
Agile Scalability Requirements

Gunnar Brataas and Tor Erlend Fægri
SINTEF Digital

Trondheim, Norway

ABSTRACT
Many software organisations struggle to provide appropriate
levels of scalability in their software systems. Agile devel-
opment rests on pragmatic and value-centred approaches to
requirement capture that allows customers and vendors to
interact in the process of producing the software system that
best mets the real needs of the customers. In collaboration
with Norwegian software organisations we have observed
that setting scalability requirements is hard. Organisations
struggle because they lack a conceptually sound language
for expressing scalability requirements. To improve current
practice, we propose a light-weight and flexible approach to
specifying scalability requirements. Flexibility ensures that
a more extensive characterisation can be used if higher pre-
cision is required, and more information becomes available.

CCS Concepts
•Software and its engineering → Agile software de-
velopment; Requirements analysis; •General and refer-
ence → Performance;

Keywords
Agile development; Requirements engineering; Metrics

1. INTRODUCTION
In this paper we refer to scalability as the ability of a

service to increase its capacity by consuming more hardware
and software resources [5]. Software resources are lower-level
software services like DBMSs, and with hardware, we mean
CPUs, disks and networks. These resources all have a cost,
which may be expressed as dollars per hour.

Capacity is the maximum workload a service can handle
as bound by its SLA (Service Level Agreement) [5]. To-
gether, work and load constitute the workload of a service.
A scalable software service can satisfy more customers (load)
or more demanding customers (work) by consuming more
software and hardware resources. In their interaction with

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOI: http://dx.doi.org/10.1145/3030207.3030240

software-based services, people have little patience – regard-
less of the number of users of a service or service complex-
ity. Software vendors must provide appropriate scalability
despite rapid innovation cycles or requirement volatility.

We have established a research project named Scrum-
Scale [1] who’s objective is to reduce the total cost of han-
dling scalability using a tailored, agile development approach.
ScrumScale involves the collaboration with three Norwegian
software organisations: 1) EVRY is a leading Nordic supplier
of software-based solutions and services within the financial
and other sectors. 2) Powel is a provider of software solu-
tions for the energy, public and contracting sectors 3) Altinn
is the largest Norwegian public portal, for example used by
the tax authority to deliver digitised public services.

ScrumScale is now in the initial phase, and our work has
so far focused on understanding how these organisations
address the scalability challenge when developing software-
based services. All three organisations have extensive scala-
bility knowledge, but nonetheless, suffer from expensive re-
engineering because of unaddressed scalability requirements.
Like many other organisations, they often end up with sig-
nificant accumulation of technical debt with the costly con-
sequence that scalability must be retrofitted at the end of
the project. Why does this happen? We have identified
vague and unclear scalability requirements as one potential
root cause.

Agile development is fuelled by rapid feedback loops and
accepts simplicity in written documents as a trade-off for
more ‘live’ understanding of the system under development.
Agile development encourage collaboration among stakehold-
ers to bridge understanding from both the problem-space
and the solution-space. To support a more collaborative ap-
proach to scalability engineering, we need a light-weight, yet
reasonably accurate approach to capture scalability require-
ments.

In this paper, we describe a conceptual model for scal-
ability. The model constitutes a language for expressing
scalability requirements. We deliberately keep the number
of scalability parameters low. We also describe granularity
trade-offs so that the scalability requirements can accommo-
date different contexts yet remain conceptually consistent.

In Section 2, we will summarise some early findings from
our three Norwegian software organisations. Our initial ap-
proach for describing scalability requirements is outlined in
Section 3. In this section, we also describe important gran-
ularity trade-offs. State of the art is described in Section 4.
Conclusions and further work are offered in Section 5.



2. EARLY FINDINGS
We have collected data at all three organisations using

semi-structured interviews, observation of regular perfor-
mance review meetings, project retrospectives, available doc-
umentation and meetings with participants from the organ-
isations. The following is a brief summary of the findings.

We have learned that software organisations often choose
to emphasise functional requirements that provide visible
and tangible value to their customers. Non-functional re-
quirements, such as scalability, receive less attention. The
ownership of scalability requirements is frequently unclear.
Limited collaboration when defining scalability requirements
leads to vague scalability requirements, e.g. “our solutions
shall scale vertically and horizontally.” Vagueness in scala-
bility requirements imply that they rarely need revision, and
they therefore remain outside the center of attention.

Because scalability requirements are vague and ownership
is unclear, testers must sometimes guess and make their own
proposal for testable scalability requirements. Architects
and developers may then be working on new projects and
subsequently become less accessible. Valuable insights from
testers and operations personnel are also easily lost when
designing new services. We speculate that misplaced and
diffuse ownership of scalability requirements is a fundamen-
tal explanation why scalability requirements are subjected
to such ad-hoc treatment.

