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Abstract. In this work the geometrically exact three-dimensional beam theory has been
used as basis for development of a family of isoparametric higher order large deformation
curved beam elements. Geometrically exact three-dimensional beam theory has no restric-
tions with respect to the magnitude of displacements, rotations and deformations. While
reduced integration may be used to alleviate transverse shear and membrane locking in
linear and quadratic C0-continuous Lagrange elements, this does not automatically extend
to higher order elements. In this study we demonstrate that uniform reduced numerical
quadrature rules may be used to obtain locking-free isoparametric large deformation ge-
ometrically exact curved beam elements of arbitrary order. A set of carefully selected
numerical examples serves to illustrate and assess the performance of the various geo-
metrically exact elements and compare them with one of the most popular finite element
formulations for solving nonlinear beam problems based on the corotational formulation.
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1 INTRODUCTION

The finite element (FE) method has been widely used in nonlinear analysis of three-
dimensional (3D) curved beam-like structural systems subjected to large displacements
and large strains for several decades. Numerous approaches have been proposed, but
the vast majority of them have been limited to considering the beam element reference
geometry being a straight line. In this work we aim to extend the geometrically exact
(GE) beam model (see Simo [27] and Simo and Vu-Quoc [28, 29]) based on Reissner’s
3D beam theory [24], to model arbitrary shaped curved beam geometry. Several authors,
e.g., Stolarski and Belytschko [30] and Ibrahimbegović [16], have observed that increasing
the accuracy of the approximated curved beam geometry entails a significant increase in
accuracy. The curved 3D GE beam formulation presented herein is able to accommodate
large displacements, finite rotations and finite strains. In contrast to the corotational
(CR)-type of beam elements (see, e.g., Battini and Pacoste [3, 4], Crisfield [9], Felippa
and Haugen [11], and Mathisen and Bergan [20]), it can be easily extended to higher-order
beam elements. Saje [26] extended the GE beam model to higher-order two-dimensional
(2D) curved beams and Ibrahimbegović [16] to 3D curved beams. However, the latter work
was restricted to quadratic hierarchical displacement interpolation. To our knowledge the
current work represent the first attempt to extend the GE beam model to an arbitrary
order of interpolation. Also our extension of the linearly interpolated straight beam
formulation proposed by Simo and Vu-Quoc [28] follows more closely the CR approach
since we derive the energy-conjugate strains from a polar decomposition of the deformation
tensor rather than defining stress resultants and couples a priori and achieving energy-
conjugate strain measures through the variational formulation which was employed in the
original work.

In this context, our aim is to develop a family of GE 3D beam elements free of locking
for the analysis of geometrically nonlinear finite deformation curved beam-like structural
systems. In order to do that, we propose an extension of the GE beam model presented
in [27, 28, 29], to higher-order Lagrangian-based discretization of both the geometry, dis-
placement, and the rotational fields. To alleviate locking, we have proposed and validated
quadrature rules based on uniform reduced integration of the translational and rotational
part of the beam model for arbitrary order of interpolation.

This paper is outlined as follows. In Section 2, the GE beam model due to Simo [27]
and Simo and Vu-Quoc [28, 29] is presented. Section 3 highlights locking effects in beams
together with a presentation of the various enhancements used to alleviate locking. In
Section 4, the various proposed GE elements are tested and compared with several 2-noded
beam elements based on the CR formulation proposed by Battini and Pacoste [3, 4] on a
selection of beam problems. Finally, in Section 5 we summarize and draw conclusions.
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2 A GEOMETRICALLY EXACT BEAM MODEL

In this section we consider the continuum basis for a GE beam theory that is optimally
suited for computational solution by the FE method. GE beam theory is sometimes
referred to as the Reissner’s beam theory [24], but strictly speaking, the latter is only
exact for a planar beam [23]. The theory presented herein is based on the pioneering
work of Simo [27] and Simo and Vu-Quoc [28, 29], that in [29] introduced the still-used
terminology GE beam model to indicate that Reissner’s theory was recast in a form
which is valid for finite rotations. The GE beam model has later been revisited and
further developed by numerous authors over more than two decades, e.g., Cardona and
Géradin [7] and Ibrahimbegović [16], in which the latter extended the theory to handle
curved reference geometry. Beam models of this type have been coined geometrically exact
because they account, without approximation, for the total deformation and strains.

2.1 Beam geometry in 3D space

The beam is viewed as a 3D body, whose material placement can be described by the
line of centroids B0 ⊂ R3, that has attached at each point a planar non-deformable cross
section A0 in the reference configuration. A local curvilinear coordinate system is chosen
to parameterize this line through an arc-length coordinate S along B0 in the reference
configuration. Let {ii(S, t)}i=1,2,3 represent a local Cartesian moving frame whose origin
is fixed at the centroid at all times, i1(S, t) remains perpendicular to A and {iα(S, t)}α=2,3

span the cross section of the beam in the current configuration. Henceforth, we use the
summation convention with Latin indices ranging from 1 to 3 and with Greek indices
ranging from 2 to 3. In the reference configuration the orthonormal basis vectors are
denoted i0i (S) = ii(S, 0) and the associated set of cross section coordinates x0

α (see Fig. 1).
Let X(S) and x(S, t) define the position of B0 and B in the 3D space in the reference
and current configuration, respectively:

x(S, t) = X(S) + u(S, t), (1)

where u(S, t) denote the displacement of B0 at any time t. We assume that the length of
the line of centroids B0 and B is L0 and L, respectively.

Without loss of generality, we assume that; (1) the beam has uniform cross sections,
i.e., cross-sectional properties remain constant along the entire length of the beam, (2)
the beam reference configuration is stress- and strain-free, and (3) the cross sections are
initially normal to B0, hence:

i01(S) =
dX(S)

dS
= X ′(S), (2)

where prime denotes the derivative with respect to the arc-length coordinate S.
In accordance with standard hypothesis for beams, we further assume that:
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Figure 1: Definition of the various frames and configurations for the GE beam model.

(i) The cross sections remain plane and undeformed in the current configuration, i.e.,
warping effects are not accounted for.

(ii) The cross sections that initially are normal to B0 do not necessarily remain normal
to the deformed line of centroids B in the current configuration, i.e., transverse
shear deformations are accounted for; hence i1(S, t) remain normal to A but not
necessarily tangent to B.

The orientation of the moving local Cartesian frame ii(S, t) along S ∈ [0, L], and
through time t ∈ [0, T ] is governed by the orthogonal two-point tensor Λ(S, t) such that

ii(S, t) = Λ(S, t)i0i (S) ⇒ Λ(S, t) = ii ⊗ i0i ; ‖ ii ‖=‖ i0i ‖= 1 ⇒ ΛTΛ = ΛΛT = I, (3)

where I denote the identity tensor. Defining the reference and current configurations with
respect to a global Cartesian frame Ii, the above transformation reads:

ii(S, t) = Λ(S, t)Λ0(S)Ii ⇒ Λ0(S) = i0i ⊗ Ii, (4)

where Λ0(S) defines the orientation of the local Cartesian frame i0i (S) in the reference
configuration. The current configuration C of the 3D beam at any time t will then be
uniquely determined by the current position and the rotation of the centroid of the cross
section, i.e., the origin of the moving frame:

C = {ϕ = (x,Λ) : [0, L]× [0, T ] −→ R3 × SO(3)}, (5)

4
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where SO(3) represents the special orthogonal (Lie) group, i.e., the group of all rotations
about the origin of R3 under the operation of composition. As a consequence, the 3D
kinematic description of the beam is reduced to a 1D kinematic description with the arc-
length coordinate S as the only parameter. With these definitions, the 3D beam geometry
in the current configuration may be defined as

x3D(S, x0
α, t) = x(S, t) + p(S, x0

α, t), (6)

where
p(S, x0

α, t) = Λ(S, t)p0(S, x
0
α) = Λ(S, t)x0

αi
0
α(S). (7)

p and p0 denote the cross section position vector along B, i.e., the position of a point P
relative to the centroid within a cross section, in the current and reference configuration,
respectively. Herein, we only consider quasi-static analysis of beam problems. However,
the kinematic description presented in this section is identical for static and dynamic
problems. For that reason, ”time” and ”pseudo-time” as well as ”time step”, ”incremental
step” and ”load step” are used as equivalents throughout this work.

2.2 Parameterization of finite 3D rotations

The principal difficulty by representing 3D finite rotations by an orthogonal tensor Λ
is due to the fact that SO(3) is not a linear (vector) space, but rather a manifold, hence
consistent linearization and update procedures are no longer straightforward. In the
context of time-independent (static) analysis, Ibrahimbegović [17] overcame this problem
by reparameterizing the configuration space of the beam by making use of the so-called
rotation vector θ, defined by

θ = θe, (8)

where e is a unit vector defining the axis of rotation and θ =
√

θ21 + θ22 + θ23 is the
magnitude of the rotation vector. The relation between Λ and θ is governed by the
Rodriguez formula which represents a closed form solution of the exponential mapping

Λ = exp[˜θ] = I +
sin θ

θ
˜θ +

1− cos θ

θ2
˜θ˜θ, (9)

where ˜θ denote the skew-symmetric tensor for which θ is the axial vector, i.e.:

θ = [θ1, θ2, θ3] ⇒ ˜θ = skew[θ] =





0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0



 . (10)

With such a parameterization, the configuration space C becomes a linear space:

C = {ϕ = (x,Λ) : [0, L]× [0, T ] −→ R3 × R3}. (11)

5
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The admissible variation δΛ of the orthogonal tensor of finite rotations can be con-
structed by making use of the exponential mapping

δΛ = ˜δwΛ = Λ˜δψ. (12)

Physically, ˜δw and ˜δψ represent infinitesimal spatial and material rotations superposed
onto the existing rotation Λ. The spatial spin variables, δw, are also related to the
variation of the rotational vector through (see [17])

δw = Ts (θ) δθ, (13)

where

Ts (θ) = I +
1− cos θ

θ2
˜θ +

θ − sin θ

θ3
˜θ˜θ. (14)

If the rotational vector is used as parameterization, the rotations become additive and
are updated at each iteration. However, the relation in Eq. (13) cease to be bijection
for θ = 2nπ. Consequently, with the parameterization using the rotational vector, the
angle of rotation is limited to 2π. In large deformation analysis, and especially in dynamic
large deformation analysis, angles of rotation can become much larger than 2π. In order to
overcome this limitation, Cardona and Géradin [7] and Ibrahimbegović et al. [17] proposed
to apply Eq. (13) only within an increment and introduced the concept of incremental
rotation vector, based on the following update procedure:

(i) At the beginning at the time step (n + 1), i.e., for iteration i = 0, the incremental
rotation vector is set to zero:

θ0
n+1 = 0. (15)

(ii) At the ith iteration the incremental rotation vector is updated additively

θi
n+1 = θi−1

n+1 +∆θ, (16)

where ∆θ represents the iterative change of the incremental rotation vector.

