUPG) method, first introduced by
Hughes and Brooks [8]. This stabilization method is used here
to choose appropriate test functions. Multiplying the energy
balance equation by an arbitrary weighing function §7 and in-
tegrating over the domain Q gives:

(47)

Y 1 V. g|6TdQ = 0.
(48)

f [(pc)eﬁ ta- VT+Lf§

The weighting function in the SUPG method considering the
advective term is:

6T = 6T + tea - V6T (49)
with

Te = (50)

he 1 lalhe
tha — — d =
2ld] (co a a) an 0

where A, is the characteristic element length (maximum length)
of the mesh and A is the overall thermal conductivity of the
porous medium. The weak form of the energy balance equation,
after applying the divergence theorem, can be written as:

ap¥
f (pc)eff 6TdQ+ f a-VTSTdQ + f LS, o ——0TdQ
Q Q
+ f LffSTa—(STdQ+ f VoTAVTdQ
Q
D
e

T
+ LfgsTa— +V. /lVT} dQ] =- f g'sTdr
(9t r]TV

01)

f‘rea \Y {(pc)eff—T +a-VT + LS,

(5D

where 7' is the heat flux on the Neumann boundary I'r. The
stabilizing term to be summed over the number of elements is
not continuous in the global space.

5.3. Galerkin Formulation

The governing equations are to be solved for three field vari-
ables: displacement, pore water pressure and temperature. This
forms the so called u — p — T formulation. We use a mixed
formulation to express the field variables in terms of the basis
functions and the control point values (nodal values in FEA).
Choosing the basis functions N,,N, and Nt for the displace-
ment, pore water pressure and temperature, respectively, we
write:

ou ou®
= Nu C’ v = Nu_
" " ot ot
ap"V ap°
w — C’ L — N _r 52
P oP ot P o (52)
3 T T¢
T = NTTL, 6— = NTB

ot ot



where u®, p° and T° are the control point displacement, pore
water pressure and temperature values. In a Galerkin formula-
tion, we choose the arbitrary test functions to be the same as
the basis functions. Application to the weak form of the equi-
librium equation, Eq. (45), results in the system of equations:
ou®

4+ Cyy—
o T vy

op° orT°
+ CHTW

CUU

Ju (53)

where

Cu = f VNI DVN,dQ
Q

9 9
Cup:fVNT(—O-—D c )ng
Q

ap¥ ap¥
do _dehh
A
Cur fg NT (6T D= )NTdQ

fu= f NTtdr.
ry

Galerkin formulation to the weak form of the mass balance
equation, Eq. (47), results in:

ou‘
ot

op° orT°
C C
+ + T o

pp E = fp (54)

Kyop© + Cpy
where

Ky = f VNTﬁkVN o
Poyw

Sw+

Cpo = fNT'OW A8 gN, o
pw+9

pp_fNT”(pw g NodQ
Pw + 0p;i

Cyr = f NI Mow = i) g NdQ
o = pwt0pi

k: _
fo= | VNI=kp,bd@— | NIg“dr.
Q r I,

Similarly, application to the weak form of the energy balance
equation, Eq. (51), gives the system of equations:

C C

d
(Krr + KT +(Cryp+ C) 2+ (Crr + e

or = fr (55)

where

KTT=fVN{aNTdQ+fVN%/lVNTdQ+f N{A.Nrdl
Q Q

rh
K = fﬂ VNIt.a-aVNdQ + fg VNItea - AV(VN)AQ
Crp = fﬂ NILi£S ,NpdQ

C;, = fg NILi£S yr.aVN,dQ

Crr = f NI(00)er N7dQ + f NILi£S tNpdQ
Q Q
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CSTT:fVN%(PC)eﬁTeaNTdQvLfN%LffSTTeaVNTdQ
Q Q

- | NIg'dU+ [ NIA.T.dD
s ry

Letting K* = Krr+ K TT’ C* = CTp + CT and CTT =Crr +
Cip the system of matrix equatlons Eq. (53) (54) and (55),
are summarized in to a fully coupled system as:

