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Abstract 

Lightweight aggregates (LWA) were successfully produced both in a pilot-scale rotary kiln 

and in a laboratory chamber furnace. The mechanical properties of LWA were investigated in 

detail applying the European standard crushing resistance test (CR-test) as well as the single 

pellet compression test (spc-test). The spc-test showed that LWA pellets with porosities < 82 

% behave similar to solid brittle spheres under compression when considering only the solid 

fraction of the pellet and the strength may be calculated according to 2/crit critF d  where 

crit  is a porosity independent strength, Fcrit is the measured load at failure and d  the solid 

diameter (assuming zero porosity). It was reasoned that catastrophic failure was due to tensile 

*Manuscript
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stresses in the centre of the pellet and the strength was observed to increase exponentially 

with decreasing sample size. The relationship between the CR- and spc-test has been 

established facilitating “translation” of strength data between the two different test methods. 

 

Keywords: Lightweight aggregate, mechanical properties, crushing resistance, strength, 

Weibull modulus 

 

1 Introduction 

Artificial lightweight aggregates (LWA) are used in many applications like lightweight 

concrete, lightweight bricks, as insulation material for road construction or as filter material 

for water [1-3]. The raw material for LWA can be of different origin, i.e. waste materials like 

sewage sludge, washing aggregate sludge, waste glass, fly ash etc. or natural raw materials 

like clay or slate [4-9]. In civil engineering applications like bridges or offshore constructions 

there is a constant need for lighter and stronger materials, which can be satisfied for instance 

by lightweight concrete. Various authors showed that the strength of lightweight concrete is 

influenced by the utilized LWA [10-13], which leads to a certain interest of improving and 

modifying the mechanical properties of the aggregates. The literature provides several test 

methods to assess the mechanical strength of LWA. Besides the standard crushing resistance 

test the most frequently used technique is compression of single LWA pellets. The treatment 

of the obtained strength data is, however, inconsistent between different studies. Some 

authors just report the measured load at failure [14-18] others convert the load at failure into a 

strength (stress) value [4, 19-22] based on an equation derived by Hiramatsu and Oka [23] 

who investigated the strength of rocks. In order to improve the mechanical properties of LWA 
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a detailed knowledge on the stress distributions occurring within a spherical pellet during 

compression is required along with the understanding of factors of importance both to the 

stress distribution as well as fracture initiation. The aim of the present investigations is to 

provide this kind of knowledge with a main focus on the influence of porosity and LWA-

pellet size on the resulting strength of the pellets. The variation in strength for brittle materials 

is usually described by the Weibull modulus m and the applicability of Weibull theory on 

strength data obtained for single pellets will be discussed.  

 

2 Material and methods 

2.1 Raw materials 

The mineralogical and chemical composition of the raw clay was determined by an external 

research company using gravimetry, wet chemical quantification methods and X-ray 

diffraction.  

 

2.2 Production of expanded clay aggregates 

Lightweight expanded clay aggregates were produced in a pilot scale rotary kiln and manually 

in the laboratory. The raw material was clay containing 1 % waste oil as expansion agent. 

Homogenization of the clay as well as the mixing of oil into the clay was performed by shaft 

mixers in an industrial production line at Saint-Gobain Weber in Norway. The samples 

produced in the rotary kiln where pre-pelletized in an eirich mixer and fired at about 1120°C 

in a continuous process with a throughput of approximately 30 kg per hour. The kiln 

dimensions are 10 m in length and 30 cm of inner diameter. The finished material was 
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deposited in metal drums and cooled to room temperature. Samples produced in the 

laboratory were rolled by hand, dried at 105°C, pre-heated for 2 hours at 250°C and finally 

fired for 8 minutes at 1120°C in a chamber furnace. Just 6-10 pellets where burned at the 

same time to preserve a constant temperature in the kiln. After the burning process the 

samples were cooled in air to room temperature.  

 

2.3 Material testing 

The material produced in the rotary kiln resulted in pellets with diameters typically ranging 

between 0.1 mm and 15 mm while pellets produced by hand in the laboratory typically were 

in the range from 11 mm to 18 mm. Pellets produced in the rotary kiln subjected to 

investigation were taken from the following fractions (sieved) 1-2 mm, 2-4 mm, 4-6.3 mm, 

6.3-8 mm, 8-10 mm and >10 mm.  

The average dry particle density, particle , of each LWA fraction was determined by sand 

pycnometry. Between 120 and 4700 pellets (depending on size) were put into a flask and 

covered with a known amount of fine sand to measure the volume. The particle density was 

calculated by dividing the mass of the material by the measured volume.  

Helium pycnometry was used to determine the density of the solid phase, matrix , 

consequently denoted as the matrix phase. Each density measurement was performed by 

planetary milling a couple of pellets to a particle size <36 micron and subsequently assessing 

the density in an AccuPyc 1330 helium pycnometer from micrometics. The relative density, 

relative , and porosity, P, are calculated by Eq. 1 and Eq. 2 respectively. 
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particle
relative

matrix

         (1) 

100 1 particle

matrix

P         (2) 

Porosity values are given in per cent. The relative density represents a volume ratio between 

particle and matrix since the mass of gas within a pellet can be neglected compared to the 

mass of the matrix-phase. The volume of a sphere is proportional to the cube of its radius thus 

the relative density can be written in the form of Eq. 3. 

3

3

( / )
( / )

particle particle particle
relative

matrix matrix matrix

m vol r
m vol R

      (3) 

Where m is mass, vol. volume, r the “solid radius” of a sphere with “solid diameter”, d, and R 

the radius of an expanded pellet with diameter, D. The “solid diameter”, d, is the theoretical 

diameter of a pellet without any porosity and is calculated by Eq. 4. 

1/3
particle

matrix

d D          (4) 

The expansion (in %), E, of a pellet can be calculated by Eq. 5. 