(iii) The corresponding orthogonal tensor Λ is updated using exponential mapping

Λi
n+1 = exp[˜θi

n+1]Λn. (17)

Hence, additive updates still apply within each time step and the amplitude of the rota-
tions are thus just limited within each time step. Alternatively, if the spatial spin variables
are used to parameterize the finite rotations, the update is performed according to

Λi
n+1 = exp[˜∆w]Λi−1

n+1, (18)

where ∆w denote the corresponding iterative change of the spatial spin variables.

6
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2.3 Strain measures

In contrast to previous works [7, 16, 17, 23, 24, 27, 28, 29], where energy-conjugate
strain measures were based on stress resultants defined a priori, Auricchio et al. [1] derived
a GE beam model in which proper strain measures at any point of the beam in C were
obtained by a polar decomposition of the deformation gradient F . With the definition of
the 3D geometry in C, see Eq. (6), the deformation gradient may be expressed as

F =
∂x3D

∂x0
i

⊗ i0i =
(

x′ +Λ′x0
αi

0
α

)⊗ i01 + iα ⊗ i0α. (19)

Utilizing Eq. (12), the derivative of the rotation tensor Λ with respect to S may be
expressed as

Λ′ = κ̃Λ ⇔ κ̃ = Λ′ΛT , (20)

where κ̃ = κ̃(S) is a skew-symmetric tensor represented by the axial vector κ denoting the
spatial rotational (torsional and bending) strains, i.e., the spatial curvature. Furthermore,
adding and subtracting the tensor i1 ⊗ i01 to the right-hand-side and recognizing that
ii ⊗ i0i = Λ, we may rewrite Eq. (19) and make a material polar decomposition of F

F = Λ
{

I +
[

ΛT (x′ − i1) +ΛT κ̃x0
αi

0
α

]⊗ i01
}

= ΛU . (21)

In Eq. (21), U defines the right (current local) stretch tensor from which we may derive
the Biot strain measure B (often referred to as the Jaumann strains), that are objective
corotated engineering strains independent of rigid body displacements

B = ΛTF − I = U − I = ε⊗ i1 with ε = ΛT (γ + κ̃p) = Γ+ ˜Kp0, (22)

where ε represents a generalized convected strain measure, γ the translational (axial
and transverse shear) spatial strains and κ the rotational (torsional and bending) spatial
curvature strain vector. The corresponding convected material strains are represented by
upper case letters Γ and K. The relationship between the material and spatial forms
may then be expressed as

Γ = ΛTγ with γ = x′ − i1,

K = ΛTκ with κ = Ts(θ)θ
′.

(23)

A physical interpretation of the spatial strain measures is that the components of γ
represent the true axial and transverse shear strain measures with respect to the current
moving frame ii(S, t), e.g., γ1 represents the elongation of an infinitesimal fiber in the
direction normal to the cross section while γ2 and γ3 are the corresponding transverse
shear strains. Similarly, the three components of κ, represents the true torsional (κ1) and
bending strain measures (κ2 and κ3) with respect to the moving frame.
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the 3D geometry in C, see Eq. (6), the deformation gradient may be expressed as

F =
∂x3D

∂x0
i

⊗ i0i =
(

x′ +Λ′x0
αi

0
α

)⊗ i01 + iα ⊗ i0α. (19)

Utilizing Eq. (12), the derivative of the rotation tensor Λ with respect to S may be
expressed as

Λ′ = κ̃Λ ⇔ κ̃ = Λ′ΛT , (20)

where κ̃ = κ̃(S) is a skew-symmetric tensor represented by the axial vector κ denoting the
spatial rotational (torsional and bending) strains, i.e., the spatial curvature. Furthermore,
adding and subtracting the tensor i1 ⊗ i01 to the right-hand-side and recognizing that
ii ⊗ i0i = Λ, we may rewrite Eq. (19) and make a material polar decomposition of F

F = Λ
{

I +
[

ΛT (x′ − i1) +ΛT κ̃x0
αi

0
α

]⊗ i01
}

= ΛU . (21)

In Eq. (21), U defines the right (current local) stretch tensor from which we may derive
the Biot strain measure B (often referred to as the Jaumann strains), that are objective
corotated engineering strains independent of rigid body displacements

B = ΛTF − I = U − I = ε⊗ i1 with ε = ΛT (γ + κ̃p) = Γ+ ˜Kp0, (22)

where ε represents a generalized convected strain measure, γ the translational (axial
and transverse shear) spatial strains and κ the rotational (torsional and bending) spatial
curvature strain vector. The corresponding convected material strains are represented by
upper case letters Γ and K. The relationship between the material and spatial forms
may then be expressed as

Γ = ΛTγ with γ = x′ − i1,

K = ΛTκ with κ = Ts(θ)θ
′.

(23)

A physical interpretation of the spatial strain measures is that the components of γ
represent the true axial and transverse shear strain measures with respect to the current
moving frame ii(S, t), e.g., γ1 represents the elongation of an infinitesimal fiber in the
direction normal to the cross section while γ2 and γ3 are the corresponding transverse
shear strains. Similarly, the three components of κ, represents the true torsional (κ1) and
bending strain measures (κ2 and κ3) with respect to the moving frame.
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2.4 Stress resultants, constitutive equations and balance laws

Work conjugate with the strain measures in Eq. (23), we define material and spatial
stress resultants and couples, N ,M and n,m, where the latter are obtained by a push-
forward of the convected resultants and couples:

n = ΛN and m = ΛM . (24)

The first component of the force resultants n,N denotes the axial force in the direction
of i1, i

0
1, while component 2 and 3 denote the transverse shear forces in the directions of

iα, i
0
α, respectively. Similarly, the first component of the stress couples m,M denotes the

torsional moment about the axis of i1, i
0
1, while component 2 and 3 denote the bending

moments about the axes of iα, i
0
α, respectively. For a hyperelastic material the convected

resultants may be obtained from a strain energy function Ψ(Γ, K) through the relations

N =
∂Ψ(Γ, K)

∂Γ
and M =

∂Ψ(Γ, K)

∂K
. (25)

In our study we assume that we have a linear isotropic relation between stresses and
strains. This results in a St. Venant–Kirchhoff-type constitutive relation that may be
expressed in terms of E and G, denoting the Young’s and the shear modulus, respectively.
The corresponding resultant constitutive laws reads

N =





N 1

N2

N3



 =





EA0 0 0
0 GĀ02 0
0 0 GĀ03









Γ1

Γ2

Γ3



 = CNΓ with
N i = N · i0i
Γi = Γ · i0i , (26)

and

M =





M1

M2

M3



 =





GIT 0 0
0 EI33 −EI32
0 −EI23 EI22









K1

K2

K3



 = CMK with
M i = M · i0i
Ki = K · i0i ,

(27)
where GĀ0α denotes the reduced cross section shear area in the direction of i0α, IT the
torsional stiffness and Iαβ =

∫

A0
x0
αx

0
βdA the cross section second moment of area.

The corresponding relation between the spatial stress resultants and couples and the
energy conjugate strains γ and κ, is obtained by combining Eqs. (23), (24), (26) and (27)

n = ΛCNΛ
Tγ and m = ΛCMΛTκ. (28)

As shown by Reissner [23, 24], Simo [27] and Simo and Vu-Quoc [28, 29], the beam
balance equations can be obtained without any simplifying hypothesis regarding geometry,
and size of displacements and rotations, hence, this theory is referred to as GE. If we
consider n̄ and m̄ to be the externally applied force and moment per unit length the
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time-independent linear and angular momentum balance (strong form) equations for the
GE beam model reads:

n′ + n̄ = 0 and m′ + x′ × n+ m̄ = 0. (29)

A unique strong form solution must satisfy the balance equations stated in Eq. (29)
supplemented with the boundary conditions:

x = x̄ on Bϕ
x and Λ = Λ̄ on Bϕ

Λ,

n = n̄ on Bσ
n and m = m̄ on Bσ

m,
(30)

where Bϕ
x , Bϕ

Λ, Bσ
n and Bσ

m denote the part of the beam where displacements, rotations,
stress resultants and couples are prescribed, respectively.

2.5 Variational equations

The variational or weak form of the static equilibrium equations states that the solution
to the beam problem (29) with the associated boundary conditions (30) is the motion
ϕ = (x,Λ) ∈ S that satisfies the principle of virtual work, which states that

δW = δW int + δW ext, (31)

for all admissible virtual variations δϕ = (δx, δw). The internal virtual work carried out
by the spatial stress resultants and couples over the associated admissible variations in
the current configuration is given by (for more details see, e.g., Cardona and Géradin [7]
or Helgedagsrud et al. [12]):

δW int = δW int(ϕ, δϕ) =

∫

L

{(δx′ + x′ × δw) · n+ δw′ ·m}d�. (32)

The external virtual work due to the distributed externally applied force and moment per
unit length may be expressed as:

δW ext = δW ext(δϕ) = −
∫

L

{δx · n̄+ δw · m̄}d�. (33)

Combining the internal and external virtual work terms, we obtain the following spatial
form of the variational formulation of the GE beam model: Find ϕ = (x,Λ) ∈ S, such
that ∀δϕ = (δx, δw) ∈ V :

∫

L

{(δx′ + x′ × δw) · n+ δw′ ·m}d� =
∫

L

{δx · n̄+ δw · m̄}d�. (34)

In the formulation, S and V are suitably defined trial and test function spaces for the
GE beam problem. Strictly speaking, the space of kinematically admissible variations for
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2.4 Stress resultants, constitutive equations and balance laws

Work conjugate with the strain measures in Eq. (23), we define material and spatial
stress resultants and couples, N ,M and n,m, where the latter are obtained by a push-
forward of the convected resultants and couples:
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0
1, while component 2 and 3 denote the transverse shear forces in the directions of
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α, respectively. Similarly, the first component of the stress couples m,M denotes the
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0
1, while component 2 and 3 denote the bending

moments about the axes of iα, i
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resultants may be obtained from a strain energy function Ψ(Γ, K) through the relations
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and M =
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In our study we assume that we have a linear isotropic relation between stresses and
strains. This results in a St. Venant–Kirchhoff-type constitutive relation that may be
expressed in terms of E and G, denoting the Young’s and the shear modulus, respectively.
The corresponding resultant constitutive laws reads
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 = CMK with
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(27)
where GĀ0α denotes the reduced cross section shear area in the direction of i0α, IT the
torsional stiffness and Iαβ =

∫

A0
x0
αx

0
βdA the cross section second moment of area.