0 0 0 u® Cuu Cup CuT o u’ fu
0 K, 0 {PC} +|Cou Cpp Gyt 3 {Pc} = {fp}
0 0 Kyllr) [0 ¢ c]7\r) A
(56)
which can be written in a more compact form as:
KX + CO:;—X =F 57

where the coeflicient matrices K and C, the external load vector
F and the vector of unknowns X are evident from Eq. (56).
The matrices K and C are generally functions of X, making the
coupled system of equations highly nonlinear.

5.4. Numerical Implementation

We aim to solve the fully coupled system in Eq. (§7) in a
monolithic way since the equations are strongly coupled and
highly nonlinear. Temporal discretization of the system of ma-
trix equations is performed using the Generalized Trapezoidal
Rule (GTR). For the rate of change of the unknown vector X,
we have the approximation:

0X _ Xn+l - Xn
Ot Lo At
X9 = (1 -0)X, +60X,11

(58)

where 0 is a time integration parameter which has limits 0 <
0 < 1. The system of matrix equations at time #,.4 is then:

1.4

KX, +C 6_ = F 0.

n+6

(39)

Using the approximation in Eq. (58) into Eq. (5§9) and adopting
a fully implicit time integration scheme with 6 = 1, we get:

[AtK + Cl, Xps1 = Cpi1 Xy, + AtF . (60)
The residual at time step #,4; is then:
Rn+l = [AtK + C]n+l Xn+l - Cn+an - AtFn-H* (61)

After first-order Taylor series expansion of the residual, we
solve for the increment of the unknown vector AX”;rll using a
Newton-Raphson iteration scheme:

OR|

0X n+1

where i is the iteration number and we have the Jacobian matrix
in the above equation as:

AXH—I ~ _Rl

n+l — n+l

(62)

OR
J =
oxX’
The vector of unknowns at time step £, is updated after each
iteration using:

(63)

i+l _ yi
Xn+1 X

o + AX1+I

n+l-

(64)



6. Numerical Examples

In this section, numerical examples are presented to verify
and validate the proposed THM model. The first numerical ex-
ample is presented to serve as a validation of the THM model
by analyzing an isothermal consolidation problem. Some of
the advantages of IGA are highlighted through this example.
We then proceed to presenting ground freezing problems. In
particular, we present a numerical example that deals with a
one-dimensional freezing problem with drained and undrained
boundary conditions. We then proceed to simulation of frost
heave due to a chilled gas pipeline buried in a silty soil, where
experimental observation are available for comparison with
simulated results.

6.1. Isothermal Consolidation

A consolidation problem in isothermal and plane strain con-
ditions with a known analytical solution is considered. The
presence of an analytical solution serves in the verification of
the numerically computed results.

6.1.1. Problem Definition

The plane strain consolidation problem considered is defined
by a strip load of magnitude ¢ applied over a width of 2a on a
frictionless half-plane; see Figure 8. This problem is studied by
several authors, for example by [30].

I .

——
a a

Z

Figure 8: Isothermal consolidation: Problem definition.

The surface is assumed to be free-draining. The initial excess
pore pressure for an incompressible elastic material is given by

1 X—a
—tan

], 2>0, |x<co. (65)

The excess pore pressure at any time t, for a free-draining sur-
face is given by

wen w4 " 1 2 2
p(r)—po—;fm Eoe[ae 6o
where
v =2 and W= (67
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Figure 9: Isothermal consolidation: Numerical model setup.