100 D dE
d

.         (5) 

The crushing resistance of several samples of LWA was determined according to EN 13055-1 

[24]. However, in contrast to the description in EN 13055-1 (advising testing of a broad 

LWA-fraction between 4-22 mm ) crushing resistance of narrow fractions of 2-4 mm, 4-6.3 

mm, 6.3-8 mm and 8-10 mm of the samples produced in the rotary kiln were investigated. 
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The loose bulk density (defined in [25]) was determined during the crushing resistance test by 

measuring the mass of 1 litre of bulk material before it was compacted by vibration. 

Single pellet strength was determined by uniaxial compression between 2 parallel rigid 

platens. The diameter of every aggregate was measured with a calliper before the granule was 

placed on the bottom plate of a press. Lightweight aggregates usually don’t show a perfectly 

spherical geometry therefore the diameter was measured between the highest and the lowest 

point when the pellet was lying in a stable position. Compression was performed with a 

constant speed of displacement of 2 mm per minute until a crack ruptured the sample into at 

least two larger pieces. The applied load at failure, critF , was recorded. The test equipment 

was a press made by instron coupled to a load cell with a maximum capacity of 1 kN. The 

platen material was alumina. Between 20 and 90 pellets were tested for each sample set 

depending on the availability of material. The typical quantity was 40-50 pellets to provide a 

sufficient statistical reliability. 

Prior to catastrophic failure, all pellets will suffer a certain “crumbling” (apparent plastic 

deformation) at the contact point between platens and pellet. The radius, ca , of this 

“crumbled area” at the point of failure is important for the calculation of stress distribution 

(see theory next section) and can be approximated from the average displacement of the 

piston at breakage, x , and the initial average radius of a sample series, R , by Eq. 6 assuming 

a perfect sphere and equal damage/crumbling at the top and at the bottom of the pellet.  

 

1
22 2( )

2c
xa R R         (6) 
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3 Theory 

3.1 Strength testing methods for LWA 

Yang and Huang [26] developed a procedure to estimate the strength of LWA by measuring 

the compressive strength of concrete cylinders containing varying amounts of LWA. This 

method requires cast lightweight concrete specimens and is therefore inconvenient for a quick 

strength test of LWA. Another test is reported by Harada et al. [27] who developed the so 

called “monolayer loading test” to investigate the strength of several pellets at the same time. 

A couple of pellets are arrayed in one layer and crushed by a piston. This method requires a 

number of LWA with almost exactly the same size. Inherent to the production process LWA 

will always exhibit a certain size distribution; additionally the pellets are not completely 

spherical which makes it more difficult to arrange them in a way that they all have the same 

height such that the press will crush them all at the same time. EN 13055-1 [24] describes 

how the crushing resistance of one litre of pellets is determined. The testing procedure is the 

following: LWA of the sieving fraction 4-22 mm are put into a steel container of one litre 

volume, compacted by vibration and compressed by 20 mm with a steel piston with a cross 

section area of 100 cm2. The total time of the compression process should be approximately 

100 seconds. The crushing resistance is calculated by dividing the maximum recorded load by 

the area of the piston. It has consequently the same dimension as pressure (MPa) and is 

therefore a potential way to assess the strength of LWA. A disadvantage of EN 13055-1 is 

that at least 3 litres of compacted bulk material has to be available since the standard is based 

on three parallels. This method is therefore not applicable to LWA produced in small 

quantities in a laboratory. Since this is the standard test to determine the mechanical stability 

of LWA it was incorporated in this study. Another method, which is fast and more 

appropriate for small quantities, is compression of single pellets between two parallel, rigid 
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platens. This method is chosen by most researchers when new types of LWA are produced 

and tested with respect to mechanical strength. 

 

3.2 Strength calculation of brittle spheres under uniaxial compression 

One of the main challenges of the single pellet compression test is the calculation of the 

critical stress that leads to the failure of the particle. A number of different approaches are 

reported in the literature and Tab. 1 lists a few of the equations developed along with the 

corresponding material tested. The basic principle is the same, that is, the applied load is 

related to an area that scales with the size (radius or diameter) of the sample.  

Table 1 

material / shape equation reference 

rocks / irregular shape 20.9 /F D  [23, 28] 

soil aggregates / irregular shape 20.576 /F D  [29] 

soil aggregates, rocks/ irregular 
shape 

2/F D  [30-32] 

hollow ceramic spheres 2/ ( )F R  [33] 

 

Caption table 1: Equations reported in the literature to determine the stress occurring in a 

sphere or irregular shaped test piece under uniaxial compression.  is equal to the stress, F  

the applied load, D  the diameter of the sample and R  the radius of the sample. 
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3.3 Stress distribution and fracture behaviour of brittle spherical particles under uniaxial 

compression 

Hiramatsu and Oka [23] investigated the strength of irregular shaped test pieces to develop a 

quick method for testing the mechanical properties of rocks. They assumed the stress 

distribution in a solid, irregular shaped specimen under diametric compression to be the same 

as in a spherical specimen. The maximum stress is reported to occur along the axis between 

the two loading points. Li et al. [28] applied the approach of Hiramatsu and Oka [23] 

successfully to calculate the tensile strength of solid catalysts of spherical shape. By using 

Weibull statistics [34] Li showed that all the samples revealed the same fracture mode and 

that failure was due to tensile stresses. Johnson et al. [35] and Chau et al. [36] investigated the 

fracture behaviour of solid homogeneous spheres made from plaster. Both studies show that 

spheres under uniaxial compression fracture into hemi-spheres or in up to 6 wedge shaped 

pieces and 2 cones that occur on the top and on the bottom of the specimen. The formation of 

the cone shaped pieces is due to Hertzian stresses [37] that occur at the contact area between 

the platen and the sample [35, 36]. Kschinka et al. [38] observed an explosive like fracture of 

glass spheres under compression. The whole sample virtually pulverised and no conclusions 

about fracture mode or crack origin could be deduced from the debris. However, by applying 