The corresponding relation between the spatial stress resultants and couples and the
energy conjugate strains γ and κ, is obtained by combining Eqs. (23), (24), (26) and (27)

n = ΛCNΛ
Tγ and m = ΛCMΛTκ. (28)

As shown by Reissner [23, 24], Simo [27] and Simo and Vu-Quoc [28, 29], the beam
balance equations can be obtained without any simplifying hypothesis regarding geometry,
and size of displacements and rotations, hence, this theory is referred to as GE. If we
consider n̄ and m̄ to be the externally applied force and moment per unit length the
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time-independent linear and angular momentum balance (strong form) equations for the
GE beam model reads:

n′ + n̄ = 0 and m′ + x′ × n+ m̄ = 0. (29)

A unique strong form solution must satisfy the balance equations stated in Eq. (29)
supplemented with the boundary conditions:

x = x̄ on Bϕ
x and Λ = Λ̄ on Bϕ

Λ,

n = n̄ on Bσ
n and m = m̄ on Bσ

m,
(30)

where Bϕ
x , Bϕ

Λ, Bσ
n and Bσ

m denote the part of the beam where displacements, rotations,
stress resultants and couples are prescribed, respectively.

2.5 Variational equations

The variational or weak form of the static equilibrium equations states that the solution
to the beam problem (29) with the associated boundary conditions (30) is the motion
ϕ = (x,Λ) ∈ S that satisfies the principle of virtual work, which states that

δW = δW int + δW ext, (31)

for all admissible virtual variations δϕ = (δx, δw). The internal virtual work carried out
by the spatial stress resultants and couples over the associated admissible variations in
the current configuration is given by (for more details see, e.g., Cardona and Géradin [7]
or Helgedagsrud et al. [12]):

δW int = δW int(ϕ, δϕ) =

∫

L

{(δx′ + x′ × δw) · n+ δw′ ·m}d�. (32)

The external virtual work due to the distributed externally applied force and moment per
unit length may be expressed as:

δW ext = δW ext(δϕ) = −
∫

L

{δx · n̄+ δw · m̄}d�. (33)

Combining the internal and external virtual work terms, we obtain the following spatial
form of the variational formulation of the GE beam model: Find ϕ = (x,Λ) ∈ S, such
that ∀δϕ = (δx, δw) ∈ V :

∫

L

{(δx′ + x′ × δw) · n+ δw′ ·m}d� =
∫

L

{δx · n̄+ δw · m̄}d�. (34)

In the formulation, S and V are suitably defined trial and test function spaces for the
GE beam problem. Strictly speaking, the space of kinematically admissible variations for
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the GE beam model is the tangent space at ϕ to the abstract configuration manifold C,
which is denoted TϕC. Hence, in general δϕ must be a member of the tangent space TϕC.
However, as pointed out in Section 2.2, when δw is an infinitesimal rotation superposed
on the finite rotation Λ and the update is performed as an exponential map, the space of
admissible variations is defined as:

V = {δϕ = (δx, δw) : [0, L]×[0, T ] ∈ R3×R3|δx = 0 on Bϕ
x and δw = 0 on Bϕ

Λ}. (35)

2.6 Linearized variational equations

The virtual work equations for the finite deformation GE beam model are in general
highly nonlinear. For this reason the problem is reduced to a set of nonlinear algebraic
equations, whose solution is obtained utilizing an incremental-iterative Newton–Raphson
approach. In order to obtain the consistent tangent of Newton’s method, i.e., the tangent
granting quadratic convergence rate, a consistent linearization of the associated variational
equations must be performed. The incremental virtual work results in two contributions
to the tangent stiffness, the material and geometrical part. With the expressions for the
incremental and linearized virtual spatial strain measures at hand the material part is
obtained by keeping the geometry constant varying the material resultants

∫

L

{(δx′ + x′ × δw) ·ΛCNΛ
T (∆x′ + x′ ×∆w) + (δw′) ·ΛCMΛT∆w′}d�, (36)

whereas the geometric part is obtained keeping the material properties constant while
varying the geometry

∫

L

{[(δx′ + x′ × δw)×∆w − δw ×∆x′] · n+ (δw′ ×∆w) ·m}d�. (37)

2.7 Discrete formulation

In this work we assume that standard Lagrangian basis functions are used to discretize
both the geometry in the reference and the current configuration,X and x, and the virtual
and incremental displacement and rotational fields, δϕ = (δx, δw) and ∆ϕ = (∆x,∆w),
of each individual element of the centroidal line B0:

Xh =
nn
∑

A=1

RAXA, xh =
nn
∑

A=1

RAxA, δxh =
nn
∑

A=1

RAδxA,

δwh =
nn
∑

A=1

RAδwA, ∆xh =
nn
∑

A=1

RA∆xA and ∆wh =
nn
∑

A=1

RA∆wA,

(38)

where nn is the number of nodes associated with the element, RA is the standard La-
grangian basis function accompanying node A, whereas XA, xA, δxA, δwA, ∆xA and
∆wA are the corresponding reference and current coordinate, virtual and incremental
displacement and rotation parameter, respectively.
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The Galerkin formulation of Eq. (34) is obtained by restricting the trial and test func-
tion sets to their finite dimensional counterpart comprised of Lagrange suitable basis
functions as: Find ϕh = (xh,Λh) ∈ Sh, such that ∀δϕh = (δxh, δwh) ∈ Vh:

∫

L

{[δ(xh)′ + (xh)′ × δwh] · nh + δ(wh)′ ·mh}d� =
∫

L

{δxh · n̄+ δwh · m̄}d�, (39)

where nh and mh, are the current spatial stress resultants and couples derived from the
discretized solution ϕh = (xh,Λh). The matrix counterpart of the discrete form of the
variational equations may be written on compact form as:

nn
∑

A=1

δdA(F
int
A − Fext

A ) = 0, (40)

where dA = [xA,wA]
T denotes the vectors of nodal displacement and rotation unknowns,

and Fint
A and Fext

A the vectors of internal and external nodal forces related to node A,
respectively:

Fint
A =

∫

L

BT
Ard� with BA =

[

R′
AI3 0

RAx̃
′ R′

AI3

]

and r =

{

nh

mh

}

, (41)

and

Fext
A =

∫

L

RAI6r̄d� with r̄ =

{

n̄
m̄

}

, (42)

where Ik = �1, 1, . . . , 1� is a diagonal unit matrix of dimension k, and x̃′ is a skew-
symmetric matrix whose axial vector is x′.

Similarly, the incremental solution, ∆ϕh = (∆xh,∆wh) ∈ Vh, of the Galerkin formula-
tion associated with the linearized form of Eqs. (36) and (37) is found from its associated
discrete approximation that on matrix form can be written:

nn
∑

A=1

nn
∑

B=1

δdA{(Fint
A − Fext

A ) + (Km
AB −Kg

AB)∆dB} = 0. (43)

The material and geometric stiffness matrices,Km
AB andKg

AB, are obtained by substituting
the discrete approximation counterparts of the virtual and incremental displacements from
Eq.(38) into Eqs. (36) and (37):

Km
AB =

∫

L

BT
ACBBd� with C =

[

CN 0
0 CM

]

, (44)
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the GE beam model is the tangent space at ϕ to the abstract configuration manifold C,
which is denoted TϕC. Hence, in general δϕ must be a member of the tangent space TϕC.
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The virtual work equations for the finite deformation GE beam model are in general
highly nonlinear. For this reason the problem is reduced to a set of nonlinear algebraic
equations, whose solution is obtained utilizing an incremental-iterative Newton–Raphson
approach. In order to obtain the consistent tangent of Newton’s method, i.e., the tangent
granting quadratic convergence rate, a consistent linearization of the associated variational
equations must be performed. The incremental virtual work results in two contributions
to the tangent stiffness, the material and geometrical part. With the expressions for the
incremental and linearized virtual spatial strain measures at hand the material part is
obtained by keeping the geometry constant varying the material resultants
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whereas the geometric part is obtained keeping the material properties constant while
varying the geometry
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{[(δx′ + x′ × δw)×∆w − δw ×∆x′] · n+ (δw′ ×∆w) ·m}d�. (37)

2.7 Discrete formulation

In this work we assume that standard Lagrangian basis functions are used to discretize
both the geometry in the reference and the current configuration,X and x, and the virtual
and incremental displacement and rotational fields, δϕ = (δx, δw) and ∆ϕ = (∆x,∆w),
of each individual element of the centroidal line B0:

Xh =
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∑
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RAxA, δxh =
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A=1

RAδxA,

δwh =
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A=1
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where nn is the number of nodes associated with the element, RA is the standard La-
grangian basis function accompanying node A, whereas XA, xA, δxA, δwA, ∆xA and
∆wA are the corresponding reference and current coordinate, virtual and incremental
displacement and rotation parameter, respectively.
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The Galerkin formulation of Eq. (34) is obtained by restricting the trial and test func-
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Similarly, the incremental solution, ∆ϕh = (∆xh,∆wh) ∈ Vh, of the Galerkin formula-
tion associated with the linearized form of Eqs. (36) and (37) is found from its associated
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and with some manipulations (see, e.g., Simo and Vu-Quoc [28, 29])

Kg
AB =

∫

L
GT

AHGBd� with GA =





R′
AI3 0
0 R′

AI3
0 RAI3





and H =





0 0 −ñh

0 0 −m̃h

ñh 0 (nh ⊗ x′ − x′nhI3)



 .