In (67), ¢y is the coefficient of consolidation which is expressed

as

_ 2Gnk
;yW

in which G is the shear modulus, « is the coefficient of perme-

ability and, as defined in [30], 7 is a dimensionless parameter

given by

(68)

Cv

1=y
T l-2v
We study a plane strain consolidation problem with computa-
tional domain and material parameters presented in [11]. Tak-
ing advantage of symmetry, a rectangular domain with a width
and height of 5 m and 8 m, respectively, is considered; see Fig-
ure 9. A strip loading of ¢ = 1000 Pa is applied over a width
of a = 1 m at the top of the left boundary. The lateral and
bottom boundaries are considered as no-flux boundaries and
the top boundary is assumed to be free draining. The bottom
boundary is fixed in both the horizontal and vertical directions
whereas the lateral boundaries are constrained in the horizon-
tal direction. The following material parameters are used for
simulation: Young’s modulus E = 3 X 10* Pa, Poisson’s ratio
v = 0.4, hydraulic conductivity coefficient k = 9.81 x 10™* m/s
and initial porosity n = 0.5. Both the solid and water phases are
assumed to be incompressible.

n (69)

6.1.2. Results

Numerical simulations are performed for varying polynomial
degrees in a mixed isogeometric analysis setting. One of the
advantages of IGA in comparison with traditional FEA is the
ease with which higher-order simulations can be performed.
We consider linear, quadratic, cubic and quartic spline basis
functions (p, = 1,2,3 and 4) for the pressure field variable,
which correspond to p, = 2,3,4 and 5 for the displacement
field variable in a mixed formulation. The simulation domain is
discretized in a graded manner such that we get a coarse mesh
with 4 x 4 knot spans for all polynomial degrees considered.
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Figure 10: Isothermal consolidation: Evolution of excess pore pressure with time at x = 0 and selected z locations in the domain.

The evolution of the excess pore pressure versus dimensionless
time T is shown in Figure 10 for selected points in the domain.
The dimensionless time is given by

T=—

= (70)

where ¢ is the actual time. We observe from the figure that more
accurate results are obtained for higher polynomial degrees for
the same levels of refinement considered. It was mentioned ear-
lier that the k-refinement capability of IGA helps to achieve
higher continuity meshes with the least number of degrees of
freedom. Note that linear spline basis functions are similar with
their traditional finite element counterparts. It should be noted
here that, for the same number of knot spans, higher polynomial
degrees result in more control points than lower polynomial de-
grees.
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6.2. One-dimensional Freezing

The first numerical example we consider is the freezing of
a soil column in a one-dimensional condition. This problem
is studied in studied in [12] with slightly different boundary
conditions.

6.2.1. Problem Definition

The simulation domain is a 2m long soil column with an
initial homogeneous temperature of 7, = 1°C, shown in Fig-
ure 11.

The soil column is subjected to cooling at the top boundary
where the environment temperature is 7. = —10°C. An initial
hydrostatic condition is assumed for the pore water pressure
throughout the soil column. The thermal conductivity of the
external environment is assumed to be 1, = 0.01 kW/m?/K,
which simulates air and other surface covering material such as
snow. The freezing process is assumed to obey Newton’s law
of cooling such that the heat transferred in to the soil column is
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Figure 11: One-dimensional freezing: Computational domain and boundary conditions.

Table 1: One-dimensional freezing: Material and model parameters.

Parameter Value Unit
Thermal properties:
Thermal conductivity of soil, A 1.5 W/m/K
Thermal conductivity of water, Ay 0.6 W/m/K
Thermal conductivity of ice, 4; 2.2 W/m/K
Specific heat capacity of soil, ¢, 800 J/kg/K
Specific heat capacity of water, cy 4190 J/kg/K
Specific heat capacity of ice, ¢; 2095 J/kg/K
Latent heat of fusion, L¢ 334 kJ/kg
Hydraulic properties:
Hydraulic conductivity, k 1.0 x 1078® m/s
Saturation model parameter 1, « 0.1 MPa™!
Saturation model parameter 2, 8 2.5 -
Saturation model parameter 3, y 8.0 -
Hydraulic conductivity model parameter, m 0.87 -
Mechanical properties:
Young’s modulus of soil, E 3.0 MPa
Young’s modulus of ice, E; 9100 MPa
Poisson’s ratio of soil, v 0.2 -
Poisson’s ratio of ice, v; 0.4 -
Strength model parameter, i 1.0 -
Mass and volume properties:
Initial porosity, n 0.44 -
Density of soil, p; 2650 kg/m3
Density of water, py 1000 kg/m?
Density of ice, pj 910 kg/m?
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Figure 12: One-dimensional freezing: Results for a drained bottom boundary.