Weibull statistics [34] the authors showed that the fracture origin is most likely to occur 

within the bulk-phase and not at the surface of the specimen. Similar results were presented 

by Tsoungui et al. [39] who investigated the size effect on strength and the fracture origin in 

plaster spheres and cylinders. Shipway and Hutchings [40] presented a numerical solution to 

calculate the stress distribution within brittle spheres under compression between parallel 

platens and investigated the fracture of lead glass spheres under the same conditions [41]. The 

work was based on investigations and calculations of stress distributions in spheres carried 

out by Dean et al. [42]. The studies show that the maximum tensile stress occurs in the 
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10 

interior of the sample, as suggested by previous investigators, however, the stress distribution 

also depends on the ratio between the radius of the contact area between sample and platen, 

ac, and the radius of the sample, R. The study shows that for values /ca R  < 0.6 the axial 

tensile stress exceeds the surface tensile stress and given a homogenous flaw distribution 

throughout the pellet failure will be due to tensile stresses at the centre of the sample rather 

than at the sample surface.  

Investigations on mechanical strength of irregular shaped soil particles were amongst other 

carried out by McDowell et al. [43-45] and Dexter and Kroesbergen [29]. These studies 

reviewed again several other works that were assessing the strength of irregular shaped 

particles. Most studies concluded that the highest tensile stress occurs in the centre of the 

particle and the strength of the material is given by the load at failure divided by the diameter 

squared [30, 31] as presented in Tab. 1. 

Only a few investigations are related to hollow spheres of macroscopic size. Chung et al. [33] 

reported hollow brittle spheres to fail due to tensile stresses on the inside of the shell in the 

region close to contact zone between platen and sample when compressed between two 

parallel platens. This behaviour was observed experimentally and predicted by computer 

modelling and later confirmed in another computer simulation by Carlisle et al. [46, 47]. 

Chung et al. [33] described the hollow spheres to fracture into hemispheres consistent with 

vertical cracks between the points of contact.  

 

3.4 Fracture, size and the Weibull approach 

Strength data of brittle materials is usually described by Weibull statistics [34]. It is based on 

the weakest link theory and allows a characterization of the reliability of a set of samples [48]. 
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A two-parameter Weibull function in the form of Eq. 7 correlates, the failure probability, 

Fprob, with the applied stress at failure crit .  

 
0

1 exp
m

crit
probF        (7) 

Where m  is the Weibull modulus describing the reliability or scatter of a sample set and 0  

a scaling parameter which is referred to as the characteristic stress at which the probability of 

failure is 0.632. Weibull showed that crit  is proportional to the (1/ )m  power of its 

volume. The Weibull modulus m  can also be interpreted as the density of Griffith flaws [49] 

within the tested volume. 

The force, critF , needed to crush a brittle spherical particle increases with the particle 

diameter, D,
 
 following a power law in the form [39, 50, 51] 

 critF kD            (8) 

Where k  is an empirical constant, the exponent  is given for a volume fracture mode by 

Eq. 9  

 
2 3m

m
           (9) 

and in the case of contact fracture by Eq. 10 [39]. 

 
2 3

3
m

m
           (10) 
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Consequently, if one determines the exponent  in Eq. 8 and the fracture mechanism is 

known it is possible to calculate the Weibull modulus. Eq. 11 and Eq. 12 are derived from Eq. 

9 and Eq. 10 to calculate m in case of volume fracture and contact fracture respectively. 

 
3
2

m            (11) 

 
3 3
2

m            (12) 

 

4 Results  

Tab. 2 shows the mineralogical and chemical composition of the raw clay. The data is 

presented as received and was not normalized to 100 %. Tab. 3 presents an overview of the 

properties of the expanded clay aggregates produced in the rotary kiln (denoted as “rot- 

average sample diameter rounded”) and in the laboratory (denoted as “lab- average sample 

diameter rounded”). The diameter and the load at failure were determined for every single 

pellet and are given as the average of all tested samples (± the standard deviation) whereas the 

other values (d, particle , P, relative) are based on a number of simultaneously tested pellets. 

 

Table 2 

mineralogy content chemistry content 
Quartz 17 SiO2 59 

Plagioclase 19 Al2O3 18 
Orthoclase 6 Fe2O3 7 
Amphibole 4 K2O 4 

Ilite/muscovite 40 MgO 3 
Chlorite 10 CaO 2 

Fe-Oxihydate 4 Na2O 1 
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TiO2 1 
LOI(1000°C) 5 

 

Caption Table 2: Approximate mineralogical and chemical composition of the raw clay; 

Results are presented in wt.-%. 

 

Table 3 

sample 
average 

diameter, 
D [mm] 

sieving 
fraction 
[mm] 

solid 
diameter, 
d [mm] 

particle 
density, particle 

[g/cm3] 

porosity, 
P [%] 

relative 
density, relative 

load at 
failure, 
Fcrit [N] 

numbe
of teste
sample

rot-2 1.9 (±0.12) 1-2 1.2 0.67 75 0.25 14 (±5) 50 
rot-4 3.6 (±0.29) 2-4 2.2 0.58 78 0.22 34 (±8) 50 
rot-5 5.3 (±0.72) 4-6.3 3.1 0.53 80 0.20 57 (±17) 50 
rot-7 7.1 (±0.48) 6.3-8 4.0 0.49 82 0.18 83 (±24) 50 
rot-9 8.8 (±0.66) 8-10 4.9 0.46 83 0.17 101 (±26) 90 
rot-12 11.7 (±0.77) > 10 6.1 0.39 86 0.14 121 (±45) 50 

lab-11 11.4 (±0.26) - 6.4 0.49 82 0.18 86 (±19) 43 
lab-13 12.8 (±0.44) - 7.3 0.50 82 0.18 101 (±19) 22 
lab-14 13.8 (±0.56) - 7.8 0.49 82 0.18 118 (±22) 40 
lab-15 15.3 (±0.59) - 8.4 0.45 83 0.17 116 (±33) 21 
lab-16 16.0 (±0.55) - 8.8 0.46 83 0.17 116 (±29) 72 
lab-17 17.3 (±0.63) - 9.4 0.43 84 0.16 110 (±28) 39 

Caption Table 3: Overview of the properties of samples produced in the rotary kiln (rot-) and 

in the laboratory (lab-); the numbers denote average diameter rounded in mm. Standard 

deviations are given in brackets. 