(45)

We recall again that in the expression for H, ñh and m̃h are the skew-symmetric matrices
whose axial vectors are nh and mh, respectively.

It is noted that the final form of the tangent stiffness Kt = Km + Kg, in general, is
nonsymmetric. Since symmetry of the material part follows from the symmetry of the
constitutive matrix C, the lack of symmetry stems from the geometric part. As pointed
out by Simo and Vu-Quoc [28, 29], for conservative loading at an equilibrium state the
tangent stiffness is symmetric. However, in general, at non-equilibrated configurations,
the tangent stiffness is nonsymmetric. The reason for that is that the configuration space,
TϕC, is a manifold. Our numerical studies has revealed that replacing the nonsymmetric
geometric stiffness by its symmetric counterpart will not jeopardize the quadratic conver-
gence rate expected in the Newton iterations.

Parameterizing the finite rotations with the incremental rotation vector, θ (see Section
2.2), rather than the spatial spin tensor, w, yields similar expressions for the tangent
stiffness matrices and the out of balance force vector, and may be found in Ibrahimbegović
et al. [17].

3 LOCKING EFFECTS IN BEAMS

It is well-known that purely displacement-based isoparametric, especially low-order,
elements are often affected by spurious strains and stresses which lead to an overestima-
tion of the stiffness. As a consequence, the primary variables like displacements will be
underestimated. In the context of curved beam elements, this implies that both spurious
transverse shear and axial (membrane) strains may develop in bending dominated prob-
lems, consequently the element will have no ability to capture the state of (transverse)
shear-free or inextensional bending. The corresponding locking phenomena denoted trans-
verse shear and membrane locking, in general reduces the accuracy and slows down the
convergence as the ratio between thickness to length (for straight members) or thickness
to radius of curvature (for curved beams) approaches zero. From the definition of the
translational spatial strains (23) for the GE elements we observe that γh is obtained by
subtracting the normal to the cross section ih1 from the arc-length derivative of the dis-
crete line of centroids Bh in the current configuration. In the following, we investigate
whether γh, i.e., the axial and the transverse shear strains vanish when the element is
subjected to a state of pure bending. Without loss of generality we consider an initially
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M
L
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π

=

 

Figure 2: Initial and deformed configuration of a cantilever subjected to a concentrated end moment.

2D straight beam of length L with a rectangular cross section (A = bh, with b = 1 and
h = 10−ρ) clamped at one end and subjected to a concentrated moment M at the free
end (see Fig. 2). We assume that L = 1, ρ = 3, E = 24× 109 and M = πEI/2L = π, for
which the closed form solution is represented by a quarter of a circle. Fig. 3

C0

C

shows the
resulting distribution of axial and transverse shear strains obtained when the cantilever is
discretized with a single GE element of order p = 1, 2, 3 and 4, respectively. We observe
that all elements sample the exact solution (γ = 0) at the Gauss points (ng = p) corre-
sponding to uniform reduced integration (URI). We also observe that the amplitudes of
the spurious membrane and shear strains reduces dramatically as the order of the inter-
polant is increased. The ability of the curved Lagrange C0 isoparametric beam elements
to alleviate spurious transverse shear and axial strains with URI was first explored and
reported by Stolarski and Belytschko [30] for quadratic and cubic interpolated elements.

In order to evaluate an elements propensity of locking, Hughes [13] introduced an
heuristic approach, the so-called constraint count method. This method relies on the con-
straint ratio, r, which is defined as the ratio of the total number of equilibrium equations
(neq) to the total number of constraint equations (nc):

r =
neq

nc

. (46)

In order to investigate whether an element is prone to locking, the constraint ratio, r,
of the continuous problem is compared with the constraint ratio, rh, of the discretized
problem in the limit of infinite number of elements, ne → ∞:

rh = lim
ne→∞

ne
u

ne
c

. (47)

Here ne
u denotes the number of unknowns added to the system by adding one more element

to a uniform mesh of an infinite number of elements, while ne
c is the corresponding number

of constraints added by this element. Thus, ne
c is related to the number of quadrature

points, ng, where the constraints are to be evaluated.
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and with some manipulations (see, e.g., Simo and Vu-Quoc [28, 29])
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We recall again that in the expression for H, ñh and m̃h are the skew-symmetric matrices
whose axial vectors are nh and mh, respectively.

It is noted that the final form of the tangent stiffness Kt = Km + Kg, in general, is
nonsymmetric. Since symmetry of the material part follows from the symmetry of the
constitutive matrix C, the lack of symmetry stems from the geometric part. As pointed
out by Simo and Vu-Quoc [28, 29], for conservative loading at an equilibrium state the
tangent stiffness is symmetric. However, in general, at non-equilibrated configurations,
the tangent stiffness is nonsymmetric. The reason for that is that the configuration space,
TϕC, is a manifold. Our numerical studies has revealed that replacing the nonsymmetric
geometric stiffness by its symmetric counterpart will not jeopardize the quadratic conver-
gence rate expected in the Newton iterations.

Parameterizing the finite rotations with the incremental rotation vector, θ (see Section
2.2), rather than the spatial spin tensor, w, yields similar expressions for the tangent
stiffness matrices and the out of balance force vector, and may be found in Ibrahimbegović
et al. [17].

3 LOCKING EFFECTS IN BEAMS

It is well-known that purely displacement-based isoparametric, especially low-order,
elements are often affected by spurious strains and stresses which lead to an overestima-
tion of the stiffness. As a consequence, the primary variables like displacements will be
underestimated. In the context of curved beam elements, this implies that both spurious
transverse shear and axial (membrane) strains may develop in bending dominated prob-
lems, consequently the element will have no ability to capture the state of (transverse)
shear-free or inextensional bending. The corresponding locking phenomena denoted trans-
verse shear and membrane locking, in general reduces the accuracy and slows down the
convergence as the ratio between thickness to length (for straight members) or thickness
to radius of curvature (for curved beams) approaches zero. From the definition of the
translational spatial strains (23) for the GE elements we observe that γh is obtained by
subtracting the normal to the cross section ih1 from the arc-length derivative of the dis-
crete line of centroids Bh in the current configuration. In the following, we investigate
whether γh, i.e., the axial and the transverse shear strains vanish when the element is
subjected to a state of pure bending. Without loss of generality we consider an initially
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Figure 2: Initial and deformed configuration of a cantilever subjected to a concentrated end moment.

2D straight beam of length L with a rectangular cross section (A = bh, with b = 1 and
h = 10−ρ) clamped at one end and subjected to a concentrated moment M at the free
end (see Fig. 2). We assume that L = 1, ρ = 3, E = 24× 109 and M = πEI/2L = π, for
which the closed form solution is represented by a quarter of a circle. Fig. 3

C0

C

shows the
resulting distribution of axial and transverse shear strains obtained when the cantilever is
discretized with a single GE element of order p = 1, 2, 3 and 4, respectively. We observe
that all elements sample the exact solution (γ = 0) at the Gauss points (ng = p) corre-
sponding to uniform reduced integration (URI). We also observe that the amplitudes of
the spurious membrane and shear strains reduces dramatically as the order of the inter-
polant is increased. The ability of the curved Lagrange C0 isoparametric beam elements
to alleviate spurious transverse shear and axial strains with URI was first explored and
reported by Stolarski and Belytschko [30] for quadratic and cubic interpolated elements.

In order to evaluate an elements propensity of locking, Hughes [13] introduced an
heuristic approach, the so-called constraint count method. This method relies on the con-
straint ratio, r, which is defined as the ratio of the total number of equilibrium equations
(neq) to the total number of constraint equations (nc):

r =
neq

nc

. (46)

In order to investigate whether an element is prone to locking, the constraint ratio, r,
of the continuous problem is compared with the constraint ratio, rh, of the discretized
problem in the limit of infinite number of elements, ne → ∞:

rh = lim
ne→∞

ne
u

ne
c

. (47)

Here ne
u denotes the number of unknowns added to the system by adding one more element

to a uniform mesh of an infinite number of elements, while ne
c is the corresponding number

of constraints added by this element. Thus, ne
c is related to the number of quadrature

points, ng, where the constraints are to be evaluated.
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Figure 3: Discrete translational strain fields obtained when the cantilever beam subjected to a concen-
trated end moment is discretized with one single GE element of order p = 1, 2, 3 and 4, respectively: a)
Solutions for p = 1 and 2, denoted GEQ1 and GEQ2, respectively, and b) solutions for p = 3 and 4,
denoted GEQ3 and GEQ4, respectively.

For an element with rh < r, and especially with rh < 1 (which implies that there are
more constraints added than unknowns), the propensity of locking is high. In contrast
when rh > r, this indicate that there are too few constraints to approximate the constraint
accurately. Consequently, the optimal element satisfy the criterion rh = r.

As pointed out in [30], when investigating the locking behavior of curved C0 beams
for higher-order elements there exists an interrelationship between transverse shear and
membrane locking. Thus, transverse shear and membrane locking must be considered
simultaneously. Again, for simplicity, we consider a 2D GE element, for which we have
three unknowns per node and two constraints per Gauss point. The optimal constraint
ratio for the 2D continuous problem is

r2D =
3

2
. (48)

For the discrete problem the discrete constraint ratio reads:

rh2D =
3p

2ng

. (49)

Thus, applying URI with ng = p yields an optimal constraint ratio for the GE elements.
Applying URI to the GE elements implies that the rank of the global tangent stiffness is
equal to the total number of unknowns, and thus guarantee rank-sufficiency and elements
without any zero-energy modes which need to be stabilized.