However, we observed an interesting paradox. There is a
large gap between theory and practice. Several of the people
we interviewed commented that the scalability concepts we
propose are valuable and even obvious. On the other hand,
these concepts are not used in practice. Project after project
fails to deliver sufficient levels of scalability.

We conclude that managing scalability is difficult in our
three case organisations. We believe that the complexity is
probably not buried in the individual concepts, but in the
lack of a systematic approach to apply the set of concepts
relevant for scalability. To achieve this, we need a light-
weight and flexible approach to define scalability require-
ments based on a conceptually sound model of scalability.
Moreover, actors with clear ownership of scalability require-
ments need to be involved early in development.

3. SCALABILITY REQUIREMENTS
Our method for capturing scalability requirements focuses

on the concepts shown in Figure 1. A service delivers one or
more operations, each offering a unique way of interacting
with the service. Stakeholders are responsible for formu-
lating critical operations with quality metrics and quality
thresholds. They have to decide on projected maximum load
for these critical operations, where operation mixes play an
important part, as they describe the probability of each of
the operations. Work parameters describe the amount of
data used by the critical operations. All these information
is part of scalability requirements.

According to our scalability definition in Section: 1, (the-
oretical) scalability is about the ability to increase capacity.
This ability is vital. However, if the cost of achieving a cer-
tain capacity is too high, this may severely limit the practical
scalability. We will first consider the important theoretical
scalability requirement concepts. Afterwards, we will also
introduce cost so that practical scalability can be explored.

Scalability focuses on steady-state behaviour. In practice,

Users

ServicesWork

Load Operations with Quality 
Metrics & Thresholds

Configuration
Parameters

Resources Properties

Figure 1: Scalability concepts.

especially open load varies heavily. Cost efficiency is about
the total cost also when fluctuations in work and load are
taken into account, but is outside of our scope in this paper.

3.1 Maximum Values in Planning Horizon
According to our scalability definition, we should inves-

tigate how our service responds to increasing workloads as
well as stricter SLAs. To simplify this task, we focus on cap-
turing the toughest values for work, load and SLAs, during
a given planning horizon. A planning horizon of less than
three years will seldom be meaningful when developing new
software. A simple scalability analysis uses the maximum
values for work, load and SLAs. A more complex scalability
analysis may also consider even tougher requirements.

3.2 Quality Metrics and Thresholds
A quality metric defines how we measure a certain quality

and is a key part of an SLA (Service Level Agreement). Gen-
erally, all the operations will share the same quality metrics
for each operation, e.g., average response times or 90 per-
centile response times. However, with many operations, they
we may of course also use several quality metrics.

Quality thresholds (QTs) describe the border between ac-
ceptable and non-acceptable quality for a given metric, e.g.,
2 seconds. For each quality metric for each operation, there
must be one quality threshold.

3.3 Critical Operations
In the ideal case, we should carefully consider the scala-

bility implications of all operations for a service. However,
there may be several hundred relevant operations. We must
therefore simplify, and focus on the critical operations. The
critical operations are the operation that from a scalability
point of view poses the largest risks for SLA violations.

This poses a difficult dilemma, however. Critical opera-
tions are those operations that are most influential in de-
termining the scalability of the service. Unfortunately, their
influence can only be determined accurately after the ser-
vice is developed and is deployed in operation. As a result,
we cannot know with confidence which operations will be
critical, but must select critical operations from careful rea-
soning. Confidence will increase by expanding the number
of critical operations, but at the expense of the human effort
involved in formulating the scalability requirements.

We must at least implicitly know the quality metrics and
thresholds to determine the critical operations. With a long
enough response time, an operation will never be critical.



3.4 Load and Operation Mix
Load describes how often the operations in a service are

invoked. A closed system has a constant number of users.
Load for a closed system is specified by think time (Z) and
simultaneous number of users (N). An open system has a
variable number of users and is characterised by the arrival
rate λ. Based on the number of simultaneous users, we can
derive the number of concurrent users actually using the
same lower-level software service at the same time. Today
closed systems are generally more challenging compared to
online systems, simply because a system only becomes a
batch system if it is too heavy for being an online system.

For simplicity, let us first assume that we have an open
system with only one operation. Load is now characterised
by the arrival rate for this operation. We are typically inter-
ested in the maximum load, but often more investigations
are required to find this maximum load. To think about how
the arrival rate fluctuates according to seasonal and trend
variations may be helpful; not because of all the details, but
to find the maximum load.