 

4.1 Material description 

Fig. 1 pictures a representative pellet of each fraction of the material produced in the rotary 

kiln. The pellets exhibit an almost spherical shape and a relatively homogeneous outer shell 
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which is the result of the constant rotation of the samples during the burning process. Fig. 2 

shows representative pellets of each fraction produced in the laboratory. Due to the 

differences in production (no rotation) the shape is somehow less spherical compared to 

samples from the rotary kiln and the outer shell is more heterogeneous and can be divided in 

two different types. One type is thick and dense and originates from the aggregate surface 

prior to expansion, the other type is a more porous surface formed during the expansion 

process. Fig. 3 displays a typical example of such a specimen with the dense shell in the lower 

hemisphere and the more porous shell in the upper hemisphere. The general internal structure 

is fairly similar throughout all samples. Each specimen consists of the typical features of 

LWA which are a highly porous core containing a rather broad distribution of pore size and 

shape and a denser outer shell. Fig. 4 shows these features for one specimens of the series rot-

5. The interface between the shell and the bulk-phase (the term bulk-phase consequently 

denotes the porous interior of one pellet) is in most cases not well defined, hence a reliable 

value for the typical shell thickness of a series of pellets could not be determined.  

 

Figure 1 

 

Caption Fig. 1: Illustration of LWA pellets produced in a pilot-scale rotary kiln. Diameters 

range from 1.8 mm (left) up to 12 mm (right). 
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Figure 2 

 

Caption Fig. 2: Illustration of LWA pellets produced in a chamber furnace in the laboratory. 

Diameters range from 11 mm (left) up to 17 mm (right). 

Figure 3 

 

Caption Fig. 3: Illustration of one pellet of the series lab-16 (16 mm diameter) picturing the 

heterogeneity of the outer shell. The lower hemisphere exhibits a dense shell; the upper 

hemisphere exhibits a more porous shell. 

Figure 4 
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Caption Fig. 4: Light microscope picture of the cross-section of a LWA pellet of 6 mm 

diameter produced in the rotary kiln showing the typical features of an LWA: A highly porous 

core surrounded by a relatively dense thin shell. The total porosity of the displayed pellet is 

approximately 82 %.  

 

4.2 Material properties 

The change of particle density, particle, and porosity, P, with the particle diameter, D, is given 

in Fig. 5 for all samples. The rotary kiln samples show a clear trend of decreasing particle 

density and increasing porosity with increasing diameter. Hence, the bigger the pellet the 

more it expanded during the firing process leading to a lower density. Fig. 6 visualizes the 

expansion in per cent, E, (the “bloating index” [20, 52] utilized in other studies describes 

basically the same phenomena) in dependency of the pellet diameter, D. And Fig. 7 shows the 

pellet diameter, D, as a function of the size of the unburned pellet denoted as “solid diameter”, 

d (calculated with the assumption P=0). Fig. 6 and Fig. 7 imply that the final pellet diameter, 

D, is a function of the size (and consequently mass) of the unburned pellet, d, and the 

expansion, E, and additionally, the expansion is proportional to the size of the unburned 

pellet. 

The material produced in the laboratory shows generally the same trends as the rotary kiln 

samples however less dependent on the pellet diameter, D, and solid diameter, d. 

The density of the matrix phase ranges from 2.61 g/cm3 to 2.73 g/cm3 without any systematic 

correlations to other properties. This value is generally governed by the raw material and the 

heat treatment during the production process. Since both variables are quite constant 

throughout the same production process, the small variations in the matrix density can be 
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explained by the heterogenic nature of the material. Fig. 5 illustrates the close correlation 

between particle density, particle, and porosity, P, throughout all sample series and hence 

shows the general consistency of the matrix density for different sized pellets of the same 

production process.  

Figure 5 

 

Caption Fig. 5: Particle density, particle , and porosity, P, of all samples produced in the rotary 

kiln and in the laboratory. 

Figure 6 

 

Caption Fig. 6: Calculated, theoretical expansion, E, of all samples. 
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Figure 7  

 

Caption Fig. 7: Final sample diameter, D, as function of the solid diameter, d. 

 

4.3 Single pellet compression 

Results of the single pellet compression test are presented in Fig. 8. The experimentally 

determined value for the average load at failure, Fcrit, of the sample is plotted in dependency 

of the pellet diameter, D. The error bars represent the standard deviation of the sample sets 

showing a significant scatter in Fcrit. A better overview of the extent of the scatter of the load 

at failure and the diameter within a sample series is given in Fig. 9. The relative standard 

deviation (standard deviation in per cent of the average value) of the load at failure, Fcrit, and 

the diameter, D, are displayed. The relative standard deviation of Fcrit of the rotary kiln 

samples varies between 22 % and 40 % with an average of 30 %. In case of the laboratory 

samples the average value of the variation is 23 %. The average diameter, D, of a sample 

series produced in the rotary kiln exhibits a relative standard deviation of 7 %. Rot-5 (fraction 

4-6.3 mm, ct. Tab. 3) shows an increased value of 14 % which is due to the large size range of 

2.3 mm compared to the other fractions that show a maximal size range of 2 mm (Tab. 3). 
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Samples produced in the laboratory exhibit a size variation of around 4 % in average. In the 

succeeding graphs error bars are omitted for sake of clarity. Additionally, it is not possible to 

determine the standard variation for all properties since some of them (i.e. density or porosity) 

are calculated from the average values of several pellets and not from each single specimen 

within a series. Generally there is a large scatter in properties due to the heterogeneous nature 

of the material, therefore a large amount of samples were normally tested to obtain a 

representative average value. 