Even though URI works well independent of the slenderness ratio for elements of poly-
nomial order two and higher, it is well known that the numerical solution gets progressively
stiffer for lower order Timoshenko beam (TB) elements compared to the exact one as the
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slenderness increases. In order to get an element that is free of locking MacNeal [18, 19]
proposed the residual bending flexibility (RBF) approach, a device in which the transverse
shear stiffness is enhanced by using a substitute reduced shear modulus such that the el-
ement reproduces nodally exact solutions independent of the slenderness ratio for a tip
loaded straight cantilever beam in the linear regime. In [21], Prathap has shown why the
RBF correction yields a correct rate of convergence for linearly interpolated TB elements.

4 NUMERICAL RESULTS

The purpose of the numerical tests is to study the accuracy, performance, robustness
and convergence of the GE elements and compare them with 2-noded Euler-Bernoulli
(EB) and TB elements based on the CR formulation for the various elements presented
in Tab. 1.

All CR elements are based on the formulation proposed by Battini and Pacoste [3, 4].
The EB elements use linear interpolation of the axial displacement and axial rotation
about the local beam axis while bending deformations are based on Hermitian cubic
shape functions. While the CEBL element is based on classical linear beam theory with
only linear terms in the strain expressions, the CEBN element is based on a second order
approximation of the Green-Lagrange strains enhanced with a shallow arch definition of
the local axial strains to avoid membrane locking. The CEBLS and CEBNS elements
are the corresponding EB elements based on the modified Hermitian shape functions
accounting for transverse shear deformations. The CR TB elements CTBN and CTBNr
are using standard linear interpolation of local displacements and rotations. Except for

Formulation Beam theory nn p
Strain Transverse Element

measure shear name

Corotational
2 1/3

Engineering
No CEBL

Euler- Yes CEBLS
Bernoulli Green- No CEBN

Lagrange Yes CEBNS

Timoshenko 2 1 Engineering1 Yes
CTBN
CTBNr2

2 1

Yes

GEQ1
GEQ1r2

Geometrically Reissner 3 2 Biot GEQ2
exact (Timoshenko) 4 3 (Jaumann) GEQ3

5 4 GEQ4
9 8 GEQ8

Table 1: Various element types compared. 1Element account for the nonlinear Wagner term in the strain
expression. 2Element has been enhanced with RBF.
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Figure 3: Discrete translational strain fields obtained when the cantilever beam subjected to a concen-
trated end moment is discretized with one single GE element of order p = 1, 2, 3 and 4, respectively: a)
Solutions for p = 1 and 2, denoted GEQ1 and GEQ2, respectively, and b) solutions for p = 3 and 4,
denoted GEQ3 and GEQ4, respectively.

For an element with rh < r, and especially with rh < 1 (which implies that there are
more constraints added than unknowns), the propensity of locking is high. In contrast
when rh > r, this indicate that there are too few constraints to approximate the constraint
accurately. Consequently, the optimal element satisfy the criterion rh = r.

As pointed out in [30], when investigating the locking behavior of curved C0 beams
for higher-order elements there exists an interrelationship between transverse shear and
membrane locking. Thus, transverse shear and membrane locking must be considered
simultaneously. Again, for simplicity, we consider a 2D GE element, for which we have
three unknowns per node and two constraints per Gauss point. The optimal constraint
ratio for the 2D continuous problem is

r2D =
3

2
. (48)

For the discrete problem the discrete constraint ratio reads:

rh2D =
3p

2ng

. (49)

Thus, applying URI with ng = p yields an optimal constraint ratio for the GE elements.
Applying URI to the GE elements implies that the rank of the global tangent stiffness is
equal to the total number of unknowns, and thus guarantee rank-sufficiency and elements
without any zero-energy modes which need to be stabilized.

Even though URI works well independent of the slenderness ratio for elements of poly-
nomial order two and higher, it is well known that the numerical solution gets progressively
stiffer for lower order Timoshenko beam (TB) elements compared to the exact one as the
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slenderness increases. In order to get an element that is free of locking MacNeal [18, 19]
proposed the residual bending flexibility (RBF) approach, a device in which the transverse
shear stiffness is enhanced by using a substitute reduced shear modulus such that the el-
ement reproduces nodally exact solutions independent of the slenderness ratio for a tip
loaded straight cantilever beam in the linear regime. In [21], Prathap has shown why the
RBF correction yields a correct rate of convergence for linearly interpolated TB elements.

4 NUMERICAL RESULTS

The purpose of the numerical tests is to study the accuracy, performance, robustness
and convergence of the GE elements and compare them with 2-noded Euler-Bernoulli
(EB) and TB elements based on the CR formulation for the various elements presented
in Tab. 1.

All CR elements are based on the formulation proposed by Battini and Pacoste [3, 4].
The EB elements use linear interpolation of the axial displacement and axial rotation
about the local beam axis while bending deformations are based on Hermitian cubic
shape functions. While the CEBL element is based on classical linear beam theory with
only linear terms in the strain expressions, the CEBN element is based on a second order
approximation of the Green-Lagrange strains enhanced with a shallow arch definition of
the local axial strains to avoid membrane locking. The CEBLS and CEBNS elements
are the corresponding EB elements based on the modified Hermitian shape functions
accounting for transverse shear deformations. The CR TB elements CTBN and CTBNr
are using standard linear interpolation of local displacements and rotations. Except for

Formulation Beam theory nn p
Strain Transverse Element

measure shear name

Corotational
2 1/3

Engineering
No CEBL

Euler- Yes CEBLS
Bernoulli Green- No CEBN

Lagrange Yes CEBNS

Timoshenko 2 1 Engineering1 Yes
CTBN
CTBNr2

2 1

Yes

GEQ1
GEQ1r2

Geometrically Reissner 3 2 Biot GEQ2
exact (Timoshenko) 4 3 (Jaumann) GEQ3

5 4 GEQ4
9 8 GEQ8

Table 1: Various element types compared. 1Element account for the nonlinear Wagner term in the strain
expression. 2Element has been enhanced with RBF.
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the nonlinear Wagner term [31], the strain expression is purely linear for both elements.
They utilizes URI to avoid locking and the CTBNr element is further enhanced with RBF
to converge to the EB element solution as the slenderness increases.

For each of the various formulations and discretizations considered, the relative error
in tip displacement eu and tip rotation eθ are chosen as measures of accuracy

eu =
|uref − uh|

|uref | and eθ =
|θref − θh|

|θref | . (50)

The relative error is computed from Eq. (50), where uref and θref are reference solutions
obtained with a very fine mesh of eight order GE beam elements.

Since the EB beam elements based on the modified Hermitian shape functions account-
ing for transverse shear deformations converge to the standard Hermitian interpolated
element as the slenderness increases, the comparison between the various TB element for-
mulations are made with the corresponding EB elements accounting for transverse shear
deformations. The results obtained for both the linear and the nonlinear EB beam el-
ements accounting for transverse shear almost coincide with those based on the Navier
hypothesis for all example problems studied in this paper.

While a few more Newton iterations are needed in the initial than in the final steps for
most problems studied, quadratic convergence is obtained in approximately 5 iterations
for each step for all discretizations and formulations with a rather tight energy convergence
criterion εE = 10−9. This also demonstrate that the linearization of the various formula-
tions are consistent. It should also be mentioned that the accuracy and convergence (in
the Newton iterations) is independent of the parameterization of the finite rotations.

4.1 Cantilever beam subjected to tip loading

The first example, depicted in Fig. 4, is a straight cantilever beam clamped at one end
and subjected to two conservative point loads initially acting in the direction of the local
cross-sectional axes at the free end. This example is selected to assess the accuracy and
robustness of the various beam formulations under combined bending, shear and torsion
when the initial configuration is a straight line. The slenderness ratio for this problem is
ρy = L/b = 20 and ρz = L/h = 40 for bending in the xy− and xz−plane, respectively.
The two tip loads are applied over 10 equally sized load increments for all discretizations
of the various beam formulations.

L
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E = 2.1× 1011

ν = 0.3
L = 10
b = 0.5
h = 0.25
Py = 2× 107

Pz = 1× 107

Figure 4: Tip loaded cantilever beam: Geometry, loading, boundary conditions and material data.
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Figure 5: Tip loaded cantilever beam: Relative error in tip displacement and rotation for the various
formulations for medium to fine meshes (8–128 free nodes): a) Displacement and b) rotation for all CR-
and linear GE-elements, c) displacement and d) rotation for the best CR- and GE-elements of order
p = 1, 2, 3 and 4.

Fig. 5 shows convergence plots for medium to fine meshes with 8 to 128 free nodes.
Firstly, in Figs. 5a and 5b we compare the various EB and linearly interpolated TB
elements. It is seen that by adding RBF the error is reduced by a factor of 2 for both the
CR and the GE TB elements. We also observe from these figures that for all discretizations
with TB elements the accuracy obtained with the CR and the GE formulations are close
for the tip displacement and almost coincide for the tip rotation. When comparing the
EB and the linearly interpolated TB elements, while the error in tip rotation is almost
one order lower for the nonlinear EB element, the accuracy of the tip displacement is of
the same order as the linearly interpolated TB elements. We also observe that both the
error in tip displacement and rotation is reduced one order when comparing the linear
and nonlinear EB elements. Finally, independent of formulation, the convergence order

17



260 261

Kjell M. Mathisen et al.

the nonlinear Wagner term [31], the strain expression is purely linear for both elements.
They utilizes URI to avoid locking and the CTBNr element is further enhanced with RBF
to converge to the EB element solution as the slenderness increases.

For each of the various formulations and discretizations considered, the relative error
in tip displacement eu and tip rotation eθ are chosen as measures of accuracy

eu =
|uref − uh|

|uref | and eθ =
|θref − θh|

|θref | . (50)

The relative error is computed from Eq. (50), where uref and θref are reference solutions
obtained with a very fine mesh of eight order GE beam elements.

Since the EB beam elements based on the modified Hermitian shape functions account-
ing for transverse shear deformations converge to the standard Hermitian interpolated
element as the slenderness increases, the comparison between the various TB element for-
mulations are made with the corresponding EB elements accounting for transverse shear
deformations. The results obtained for both the linear and the nonlinear EB beam el-
ements accounting for transverse shear almost coincide with those based on the Navier
hypothesis for all example problems studied in this paper.