q = A(T — T.). The vertical and horizontal displacements are
fixed at the bottom boundary and the horizontal displacements
are fixed at the lateral boundaries. The top and lateral bound-
aries are allowed to move freely in the vertical direction. The
lateral boundaries are sealed and insulated i.e. the water and
the heat fluxes are set to zero. The top boundary is assumed
to be impermeable is allowed to transfer heat from the envi-
ronment into the soil column, acting as a convective boundary.
Two drainage boundary conditions are considered at the bot-
tom: drained (p% = 0) and undrained (% = 0). The material
and model parameters used for the simulation are given in Table
1.

6.2.2. Results

Results of the simulation for a drained bottom boundary are
shown in Figure 12 in terms of vertical displacement, pore
water pressure, temperature and ice saturation profiles versus
depth at selected time steps. The corresponding results for an
undrained bottom boundary are shown in Figure 13. A compar-
ison of the drained and undrained results shows that the tem-
perature and ice saturation profiles of the two cases are more
or less the same. This indicates that advective heat transfer has
little effect on the thermal state in this particular example. On
the other hand, significant differences are observed in the ver-
tical displacement and pore water pressure profiles for the two
bottom drainage cases. The final vertical heave in the drained
case is larger than the heave in the undrained case by a signif-
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icant margin. In the undrained case, contraction is observed as
water is sucked to the freezing front. The evolution of the total
vertical heave with time, at the top boundary, for the two cases
is shown in Figure 14. The magnitude of permeability is known
to have a significant effect in simulated heave values, for exam-
ple as reported in Nishimura et al. (2009). This is illustrated
for two different permeabilities. For decreasing values of per-
meability, simulations with a drained bottom boundary behave
much like an undrained system.

6.3. Frost Heave

Prediction of frost heave is important in the design and safety
analysis of structures in or on frost susceptible soils. Frost
heave can cause structural damages such as displacement of re-
taining walls, lifting of pavements and lifting of foundations
and distortion of unheated buildings, [18]. An accurate predic-
tion and modeling of the thermal properties of such soils under
sub-zero temperatures is essential. We here present a numerical
example based on field-scale experimental observations on the
nature of frost heaving; see Smith and Patterson [33]. The field
scale test performed considers a chilled pipeline buried in soil
and an outer environment with sub-zero temperature. The heave
displacements from the test are documented and the results are
used for comparison against simulations. Other relevant infor-
mation is referred from the numerical studies by Selvadurai et
al. [32] and Mikkola and Hartikainen [17].
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Figure 13: One-dimensional freezing: Results for an undrained bottom boundary.

6.3.1. Problem Definition

The gas pipeline in the full-scale experiment has a diameter
of 273 mm and is buried in silt. The length of the pipeline is
16 m and the 8 m wide test trench is filled with silt up to a
depth of 1.75 m. The backfill on top of the pipeline has a height
of 0.33 m. The numerical model is setup in two dimensions
and we take advantage of symmetry and model only half of the
cross-sectional domain. The computational domain is shown in
Figure 15. The water table is located at 90 cm below the top
surface but the whole domain is assumed to be saturated due to
capillarity.

The following boundary conditions are defined: both the
horizontal and vertical displacements are fixed at the bottom
boundary and the lateral boundaries are constrained from hori-
zontal displacement. The bottom boundary is drained and adi-
abatic. The top boundary is undrained and its temperature is
—0.75 °C from the hall temperature. The lateral boundaries are
impermeable and adiabatic. The temperature in the pipeline is
maintained at a constant value of —5 °C throughout the experi-
ment. The initial temperature of the silt is 4 °C.