Figure 8 

 

Caption Fig. 8: Failure load for all sample series; determined by the spc-test; error bars 

represent the standard deviation. 
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Figure 9 

 

Caption Fig. 9: Relative standard deviation (%) of the failure load, Fcrit, and the pellet 

diameter, D. 

 

4.4 Fracture of lightweight aggregates under uniaxial loading conditions 

When a single LWA pellet is compressed between two rigid platens the top and bottom of the 

aggregate get crumbled before the sample ruptures into two to four pieces. The fracture 

behaviour can be described as quasi elastic, meaning that the sample gets deformed by 

crumbling before a brittle fracture (catastrophic failure) occurs. Fig. 10 shows a typical load- 

displacement graph of the compression of a LWA pellet with a constant speed of 

displacement of 2 mm/min. “Local minima” in the applied load occur, basically due to the 

above described crumbling, however there is a linear trend until catastrophic failure. Fig. 11 

a) shows a ruptured LWA pellet. In this case the sample splits into 3 fragments and the porous 

interior is clearly seen due to the crumbling effect. Fig. 11 b)-c) show typical fracture patterns 

where the sample is split into two and four pieces respectively. It should be mentioned that 
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the samples produced in the laboratory generally tend to break rather into two hemispheres 

whereas the samples produced in the rotary kiln randomly split in two to four pieces.  

 

Figure 10  

 

Caption Fig. 10: Typical load- displacement graph resulting from the compression of a single 

LWA pellet between rigid, parallel platens with a constant speed of displacement, 2 mm/min 

(spc-test). 

Figure 11 a-c 

a b 
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c 

Caption Fig. 11: Fracture patterns of LWA pellets after the spc-test. a) ruptured LWA pellet; 

b) typical fracture pattern of a pellet that splits into two hemispheres; c) typical fracture 

pattern of a pellet that splits into four evenly shaped pieces.  

 

4.5 Crushing resistance (EN 13055-1) 

The crushing resistance, C, was determined for the samples rot-4, rot-5, rot-7 and rot-9. All 

the remaining samples were not available in sufficient amount to perform this type of 

investigation. The results are presented in Fig. 12 including the loos bulk density of the tested 

samples. The crushing resistance increases with both, decreasing sample diameter, D, and 

increasing bulk density.  
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Figure 12 

 

Caption Fig. 12: Crushing resistance, C, determined according to EN 13055-1 for the rot-4 to 

rot-9 samples; the insertion shows the loose bulk density for the same samples. 

 

5 Discussion 

5.1 Prediction of the load at failure for single pellet compression  

Various equations have been proposed (Tab. 1) to describe the stress distribution and strength 

of brittle spheres. In order to apply one of these equations to lightweight aggregates the 

general fracture behaviour of LWA has to be similar to the fracture behaviour of the material 

these equations were developed for. The described fracture pattern of LWA (section 4.4) is 

similar to observations made during compression tests of solid, brittle spheres [35, 36, 39] 

which is an indication that failure is caused by similar stresses within the bulk-phase of the 

pellet. However, due to the core-shell structure and the high porosity levels of LWA it is not 

automatically given that the stress is distributed in the same way as in solid, brittle spheres 

when being compressed. Since the stress distribution in the material cannot be directly 
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measured a correlation between the load at failure, Fcrit, and another measurable macroscopic 

property of importance to the stress distribution needs to be found. It is assumed that these 

properties may be divided into two general groups: The first one is the strength of the matrix 

material which is influenced by the mineralogical composition, the amount of glass phase and 

the density of micro cracks which again is influenced by the thermal history of the material 

and its composition. The second group includes geometrical factors of the pellet as a whole 

which are the diameter, total porosity, pore size distribution, shape of the pellet, thickness of 

the shell, material distribution in core and shell etc. Additionally the shape of a pellet is not 

constant but changes during the test as it gets crumbled at the point of contacts between pellet 

and platens. All these variables may play a role and more or less affect the value of Fcrit.  

In the case of solid, brittle spheres it has been reported that the load at failure increases with 

the sphere diameter following a power law [39, 50, 51] when the specimens are compressed 

between parallel platens. Fig. 13 displays the development of the load at failure, Fcrit , 

determined by single pellet compression with the size of LWA pellets on a log-log-scale. The 

sample size is represented in the form of the actual diameter, D, and as the solid diameter, d, 

calculated by Eq. 4. Just considering the 4 smallest sample series of the rotary kiln (rot-2 to 

rot-7) and the 3 smallest sample series of the laboratory samples (lab-11 to lab-14) a linear 

trend is observed independent of the type of diameter applied (d or D). The solid and dashed 

lines in Fig. 13 are the linear regressions of the samples described above for both d and D. 

The slopes are 1.46 (for d) and 1.34 (for D) for the rotary kiln samples and 1.56 (for d) and 

1.58 (for D) for the laboratory samples. Values reported in the literature range from 1.5 for 

cement grains [51], 1.6 for plaster spheres [39] and 1.44 for glass spheres [50]. Consequently, 

when taking the solid diameter into consideration samples of both production processes are in 

the range of solid brittle spheres. Hence, for the smaller fractions of LWA the load at failure is 

correlated with the solid diameter in the same way as observed for solid, brittle spheres.  
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However, as the sample size increases deviation from linearity is evident for both types of 

production processes (applying for the samples: rot-9, rot-12 and lab-15 to lab-17). Fig. 14 

shows the load at failure, Fcrit, in terms of d on a lin-lin-scale and porosity values, P, are 

added as numbers. The solid lines are derived from the regressions given in Fig. 13 and 

correspond to Eq. 13 for the rotary kiln samples and Eq. 14 for the laboratory samples.  

calF  represents the calculated load at failure and d  the solid diameter of the sample. Both 

equations are given in the form of Eq. 8. 