While a few more Newton iterations are needed in the initial than in the final steps for
most problems studied, quadratic convergence is obtained in approximately 5 iterations
for each step for all discretizations and formulations with a rather tight energy convergence
criterion εE = 10−9. This also demonstrate that the linearization of the various formula-
tions are consistent. It should also be mentioned that the accuracy and convergence (in
the Newton iterations) is independent of the parameterization of the finite rotations.

4.1 Cantilever beam subjected to tip loading

The first example, depicted in Fig. 4, is a straight cantilever beam clamped at one end
and subjected to two conservative point loads initially acting in the direction of the local
cross-sectional axes at the free end. This example is selected to assess the accuracy and
robustness of the various beam formulations under combined bending, shear and torsion
when the initial configuration is a straight line. The slenderness ratio for this problem is
ρy = L/b = 20 and ρz = L/h = 40 for bending in the xy− and xz−plane, respectively.
The two tip loads are applied over 10 equally sized load increments for all discretizations
of the various beam formulations.
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Figure 4: Tip loaded cantilever beam: Geometry, loading, boundary conditions and material data.
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Figure 5: Tip loaded cantilever beam: Relative error in tip displacement and rotation for the various
formulations for medium to fine meshes (8–128 free nodes): a) Displacement and b) rotation for all CR-
and linear GE-elements, c) displacement and d) rotation for the best CR- and GE-elements of order
p = 1, 2, 3 and 4.

Fig. 5 shows convergence plots for medium to fine meshes with 8 to 128 free nodes.
Firstly, in Figs. 5a and 5b we compare the various EB and linearly interpolated TB
elements. It is seen that by adding RBF the error is reduced by a factor of 2 for both the
CR and the GE TB elements. We also observe from these figures that for all discretizations
with TB elements the accuracy obtained with the CR and the GE formulations are close
for the tip displacement and almost coincide for the tip rotation. When comparing the
EB and the linearly interpolated TB elements, while the error in tip rotation is almost
one order lower for the nonlinear EB element, the accuracy of the tip displacement is of
the same order as the linearly interpolated TB elements. We also observe that both the
error in tip displacement and rotation is reduced one order when comparing the linear
and nonlinear EB elements. Finally, independent of formulation, the convergence order
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Figure 6: Tip loaded cantilever beam: Relative error in tip displacement and rotation for the various
formulations for coarse meshes (1–8 free nodes): a) Displacement and b) rotation for the best CR- and
GE-elements of order p = 1, 2, 3 and 4.

of all 2-noded elements coincide. Next, in Figs. 5c and 5d we compare the best 2-noded
elements, i.e. the nonlinear EB and the linearly interpolated TB elements with RBF, with
the GE elements of order p = 2, 3 and 4. First, we observe as expected that the rate of
convergence increases monotonically with polynomial order for both the tip displacement
and rotation. We also observe that there is a shift in accuracy of approximately one order
when polynomial order is increased.

Fig. 6 shows convergence plots for coarse meshes with 1 to 8 free nodes. We observe
that the nonlinear EB element is superior to all other elements for very coarse meshes
with 2 to 4 free nodes. However, as the mesh is refined the accuracy of the GE elements
of order p = 2, 3, 4 is superior to all 2-noded elements.

4.2 Three leg right angle tip loaded space beam

The second example, depicted in Fig. 7, consists of three straight beams, connected at
right angles in the reference configuration, such that the beam axis of the three legs are
parallel to the x−, y− and z−axis, respectively. The structure is clamped at one end and
subjected to two conservative point loads Px = Pz = P , initially acting in the direction of
the negative x− and z−axes at the free end. This example was proposed in [25] and has
later been revisited in [10], and serves to benchmark nonlinear beam formulations under
combined bending, shear and torsion for non-smooth, three-dimensional geometries. The
slenderness ratio for this problem is ρy = ρz = 10. The two tip loads are applied over 20
equally sized load increments for all discretizations of the various beam formulations.

In Fig. 8, the displacement and rotation of the tip is plotted versus the load P when
each of the three legs are discretized with a uniform mesh of 8 CTBNr and 1024 GEQ8
elements, respectively. We observe that we are not able to distinguish between the results
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Figure 7: Three leg right angle tip loaded space beam: Geometry, loading, boundary conditions and
material data.

obtained with the coarser mesh with 8 CTBNr elements and the reference mesh with 1024
GEQ8 elements.

Analogous to the first example, a convergence plot is given in Fig. 9 to compare the
accuracy of the various formulations for meshes with 2 to 32 free nodes per leg. From
Figs. 9a and 9b, we observe that the linearly interpolated TB elements enhanced with
RBF outperforms the standard formulation. We also observe that the results obtained
with the linear EB element CEBLS is indistinguishable from the CR linearly interpolated
TB element with added RBF (CTBNr) for all discretizations for both the tip displacement
and tip rotation. From the same figures we also observe that independent of formulation
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Figure 8: Three leg right angle tip loaded space beam: Tip displacement and rotation versus applied
load P : a) Displacement and b) rotation for a uniform mesh of 8 CTBNr and 1024 GEQ8 elements per
leg, respectively.
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Figure 6: Tip loaded cantilever beam: Relative error in tip displacement and rotation for the various
formulations for coarse meshes (1–8 free nodes): a) Displacement and b) rotation for the best CR- and
GE-elements of order p = 1, 2, 3 and 4.

of all 2-noded elements coincide. Next, in Figs. 5c and 5d we compare the best 2-noded
elements, i.e. the nonlinear EB and the linearly interpolated TB elements with RBF, with
the GE elements of order p = 2, 3 and 4. First, we observe as expected that the rate of
convergence increases monotonically with polynomial order for both the tip displacement
and rotation. We also observe that there is a shift in accuracy of approximately one order
when polynomial order is increased.

Fig. 6 shows convergence plots for coarse meshes with 1 to 8 free nodes. We observe
that the nonlinear EB element is superior to all other elements for very coarse meshes
with 2 to 4 free nodes. However, as the mesh is refined the accuracy of the GE elements
of order p = 2, 3, 4 is superior to all 2-noded elements.

4.2 Three leg right angle tip loaded space beam

The second example, depicted in Fig. 7, consists of three straight beams, connected at
right angles in the reference configuration, such that the beam axis of the three legs are
parallel to the x−, y− and z−axis, respectively. The structure is clamped at one end and
subjected to two conservative point loads Px = Pz = P , initially acting in the direction of
the negative x− and z−axes at the free end. This example was proposed in [25] and has
later been revisited in [10], and serves to benchmark nonlinear beam formulations under
combined bending, shear and torsion for non-smooth, three-dimensional geometries. The
slenderness ratio for this problem is ρy = ρz = 10. The two tip loads are applied over 20
equally sized load increments for all discretizations of the various beam formulations.

In Fig. 8, the displacement and rotation of the tip is plotted versus the load P when
each of the three legs are discretized with a uniform mesh of 8 CTBNr and 1024 GEQ8
elements, respectively. We observe that we are not able to distinguish between the results
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Figure 7: Three leg right angle tip loaded space beam: Geometry, loading, boundary conditions and
material data.

obtained with the coarser mesh with 8 CTBNr elements and the reference mesh with 1024
GEQ8 elements.

Analogous to the first example, a convergence plot is given in Fig. 9 to compare the
accuracy of the various formulations for meshes with 2 to 32 free nodes per leg. From
Figs. 9a and 9b, we observe that the linearly interpolated TB elements enhanced with
RBF outperforms the standard formulation. We also observe that the results obtained
with the linear EB element CEBLS is indistinguishable from the CR linearly interpolated
TB element with added RBF (CTBNr) for all discretizations for both the tip displacement
and tip rotation. From the same figures we also observe that independent of formulation
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Figure 9: Three leg right angle tip loaded space beam: Relative error in tip displacement and rotation
for the various formulations for meshes with 2–32 free nodes per leg: a) Displacement and b) rotation for
CR- and linear GE-elements, c) displacement and d) rotation for the best CR- and GE-elements of order
p = 1, 2, 3 and 4.

the tip displacement for the nonlinear EB element CEBNS is one order more accurate
compared with the best linearly interpolated TB elements.

When comparing the best 2-noded elements with GE elements of higher order (p = 2, 3
and 4), we observe analogous to the previous example that the rate of convergence for
all 2-noded elements coincide while for the higher order GE elements it increases with
polynomial order. Also for the GE elements the accuracy is shifted approximately one
order as the polynomial order is increased. Again, except for very coarse meshes all higher
order GE elements outperform all the 2-noded elements both in terms of accuracy and
convergence rate.
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Figure 10: Tip loaded 45◦ circular cantilever beam: Geometry, loading, boundary conditions and
material data.

4.3 Tip loaded 45◦ circular cantilever beam

In the next example, depicted in Fig. 10, we consider a beam that is curved in its stress-
free reference configuration. In particular, 1/8 of a circle with radius R forms the line of
centroids that is located in the xy−plane in the reference configuration. The curved beam
is clamped at one end and subjected to a conservative point load acting in the direction
of the z−axis in the free end. This problem is a well-established benchmark problem for
nonlinear analysis of spatial beams. It was first proposed in [2] and has later been used
by a number of authors [5, 6, 7, 9, 10, 15, 25, 28].