The material properties for the silt are given in Table 2. The
saturation model parameters are estimated based on curve fit-
ting to experimental data of unfrozen water content versus tem-
perature. The hydraulic conductivity model parameter is simi-
larly estimated by fitting a curve to an experimental hydraulic
conductivity versus temperature data. The experimental data
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and the fitted curves are shown in Figure 16. The strength pa-
rameter is selected such that the frozen strength of the silt is
comparable to empirical estimates such as in [1].

6.3.2. Results

The mesh used for the simulation is shown in Figure 17.
Quadratic polynomial degrees are used for the pressure and the
temperature (p, = pr = 2) and cubic polynomial degree for the
displacement (p, = 3). The simulation is run for a time period
of 358 days, as in the experiment.

The degree of ice saturation in the simulation domain after
358 days is shown in Figure 18. We observe from the result that
freezing is initiated from two fronts; the subzero temperatures
in the pipeline and the top boundary. Frost penetration occurs
slowly and we see that we still have an unfrozen area in the
domain after 358 days. This is due to the hydraulic and thermal
properties of the silt in the experiment. Some unfrozen water
still remains in areas of the frozen part, as expected from the
unfrozen water content data from experiments.

The temperature profiles showing the evolution of the freez-
ing front are presented in Figure 19 for time periods after 150,
250 and 358 days, the final step. At the end of the simulation,
and the experiment, some portion of the silt still has a temper-
ature above the freezing temperature. The evolution of the 0 °C
isotherm from the simulation shows a good agreement with the
experimental results reported by Smith and Patterson [33]. A
total heave of about 20 cm is observed at the centerline of the
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Table 2: Frost heave: Material and model parameters.

Parameter Value Unit
Thermal properties:
Thermal conductivity of soil, Ag 0.65 W/m/K
Thermal conductivity of water, A, 0.6 W/m/K
Thermal conductivity of ice, 4; 2.2 W/m/K
Specific heat capacity of soil, cg 800 J/kg/K
Specific heat capacity of water, cy 4190 J/kg/K
Specific heat capacity of ice, c; 2095 J/kg/K
Latent heat of fusion, L¢ 334 kJ/kg
Hydraulic properties:
Hydraulic conductivity, & 5.0x 107 m/s
Saturation model parameter 1, « 0.9 MPa~!
Saturation model parameter 2, 8 1.59 -
Saturation model parameter 3, y 0.37 -
Hydraulic conductivity model parameter, m 0.3 -
Mechanical properties:
Young’s modulus of soil, E 1.0 MPa
Young’s modulus of ice, E; 9100 MPa
Poisson’s ratio of soil, v 0.3 -
Poisson’s ratio of ice, v; 0.4 -
Strength model parameter, i 5.0 -
Mass and volume properties:
Initial porosity, n 0.4 -
Density of soil, p 2650 kg/m3
Density of water, py 1000 kg/m3
Density of ice, p; 910 kg/m?

Figure 17: Frost heave: Spatial discretization.
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Figure 18: Frost heave: Ice saturation at the final step i.e. after 358 days.
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Figure 20: Frost heave: Heave displacements from experiment and
simulation. The solid lines for simulation from top to bottom corre-
spond to Site 2, Site 3 and Site 4, respectively.

pipe. The heave displacement was monitored in the experiment
at locations denoted Site 2, Site 3 and Site 4, which are located
at the top and 25 cm, 65 cm and 100 cm from the centerline of
the pipe, respectively. The heave displacements from the sim-
ulation at these locations are plotted against the observed data
and the results are shown in Figure 20. As can be seen, the
results from the simulation show a reasonably good agreement
with the observed data.