1,4610.83calF d          (13) 

1,564.68calF d          (14) 

These functions predict the result of the single pellet crushing test for a given solid diameter, 

d, with the following limitation: Once the porosity exceeds 82 % the measured load at failure 

deviates from the theoretically predicted trend towards lower values. This effect is observed 

independently from both the production process and the absolute sample size. The deviation 

from the predicted strength may be due to thinner, less stable solid walls within the bulk-

phase and/or by a decrease in the total amount of connected solid walls.  

It can be noted that for a given production process the load at failure of LWA is basically 

dependent on the particle size and the total porosity. Most of the other mentioned properties 

that might influence Fcrit are constant for a given production process or seem to have a minor 

impact on the measured value. In case the porosity does not exceed a certain threshold of 

about 82 % the load at failure can be predicted with Eq. 13 and Eq. 14.  
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Figure 13 

 

Caption Fig. 13: Failure load, Fcrit, in dependency of the solid diameter, d, and the actual 

diameter, D, for all samples. The solid and dashed lines are the linear regressions of the series 

rot-2 to rot-6 and lab-11 to lab-14 respectively.  

Figure 14 

 

Caption Fig. 14: Failure load, Fcrit, in dependency of the solid diameter, d, for all samples. 

The numbers denote the total porosity, P (%). Eqs. 13-14 are represented by the solid lines. 
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5.2 Fracture origin and calculated strength for LWA pellets with porosities P < 
82 %. 

It has been shown that LWA with porosities up to 82 % behave similar to solid brittle spheres 

under compression when taking the solid fraction of the pellet into consideration (Fig. 13-14). 

Hence, it is reasonable to consider whether one of the equations given in Tab. 1 is able to 

convert the measured load at failure, Fcrit, into a strength (stress) value, crit. These equations 

just differ in the pre-factor and it is suggested to utilize the simplest approach with a pre-

factor of 1 as done for instance by [30-32, 43-45]. The resulting equation can be written as 

2
crit

crit
F
d           (15) 

Where crit  is the stress leading to failure, Fcrit the load at failure and d the solid diameter of 

the LWA pellet. Eq. 15 describes a porosity independent strength value for LWA. According 

to [23, 28, 38, 39] solid spheres basically fail due to tensile stresses within the bulk-phase of 

the specimen when compressed between parallel platens. Since the LWA pellets also behave 

similar to solid, brittle spheres with respect to fracture (Fig. 13) it is likely that LWA pellets 

also fail due to tensile stresses within the bulk-phase. Consequently crit  in Eq. 15 can the 

seen as the tensile strength of LWA and will be denoted as solid strength referring to the 

dependency on the solid amount of material in the pellet.  

It was reported in chapter 3.3 that the stress distribution within a spherical particle will be 

influenced by the ratio between the radius of the contact area between platen and sample, ac, 

and the radius of the sample, R. In case of LWA the radius of the contact area, ac, can be 

estimated by Eq. 6 from the crushed part at the top and at the bottom of the sample (ct. Fig. 

11a). The measured load at failure might give a false impression of the actual occurring 
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tensile stresses within the pellet in case ac is relatively large compared to the radius of the 

sample, R [40, 41]. Additionally, when comparing different samples the ratio /ca R  should 

be similar to ensure that the load at failure reflects the same stresses in all samples. Ratios 

/ca R  for LWA were found to range from 0.35 to 0.43 for the rotary kiln samples and from 

0.24 to 0.29 for samples produced in the laboratory. According to Shipway and Hutchings 

[40, 41] the tensile stress along the load axis does not change significantly for 0.2 < /ca R  < 

0.6 and the axial tensile stress always exceeds the surface tensile stress. This emphasizes that 

LWA most likely fail due to tensile stresses at the given loading conditions.  

 

5.3 Fracture origin and calculated strength for LWA with porosities P >82 % 

Once LWA pellets exceed a porosity of approximately 82 % the mechanical behaviour 

deviates from the predicted behaviour as discussed in section 5.1. One possible explanation is 

that the stress distribution changes significantly at some threshold value of the porosity, 

Pthreshold, corresponding to a change in fracture mechanism and therefore deviating from the 

predicted load at failure, Fcrit. Well above Pthreshold the LWA pellets may behave similar to 

hollow spheres and fail as described by Chung [33] due to tensile stresses on the inside of the 

shell in the region close to contact zone between platen and sample. However, no final 

evidence supporting such significant change in fracture behaviour could be found. On the 

other side, a possible change in fracture mechanism for highly porous bodies was reported by 

Miyoshi et al. [53]. They observed a significant decrease in tensile yield strength in 

aluminium foams as a certain porosity threshold (about 80 %) was exceeded. The underlying 

reasons were explained as changes in pore morphology. Though the type of failure is quite 

different for Al-foams (ductile) compared with LWA (brittle), it is interesting to notice that 

there is a shift in mechanism at very high porosities for both type of materials. To finally 
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clarify the mechanisms governing the decrease in strength at high porosities further 

investigations will be necessary.  

 

5.4 Strength comparison between LWA produced in the laboratory and LWA produced in the 

rotary kiln 

The development of the solid strength of LWA with the solid diameter is displayed in Fig. 15 

for samples produced in the laboratory and in the rotary kiln. The solid lines represent the 

trends of pellets with porosities lower than 82 % and the circles and triangles represent the 

experimental data. All values were calculated by Eq. 15. Samples deviating from the trend 

line represent porosities above 82 %. The strength of the LWA pellets generally increases 

with decreasing solid diameter consistent with the inherent properties of brittle materials: 

With decreasing sample volume the probability of finding a critical flaw that leads to failure 

for a given stress decreases. Fig. 15 enables a comparison between the two different 

production processes. The samples produced in the laboratory show a lower strength than the 

samples produced in the rotary kiln. A possible explanation is the difference in cooling rates 

that the pellets experience after expansion. The samples from the rotary kiln were produced in 

large amounts and directly transferred to metal drums for storage, hence subjected to a 

relative slow cooling rate due to the low thermal conductivity of this highly porous material. 