Step Iter CEBNS CTBNr GEQ1r GEQ2 GEQ3 GEQ4

1

0 4.695× 102 4.695× 102 4.695× 102 4.698× 102 4.698× 102 4.698× 102

1 8.246× 104 8.239× 104 8.246× 104 8.378× 104 8.379× 104 8.379× 104

2 1.048× 100 3.918× 10−1 2.028× 102 3.188× 10−1 3.182× 10−1 3.182× 10−1

3 1.131× 10−3 9.872× 10−4 5.292× 10−1 9.649× 10−4 9.644× 10−4 9.645× 10−4

4 1.441× 10−8 1.173× 10−11 6.471× 10−2 1.646× 10−7 1.642× 10−7 1.643× 10−7

5 8.382× 10−17 3.646× 10−22 3.492× 10−5 1.192× 10−14 1.187× 10−14 1.189× 10−14

6 4.949× 10−10

7 3.572× 10−21

12

0 7.585× 101 7.599× 101 7.597× 101 7.585× 101 7.586× 101 7.586× 101

1 2.932× 102 2.946× 102 2.946× 102 2.983× 102 2.983× 102 2.983× 102

2 1.693× 10−1 1.695× 10−1 1.700× 10−1 1.710× 10−1 1.710× 10−1 1.710× 10−1

3 1.840× 10−3 1.847× 10−3 1.853× 10−3 1.886× 10−3 1.886× 10−3 1.886× 10−3

4 3.729× 10−11 3.343× 10−11 2.459× 10−11 2.554× 10−11 2.554× 10−11 2.554× 10−11

5 1.818× 10−22 2.053× 10−22 5.954× 10−22 4.082× 10−22 6.091× 10−22 8.916× 10−22

Table 2: Tip loaded 45◦ circular cantilever beam: Convergence rates, in the Newton iterations, for the
first and final step.
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Figure 9: Three leg right angle tip loaded space beam: Relative error in tip displacement and rotation
for the various formulations for meshes with 2–32 free nodes per leg: a) Displacement and b) rotation for
CR- and linear GE-elements, c) displacement and d) rotation for the best CR- and GE-elements of order
p = 1, 2, 3 and 4.

the tip displacement for the nonlinear EB element CEBNS is one order more accurate
compared with the best linearly interpolated TB elements.

When comparing the best 2-noded elements with GE elements of higher order (p = 2, 3
and 4), we observe analogous to the previous example that the rate of convergence for
all 2-noded elements coincide while for the higher order GE elements it increases with
polynomial order. Also for the GE elements the accuracy is shifted approximately one
order as the polynomial order is increased. Again, except for very coarse meshes all higher
order GE elements outperform all the 2-noded elements both in terms of accuracy and
convergence rate.
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Figure 10: Tip loaded 45◦ circular cantilever beam: Geometry, loading, boundary conditions and
material data.

4.3 Tip loaded 45◦ circular cantilever beam

In the next example, depicted in Fig. 10, we consider a beam that is curved in its stress-
free reference configuration. In particular, 1/8 of a circle with radius R forms the line of
centroids that is located in the xy−plane in the reference configuration. The curved beam
is clamped at one end and subjected to a conservative point load acting in the direction
of the z−axis in the free end. This problem is a well-established benchmark problem for
nonlinear analysis of spatial beams. It was first proposed in [2] and has later been used
by a number of authors [5, 6, 7, 9, 10, 15, 25, 28].

Step Iter CEBNS CTBNr GEQ1r GEQ2 GEQ3 GEQ4

1

0 4.695× 102 4.695× 102 4.695× 102 4.698× 102 4.698× 102 4.698× 102

1 8.246× 104 8.239× 104 8.246× 104 8.378× 104 8.379× 104 8.379× 104

2 1.048× 100 3.918× 10−1 2.028× 102 3.188× 10−1 3.182× 10−1 3.182× 10−1

3 1.131× 10−3 9.872× 10−4 5.292× 10−1 9.649× 10−4 9.644× 10−4 9.645× 10−4

4 1.441× 10−8 1.173× 10−11 6.471× 10−2 1.646× 10−7 1.642× 10−7 1.643× 10−7

5 8.382× 10−17 3.646× 10−22 3.492× 10−5 1.192× 10−14 1.187× 10−14 1.189× 10−14

6 4.949× 10−10

7 3.572× 10−21

12

0 7.585× 101 7.599× 101 7.597× 101 7.585× 101 7.586× 101 7.586× 101

1 2.932× 102 2.946× 102 2.946× 102 2.983× 102 2.983× 102 2.983× 102

2 1.693× 10−1 1.695× 10−1 1.700× 10−1 1.710× 10−1 1.710× 10−1 1.710× 10−1

3 1.840× 10−3 1.847× 10−3 1.853× 10−3 1.886× 10−3 1.886× 10−3 1.886× 10−3

4 3.729× 10−11 3.343× 10−11 2.459× 10−11 2.554× 10−11 2.554× 10−11 2.554× 10−11

5 1.818× 10−22 2.053× 10−22 5.954× 10−22 4.082× 10−22 6.091× 10−22 8.916× 10−22

Table 2: Tip loaded 45◦ circular cantilever beam: Convergence rates, in the Newton iterations, for the
first and final step.
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Figure 11: Tip loaded 45◦ circular cantilever beam: Tip displacement and rotation versus applied
load P : a) Displacement and b) rotation for a uniform mesh of 8 CTBNr and 1024 GEQ8 elements,
respectively.

The tip load is applied over 12 equally sized load increments for all discretizations of
the various beam formulations. Tab. 2 shows the convergence rates in terms of energy
for the first and last step for the various elements. As shown in Tab. 2, except for
the linear interpolated GE element that needs 7 iterations in the initial step, quadratic
convergence in the Newton iterations is obtained in 5 iterations for each step for all
discretizations and formulations with a rather tight convergence criterion in energy of
εE = 10−8. All formulations converge to the following displacement and rotation of the
loaded end, u = 59.9984 and θ = 1.16093. In order to keep the number of unknowns equal
for all elements, a uniform mesh of twelve 2-noded elements, six quadratic, four cubic and
three quartic elements is used.

In Fig. 11, the normalized displacement and rotation of the tip is plotted versus the
load P when the beam is discretized with a uniform mesh of 8 CTBNr and 1024 GEQ4
elements, respectively. As in the previous example, we observe that we are not able to
distinguish between the results obtained with the coarser mesh with 8 CTBNr elements
and the reference mesh with 1024 GEQ4 elements.

Fig. 12 shows convergence plots for meshes with 2 to 16 free nodes. From Figs. 12b,
we observe that independent of formulation the tip rotation for the nonlinear EB element
CEBNS is almost one order more accurate compared with the best linearly interpolated
TB elements. However, in contrast, from Figs. 12a, we observe that the tip displacement
of the CEBNS is less accurate compared with the best linearly interpolated TB elements.

When comparing the best 2-noded elements with GE elements of higher order (p = 2, 3
and 4), we observe analogous to the previous example that the rate of convergence for
all 2-noded elements coincide while for the higher order GE elements it increases with
polynomial order. Also for the GE elements the accuracy is shifted approximately one
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Figure 12: Tip loaded 45◦ circular cantilever beam: Relative error in tip displacement and rotation for
the various formulations for meshes with 2–16 free nodes: a) Displacement and b) rotation for the best
CR- and GE-elements of order p = 1, 2, 3 and 4.

order as the polynomial order is increased. Again, except for the coarsest mesh with 2 free
nodes all higher order GE elements outperform all the 2-noded elements both in terms
of accuracy and convergence rate. In order to get equal accuracy in tip displacement
we need two cubic (36 DOFs), five quadratic (60 DOFS) and 15 linear (90 DOFS) GE
elements, 20 TB (120 DOFS) and as much as 30 EB (180 DOFS) CR elements to match
the accuracy obtained with one single quartic GE element (24 DOFS). Similarly, as much
as three cubic, 11 quadratic, 200 linear GE elements, 200 TB and 100 EB CR elements, is
needed to obtain similar accuracy in tip displacement as one quartic GE element. Thus,
the accuracy obtained for each DOF invested is much higher for the higher order GE
elements compared to all 2-noded elements.

4.4 Tip loaded 90◦ circular arch

Fig. 13 shows geometry, boundary conditions, loading and material properties for a
planar 90◦ circular arch subjected to a tip shear load P . This problem has also been
studied by several other researchers, e.g. Bauer et al. [5], however they studied the
problem in the linear regime for which there exist a closed form solution, as shown in [5].

Even though the slenderness for this problem, defined as: R/h = 1000, is high, the
comparison between the various TB element formulations are made with the corresponding
EB elements accounting for transverse shear deformations. The tip load is applied over
10 equally sized load increments for all discretizations of the various beam formulations.
All formulations converge to the following displacement and rotation of the loaded end,
u = 0.90777806 and θ = 0.99420425. In Fig. 13, the red curve depicts the final converged
configuration.

Fig. 14 shows convergence plots for meshes with 6 to 96 free nodes. When comparing
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Figure 11: Tip loaded 45◦ circular cantilever beam: Tip displacement and rotation versus applied
load P : a) Displacement and b) rotation for a uniform mesh of 8 CTBNr and 1024 GEQ8 elements,
respectively.

The tip load is applied over 12 equally sized load increments for all discretizations of
the various beam formulations. Tab. 2 shows the convergence rates in terms of energy
for the first and last step for the various elements. As shown in Tab. 2, except for
the linear interpolated GE element that needs 7 iterations in the initial step, quadratic
convergence in the Newton iterations is obtained in 5 iterations for each step for all
discretizations and formulations with a rather tight convergence criterion in energy of
εE = 10−8. All formulations converge to the following displacement and rotation of the
loaded end, u = 59.9984 and θ = 1.16093. In order to keep the number of unknowns equal
for all elements, a uniform mesh of twelve 2-noded elements, six quadratic, four cubic and
three quartic elements is used.

In Fig. 11, the normalized displacement and rotation of the tip is plotted versus the
load P when the beam is discretized with a uniform mesh of 8 CTBNr and 1024 GEQ4
elements, respectively. As in the previous example, we observe that we are not able to
distinguish between the results obtained with the coarser mesh with 8 CTBNr elements
and the reference mesh with 1024 GEQ4 elements.

Fig. 12 shows convergence plots for meshes with 2 to 16 free nodes. From Figs. 12b,
we observe that independent of formulation the tip rotation for the nonlinear EB element
CEBNS is almost one order more accurate compared with the best linearly interpolated
TB elements. However, in contrast, from Figs. 12a, we observe that the tip displacement
of the CEBNS is less accurate compared with the best linearly interpolated TB elements.