7. Conclusions

An isogeometric analysis based fully coupled thermo-hydro-
mechanical (THM) numerical model for ground freezing is pre-
sented. The following are the main highlights of the paper:

e THM Model: The governing equation in the theoretical

18

formulation of the THM coupled finite element model are
derived based on porous media theory, where a saturated
frozen soil with solid, water and ice phases is assumed.
Volume expansion and contraction strains, due to phase
change from water to ice and ice to water, are incorporated
into the governing equations. The governing equations are
supplemented by other equations such as the soil-water
characteristic curve, slightly modified based on an exist-
ing and well known model, and the hydraulic conductivity
model, adopted from literature.

e IGA in Geomechanics: The numerical implementation

of the model is based on isogeometric analysis using B-
Splines for numerical integration. The continuity of the
B-Splines basis functions across knot spans, analogous to
elements in the standard finite element method, can be
controlled to a desired degree. This is unlike in the fi-
nite element method, where the basis function are only o
continuous across element boundaries. This improves the
accuracy of derived quantities such as stresses, strains and
fluxes. The use of isogeometric analysis also has the ad-
vantage that CAD geometries can be represented in an ‘ex-
act’ manner, which are only approximated through mesh
generation in the traditional finite element method. The
other advantage of IGA in comparison with traditional
FEA is that higher-order simulations, with high continu-
ity and high regularity meshes, can be performed easily.

e Numerical Studies: An isothermal consolidation problem

with an analytical solution is first studied to validate the
THM model and to show some of the advantages of IGA.
It is shown that higher-order IGA simulations can result in
more accurate results for a given level of refinement. The
model is then used to simulate freezing problems. In par-
ticular, numerical examples on one-dimensional freezing
of a soil column and a two-dimensional frost heave sim-
ulation, with a pipeline transporting chilled gas, are pre-
sented. The two-dimensional frost heave problem is based
on field-scale experimental data and the numerical simula-
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Figure 19: Frost heave: Temperature profiles at selected time steps.
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tion results were observed to be in a reasonable agreement
with the experimental results.

The presented THM model improved in various ways. Im-
proving the existing soil-water characteristic curve, to consider
effects such as hysteresis, is one example. It is observed from
the numerical studies that the computed solutions in ground
freezing are sensitive to the saturation model parameters and the
hydraulic conductivity model parameter. In the current THM
model, a simple nonlinear thermoelastic material model with
temperature dependent parameters is incorporated. The use of
advanced material models, such as elastoplastic and viscoplas-
tic models, will improve the model further. This may help to
capture some physical phenomena such as pressure melting and
creep deformation of frozen soil.

Acknowledgement

This work is financially supported by the Research Council
of Norway and industrial partners through the research project
SAMCOoT, Sustainable Arctic Marine and Coastal Technology.
The authors gratefully acknowledge the support.

Appendix A. Validation of THM Model

The governing equations and the final discretized system of
equations can be validated qualitatively for a specific case. The
approach used here is to check if the system of equations reduce
to the well-know equations of poroelasticity when no freezing
is considered. This means that we assume the degree of ice sat-
uration to be zero, i.e. §; = 0, which for a saturated porous
medium implies Sy, = 1. A constant degree of water saturation
further implies that the isothermal and non-isothermal water ca-
pacities become zero i.e. S, = St = 0. With these conditions,
the governing equations in Eq. (9), (12) and (18) reduce to:

Vo' -Vp" +pb=0 (A.1)
Vy¥+V.-w=0 (A2)

T
(pc)eﬂr%—t+a-VT:—V~q+Q (A3)

If we further assume isothermal conditions such that there are
no spatial and temporal changes in temperature i.e. VT = 0
and % = 0, the equations effectively reduce to the governing
equations of a consolidation problem with incompressible solid
grains and water. The THM numerical implementation is veri-
fied by simulating a consolidation problem. The thermal mate-
rial properties are supplied in the input such that the coefficient
matrices related to temperature are non-zero. A positive initial
temperature is assumed and all the boundaries of the consolida-
tion model are set to be adiabatic. The results are not included
here.
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