However, the batches produced in the laboratory were typically only a few pellets and after 

expansion they were taken directly out of the furnace and cooled at ambient temperature, 

hence these pellets were virtually exposed to a thermal shock which potentially initiate micro 

cracks and subsequent less mechanical strength.  

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 

Figure 15 

 

Caption Fig. 15: Solid strength, crit, as a function of the solid diameter, d, for all samples. 

The solid lines represent the trend of pellets with porosities less than 82 %. Pellets with 

porosities >82% show less strength than predicted by the solid lines.  

 

5.5 Determination of the Weibull modulus m of LWA 

The Weibull modulus m is a measure of the reliability of brittle materials and thus an 

interesting parameter for LWA. Usually this value is determined by establishing Weibull-

plots where the failure probability of several samples is plotted against the stress at failure on 

a double logarithmic scale. The m value results from the slope of the regression of that graph. 

This method is not applicable due to the fact that the actual stress that leads to failure of every 

single pellet is unknown. The stress generated in a pellet is calculated by Eq. 15 which also 

includes the porosity of the pellet. The porosity was not determined for every single pellet but 

just for the respective sample series. Taking the average porosity of a sample series into 

account to predict the strength of each single specimen induces a large error in the calculation 
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and hence would give an incorrect value for m. An approximation of the m value of LWA is 

anyway possible with the method described in section 3.4. In section 5.2 arguments were 

given supporting the assumption that volume fracture is the most probable fracture mode for 

lightweight aggregates. Hence, the Weibull modulus can be calculated by Eq. 11 when 

considering just the samples that show the same behaviour as solid brittle spheres under 

compression. With the exponent  in Eq. 13 and Eq.14 a Weibull modulus of 6.82 for 

samples produced in the laboratory and 5.55 for sample produced in the rotary kiln was 

determined. These values are in good agreement with data reported in the literature for similar 

materials like porous phosphate glass ceramics [54] or glass spheres [38]. The variation in m 

results from the differences in the production process.  

 

5.6 Relation between solid strength and crushing resistance 

The results of the crushing resistance test can be approximated from the solid strength values 

determined by single pellet compression with the following equations (the underlying 

calculations and assumptions are presented in the appendix). 

 

2
3

2
crit bulk

particle

FC
D

         (16)  

 2 0,74critFC
D           (17) 

Where C  is the crushing resistance, critF  the load at failure recorded by singe pellet 

compression and D  the actual diameter of the pellet. Eq. 16 takes the actual packing density 

of aggregates within the steel container of the crushing resistance test into consideration 
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whereas Eq. 17 approximates the packing density from a literature value of 0.64 [55] for the 

highest random packing density of equally sized spheres. The results of the calculated 

crushing resistance using Eq. 16 and Eq. 17 are presented in Fig. 16 in comparison to the 

measured crushing resistance. The “calculated crushing resistance 1” is the result of Eq. 16 

and the “calculated crushing resistance 2” is the result of Eq. 17. Both solutions correspond 

well with the measured crushing resistance. However the values of the “calculated crushing 

resistance 2” give a better fit with the measured data than the “calculated crushing resistance 

1”. To solve Eq. 16 the loose bulk density was taken into consideration but the bulk material 

was compacted by vibration before the crushing resistance test was performed and the actual 

(compacted) bulk density at the moment of crushing was not determined and will be slightly 

higher than the loos bulk density. This might be the reason why the theoretical packing 

density (used in Eq. 17) leads to better results than the measured packing density (used in Eq. 

16). It should be pointed out that it is not necessary to know the bulk density of the material to 

elaborate the crushing resistance by Eq. 17 thus the “calculated crushing resistance 2“ is given 

for all sample series produced in the rotary kiln. 

Eq. 16 and Eq. 17 enables us to convert the solid strength into the crushing resistance and vice 

versa. That implies that Eq. 15 describes the strength of porous, almost spherical particles 

quite well. Eq. 17 can be utilized to relate crushing resistance and solid strength in case the 

investigated particles are almost of the same size whereas Eq. 16 should also be applicable to 

broader size fractions.  
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Figure 16 

 

Caption Fig. 16: Correlation between measured crushing resistance and calculated crushing 

resistance. The calculated crushing resistance 1 and 2 are based on Eqs. 16-17.  

 

 

6. Conclusions  

Lightweight expanded clay aggregates of varying size and porosity were successfully 

produced both in a pilot-scale rotary kiln and in a chamber furnace in the laboratory. The 

pellets were investigated with respect to mechanical properties applying the method of the 

European standard crushing test (CR-test) as well as the single pellet compression test (spc-

test) on more than 550 samples 

The spc-test showed that LWA pellets with porosities <82 % behave similar to solid brittle 

spheres under compression when considering only the solid fraction of the pellet and the 

strength may be calculated according to 2/crit critF d  where crit  is a porosity 
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independent solid strength, Fcrit is the measured load at failure and d  the solid diameter 

(assuming zero porosity). It was reasoned that catastrophic failure was due to tensile stresses 

in the centre of the pellet and the strength was observed to increase exponentially with 

decreasing sample size. However, deviation (lower strength) from exponential behaviour was 

observed at porosities typically >82%. 

A reasonable approximation for the assessment of the Weibull modulus (m) for LWA has 

been identified and m was found to vary between 5.5 for rotary kiln samples and 6.8 for 

laboratory samples. 

The relationship between the CR- and spc-test has been established, facilitating “translation” 

of strength data between the two different test methods. This may represent a new and useful 

tool applicable also on an industrial scale related to quality monitoring and assessment. 