When comparing the best 2-noded elements with GE elements of higher order (p = 2, 3
and 4), we observe analogous to the previous example that the rate of convergence for
all 2-noded elements coincide while for the higher order GE elements it increases with
polynomial order. Also for the GE elements the accuracy is shifted approximately one
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Figure 12: Tip loaded 45◦ circular cantilever beam: Relative error in tip displacement and rotation for
the various formulations for meshes with 2–16 free nodes: a) Displacement and b) rotation for the best
CR- and GE-elements of order p = 1, 2, 3 and 4.

order as the polynomial order is increased. Again, except for the coarsest mesh with 2 free
nodes all higher order GE elements outperform all the 2-noded elements both in terms
of accuracy and convergence rate. In order to get equal accuracy in tip displacement
we need two cubic (36 DOFs), five quadratic (60 DOFS) and 15 linear (90 DOFS) GE
elements, 20 TB (120 DOFS) and as much as 30 EB (180 DOFS) CR elements to match
the accuracy obtained with one single quartic GE element (24 DOFS). Similarly, as much
as three cubic, 11 quadratic, 200 linear GE elements, 200 TB and 100 EB CR elements, is
needed to obtain similar accuracy in tip displacement as one quartic GE element. Thus,
the accuracy obtained for each DOF invested is much higher for the higher order GE
elements compared to all 2-noded elements.

4.4 Tip loaded 90◦ circular arch

Fig. 13 shows geometry, boundary conditions, loading and material properties for a
planar 90◦ circular arch subjected to a tip shear load P . This problem has also been
studied by several other researchers, e.g. Bauer et al. [5], however they studied the
problem in the linear regime for which there exist a closed form solution, as shown in [5].

Even though the slenderness for this problem, defined as: R/h = 1000, is high, the
comparison between the various TB element formulations are made with the corresponding
EB elements accounting for transverse shear deformations. The tip load is applied over
10 equally sized load increments for all discretizations of the various beam formulations.
All formulations converge to the following displacement and rotation of the loaded end,
u = 0.90777806 and θ = 0.99420425. In Fig. 13, the red curve depicts the final converged
configuration.

Fig. 14 shows convergence plots for meshes with 6 to 96 free nodes. When comparing
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Figure 13: Tip loaded 90◦ circular cantilever beam: Geometry, loading, boundary conditions and
material data.

the best 2-noded elements with GE elements of higher order (p = 2, 3 and 4), we observe
analogous to the previous example that the rate of convergence for all 2-noded elements
coincide while except for the cubic element that exhibit the same convergence as the
quadratic element for the higher order GE elements it increases with polynomial order.
Furthermore the accuracy is shifted approximately half an order as the number of nodes
per element is increased. We also observe that the accuracy and the convergence rate of
all discretizations of the CR and the GE 2-noded TB elements, as well as the corotated
EB beam with engineering strain are indistinguishable, while the corotated EB beam with
Green-Lagrange strain is more accurate both for the tip displacement and the tip rotation.
As pointed out in Section 3, both the 2-noded linearly interpolated TB elements based on
the GE and the CR formulation denoted GEQ1r and CTBNr have been enhanced with
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RBF to overcome transverse shear locking as the slenderness increases. The results shown
in Fig. 14 demonstrate that the RBF enhancement works very well also in the nonlinear
regime for curved geometries in the case of a tip loaded cantilever beam.

5 SUMMARY AND CONCLUDING REMARKS

In this study, we have extended the geometrically exact (GE) beam formulation to
an arbitrary order interpolation and compared it with 2-noded Euler-Bernoulli (EB) and
Timoshenko beam (TB) elements based on the corotational (CR) formulation, two of the
most popular approaches for discretizing nonlinear beams within the context of nonlinear
finite element analysis with large displacements and large rotations but small to moderate
strains. While these two families of methods have evolved during the last decades and each
of them exist with several different enhancements, we have extended the original imple-
mentation of the GE formulation as presented in Simo [27] and Simo and Vu-Quoc [28, 29],
and the CR formulation proposed by Battini and Pacoste [3, 4]. Both formulations may
be extended to non-linear material models (inelastic or plastic), interfacing with other
types of structural elements and extended to nonlinear dynamic analysis.

The higher order GE beam elements are the formulation of choice when performance
and accuracy are crucial. Despite their complexity, both theoretical and numerical, our
study reveals that for the same CPU cost, the elements provide significantly more ac-
curate results than any of the 2-noded CR elements. It turns out that the CPU cost
involved in the computation of the higher order GE elements is not significantly higher
due to increased number of integration points and DOFS per element. As shown in
Helgedagsrud et al. [12], the per-degree-of-freedom accuracy of GE beam elements may
be even further improved by replacing the Lagrangian FE functions with isogeometric
analysis (IGA) based on non-uniform rational B-splines (NURBS) [8, 14, 22].

In spite that we have used a symmetrized tangent stiffness for all GE elements and
nonsymmetric tangent stiffness for all CR elements, they all exhibit a quadratic rate of
convergence in the Newton iterations. Our numerical study also demonstrates that the
accuracy, the number of Newton iterations, and the computational cost is independent of
the parameterization of the finite rotations for both formulations.

Another observation is that it is highly recommended to enhance the linearly interpo-
lated 2-noded TB elements with residual bending flexibility whether it is based on the GE
or the CR formulation. Furthermore, we cannot claim the superiority of one approach
over the other when we restrict our study to 2-noded TB elements. However, among
the 2-noded elements, the nonlinear 2-noded cubic interpolated EB element based on the
CR approach enhanced with the shallow arch terms exhibit superior accuracy. Modifying
the Hermitian shape functions to account for transverse shear deformations, this element
allows for a significant reduction of elements used to discretize the structure compared to
all other 2-noded elements studied.
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Figure 13: Tip loaded 90◦ circular cantilever beam: Geometry, loading, boundary conditions and
material data.
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all discretizations of the CR and the GE 2-noded TB elements, as well as the corotated
EB beam with engineering strain are indistinguishable, while the corotated EB beam with
Green-Lagrange strain is more accurate both for the tip displacement and the tip rotation.
As pointed out in Section 3, both the 2-noded linearly interpolated TB elements based on
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RBF to overcome transverse shear locking as the slenderness increases. The results shown
in Fig. 14 demonstrate that the RBF enhancement works very well also in the nonlinear
regime for curved geometries in the case of a tip loaded cantilever beam.

5 SUMMARY AND CONCLUDING REMARKS

In this study, we have extended the geometrically exact (GE) beam formulation to
an arbitrary order interpolation and compared it with 2-noded Euler-Bernoulli (EB) and
Timoshenko beam (TB) elements based on the corotational (CR) formulation, two of the
most popular approaches for discretizing nonlinear beams within the context of nonlinear
finite element analysis with large displacements and large rotations but small to moderate
strains. While these two families of methods have evolved during the last decades and each
of them exist with several different enhancements, we have extended the original imple-
mentation of the GE formulation as presented in Simo [27] and Simo and Vu-Quoc [28, 29],
and the CR formulation proposed by Battini and Pacoste [3, 4]. Both formulations may
be extended to non-linear material models (inelastic or plastic), interfacing with other
types of structural elements and extended to nonlinear dynamic analysis.

The higher order GE beam elements are the formulation of choice when performance
and accuracy are crucial. Despite their complexity, both theoretical and numerical, our
study reveals that for the same CPU cost, the elements provide significantly more ac-
curate results than any of the 2-noded CR elements. It turns out that the CPU cost
involved in the computation of the higher order GE elements is not significantly higher
due to increased number of integration points and DOFS per element. As shown in
Helgedagsrud et al. [12], the per-degree-of-freedom accuracy of GE beam elements may
be even further improved by replacing the Lagrangian FE functions with isogeometric
analysis (IGA) based on non-uniform rational B-splines (NURBS) [8, 14, 22].

In spite that we have used a symmetrized tangent stiffness for all GE elements and
nonsymmetric tangent stiffness for all CR elements, they all exhibit a quadratic rate of
convergence in the Newton iterations. Our numerical study also demonstrates that the
accuracy, the number of Newton iterations, and the computational cost is independent of
the parameterization of the finite rotations for both formulations.

Another observation is that it is highly recommended to enhance the linearly interpo-
lated 2-noded TB elements with residual bending flexibility whether it is based on the GE
or the CR formulation. Furthermore, we cannot claim the superiority of one approach
over the other when we restrict our study to 2-noded TB elements. However, among
the 2-noded elements, the nonlinear 2-noded cubic interpolated EB element based on the
CR approach enhanced with the shallow arch terms exhibit superior accuracy. Modifying
the Hermitian shape functions to account for transverse shear deformations, this element
allows for a significant reduction of elements used to discretize the structure compared to
all other 2-noded elements studied.
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Abstract. With the shenfun Python module (github.com/spectralDNS/shenfun) an ef-
fort is made towards automating the implementation of the spectral Galerkin method for
simple tensor product domains, consisting of (currently) one non-periodic and any number
of periodic directions. The user interface to shenfun is intentionally made very similar to
FEniCS (fenicsproject.org). Partial Differential Equations are represented through weak
variational forms and solved using efficient direct solvers where available. MPI decomposi-
tion is achieved through the mpi4py-fft module (bitbucket.org/mpi4py/mpi4py-fft), and
all developed solvers may, with no additional effort, be run on supercomputers using thou-
sands of processors. Complete solvers are shown for the linear Poisson and biharmonic
problems, as well as the nonlinear and time-dependent Ginzburg-Landau equation.

1 Introduction

The spectral Galerkin method, see, e.g., Shen [12] or Kopriva [5], combines spectral
basis functions with the Galerkin method and allows for highly accurate solutions on
simple, tensor product domains. Due to its accuracy and efficiency, the method is often
favoured in studies of sensitive fundamental physical phenomena, where numerical errors
needs to be avoided.

In this paper we will describe the shenfun Python module. The purpose of shenfun
is to simplify the implementation of the spectral Galerkin method, to make it easily
accessible to researchers, and to make it easier to solve advanced PDEs on supercomputers,
with MPI, in simple tensor product domains. The package can solve equations for tensor
product spaces consisting of any number of periodic directions, but, at the moment of
writing, only one non-periodic direction. This configuration may sound trivial, but it
occurs surprisingly often in physics, for example in plane shear flows like the channel or
pipe. And these simple configurations are used heavily to enhance our understanding of