 

 

Appendix:  

Calculations to describe the relation between solid strength and crushing resistance 

It is assumed that the result of the crushing resistance test is dependent on the volume ratio of 

solid material and the strength of the solid material within the test cylinder. Assuming that the 

fracture mechanism is the same for single pellet compression and crushing resistance the 

following correlation between solid strength of single pellets and crushing resistance can be 

postulated: 

2/3
( )

1
( ) crit

relative c

C          (18)  
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Where C is the crushing resistance, the solid strength, crit, is calculated by Eq. 15 and 

( )relative c  represents the volume ratio between bulk material and matrix material within the 

cylinder and is calculated in the same way as the relative density, relative , in Eq. 1: 

( )
bulk

relative c
matrix

          (19) 

Where bulk  is the bulk density and matrix  is the matrix density. Eq. 18 normalizes the area 

of the piston of the crushing resistance test by the ratio of solid material theoretically found in 

a random plane trough the test cylinder following the same idea as for the calculation of the 

solid strength, crit, of single pellets. Considering Eq. 3, 4 and 15 and neglecting the 

contribution of gas trapped within a pellet to the total mass of a pellet, Eq. 18 can be 

formulated in the following way:  

2 2
3 3

2
crit matrix bulk

particle matrix

FC
D

        (20) 

Eq. 20 can be simplified in the form 

2
3

2
crit bulk

particle

FC
D

         (16)  

The density ratio in Eq. 16 equals the packing density of the bulk material in the steel 

container of the crushing resistance test. Assuming closest random packing of equally sized 

particles of 0.64 [55] Eq. 16 can be written in the from: 
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 2 0.74critFC
D           (17) 
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Glossary 

LWA   lightweight aggregate 

CR-test  crushing resistance test 

spc-test  single pellet compression test 

ρparticle   particle density 

ρmatrix   matrix density 

ρbulk   bulk density 

ρrelatice   relative density 

P   porosity 

m   mass 

r   solid radius (zero porosity) 

d   solid diameter (zero porosity) 

R   radius 

D   diameter 

E   expansion 

Fcrit   load at failure 

ac radius of the crushed area on top and bottom of the pellet / contact area 

between sample and platen 
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x   absolute displacement of the piston 

Fprob   failure probability 

σcrit   stress at failure / solid strength 

m   Weibull modulus 

σ0   scaling parameter (failure probability 0.632) 

k   empirical constant 

C   crushing resistance 
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Table captions:  

 

Caption table 1: Equations reported in the literature to determine the stress occurring in a 

sphere or irregular shaped test piece under uniaxial compression.  is equal to the stress, F  

the applied load, D  the diameter of the sample and R  the radius of the sample. 

 

Caption table 2: Approximate mineralogical and chemical composition of the raw clay; 

Results are presented in wt.-%. 

 

Caption table 3: Overview of the properties of samples produced in the rotary kiln (rot-) and 

in the laboratory (lab-); the numbers denote average diameter rounded in mm. Standard 

deviations are given in brackets. 

 

 

Figure captions:  

 

Caption Fig. 1: Illustration of LWA pellets produced in a pilot-scale rotary kiln. Diameters 

range from 1.8 mm (left) up to 12 mm (right). 
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Caption Fig. 2 Illustration of LWA pellets produced in a chamber furnace in the laboratory. 

Diameters range from 11 mm (left) up to 17 mm (right). 

 

Caption Fig. 3: Illustration of one pellet of the series lab-16 (16 mm diameter) picturing the 

heterogeneity of the outer shell. The lower hemisphere exhibits a dense shell; the upper 

hemisphere exhibits a more porous shell. 

 

Caption Fig. 4: Light microscope picture of the cross-section of a LWA pellet of 6 mm 

diameter produced in the rotary kiln showing the typical features of an LWA: A highly porous 

core surrounded by a relatively dense thin shell. The total porosity of the displayed pellet is 

approximately 82 %.  

 

Caption Fig. 5: Particle density, particle , and porosity, P, of all samples produced in the rotary 

kiln and in the laboratory. 

 

Caption Fig. 6: Calculated, theoretical expansion, E, of all samples. 

 

Caption Fig. 7: Final sample diameter, D, as function of the solid diameter, d. 

 

Caption Fig. 8: Failure load for all sample series; determined by the spc-test; error bars 

represent the standard deviation. 
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Caption Fig. 9: Relative standard deviation (%) of the failure load, Fcrit, and the pellet 

diameter, D. 

 

Caption Fig. 10: Typical load- displacement graph resulting from the compression of a single 

LWA pellet between rigid, parallel platens with a constant speed of displacement, 2 mm/min 

(spc-test). 

 
Caption Fig. 11: Fracture patterns of LWA pellets after the spc-test. a) ruptured LWA pellet; 

b) typical fracture pattern of a pellet that splits into two hemispheres; c) typical fracture 

pattern of a pellet that splits into four evenly shaped pieces.  

 
Caption Fig. 12: Crushing resistance, C, determined according to EN 13055-1 for the rot-4 to 

rot-9 samples; the insertion shows the loose bulk density for the same samples. 

 
Caption Fig. 13: Failure load, Fcrit, in dependency of the solid diameter, d, and the actual 

diameter, D, for all samples. The solid and dashed lines are the linear regressions of the series 

rot-2 to rot-6 and lab-11 to lab-14 respectively.  

 
Caption Fig. 14: Failure load, Fcrit, in dependency of the solid diameter, d, for all samples. 

The numbers denote the total porosity, P (%). Eqs. 13-14 are represented by the solid lines. 

 
Caption Fig. 15: Solid strength, crit, as a function of the solid diameter, d, for all samples. 

The solid lines represent the trend of pellets with porosities less than 82 %. Pellets with 

porosities >82% show less strength than predicted by the solid lines.  
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Caption Fig. 16: Correlation between measured crushing resistance and calculated crushing 

resistance. The calculated crushing resistance 1 and 2 are based on Eqs. 16-17.  

 