Seasonal variations can be yearly, monthly, weekly or daily.
During one typical day, load may be highest immediately af-
ter people arrive at work at 9AM. In a week, load may be
highest on Wednesdays. For a month, load may reach its
maximum near the end of the month. During one year, load
may be highest just before Christmas. A trend may be a
linear or exponential growth with, for example, 10 % every
year. Assuming a three year planning horizon, we can ex-
pect the highest load to be just after 9AM on a Monday
around December 20 in the third year.

With more operations, load can be specified for each oper-
ation individually, or we may specify the load on the average
operation. An operation mix describes the probability of
each of the operations. We define the operation mix for the
critical operations to sum to 1. As a result, the probability
of one operation depends on which operations are included
in the set of critical operations.

If some of the critical operations refer to an open system,
and others to a closed system, we get a group of critical open
operations and a group of critical closed operations. Both
these groups have a corresponding operation mix. For the
open operation mix, when a new user arrives, the operation
mix represents the probability of the different operations.
A heavy operation will last longer than a light operation.
Therefore, the number of simultaneous operations will not
reflect the operation mix. In a closed system, when one
operation is completed, the closed operation mix represents
the probability of the new operations.

3.5 Work Parameters
Work characterises the amount of data to be processed,

stored, or communicated by the operations in a service, e.g.,
the average size of a document or the number of documents.
A service may have anything from none to several work pa-
rameters.

We are interested in the maximum values for each work
parameter, e.g. the highest number of documents or the
highest average size of documents. For work parameters,
we have tree assumptions: 1) Seasonal variations are not
relevant. 2) Trends are relevant. 3) Work parameters grow
so that we get the highest work values towards the end of
the planning horizon.

3.6 Practical Scalability
Ideally, we should not focus on implementation when de-

scribing requirements. However, if we are interested in cost,
we have to consider lower-level software resources as well as
amount of and cost of hardware. We also have to consider
the mapping between our service and the lower-level soft-
ware and hardware resources. Will this mapping be linear,
and if not, which form will it take? Moreover, scalability
will also be determined by the configuration parameters for
the lower-level software services and hardware, but this is
very detailed information, and may therefore be ignored.

3.7 Feedback Loops
For hard challenges such as scalability, it is often neces-

sary to cycle extensively between working in the problem
space and the solution space. Collaborative practice involv-
ing stakeholders from both domains can support this, for
example, guided by techniques such as proof of concepts,
prototyping and incremental demoes. Agile development
methods embrace such cycling. For example, to formulate
quality thresholds, the critical operations must be known.
To determine the critical operations the quality thresholds
are required. Hence, this information must be developed in
close collaboration driven by feedback between the parties.
Information from operations from similar services can help.

3.8 Granularity
By granularity, we mean level of detail. It is common

practice in agile development to ensure mutual understand-
ing of requirements in dialogue between the product owner
and the development team taking responsibility of imple-
mentation. In this dialogue, pending implementation, we
expect that the level of detail in scalability requirements
can be a core topic. As we have mentioned before, there are
inherent cyclic dependencies between the problem- and the
solution-space in complex development tasks. The scalabil-
ity requirements will evolve together with the understanding
of both the solution- and the problem-space. Our scalabil-
ity requirements will therefore themselves be agile, as well
as support an agile development method.

Our suggested prioritised list of dimensions of granularity
can be a useful conceptual origin for such dialogue:

• Decomposed operations: One operation may be de-
composed into several lower-level operations. As a re-
sult, load and quality thresholds must also be detailed.

• Lower level services: We may also have scalabil-
ity requirements for lower-level services, which may be
formulated in the same way as the service scalability
requirements. For example, a certain operation from a
lower-level service has a quality threshold with a qual-
ity metric guaranteed for a maximum load and for a
given value of work parameters.

• More work parameters: Initially, only a few work
parameters may be relevant, but gradually more can
be introduced, e.g. we may start with number of doc-
uments (one work parameter) and afterwards add av-
erage as well as maximum document size (two more
work parameters).

• Richer quality metrics: The quality metric may
be implicit, e.g. an organisation will always assume



the average response times metric, unless otherwise is
clearly stated. By explicitly detailing the quality met-
rics, the level of granularity as well as the accuracy of
our requirements will increase.

• Detailed quality thresholds: Instead of the same
quality thresholds for all operations, we can specify in-
dividual quality thresholds for each operation. There
may also be more quality thresholds for each opera-
tion, e.g. good, fair, bad or contract violation (with
corresponding penalty fees).

We also assume that there will be context-specific de-
mands to the level of precision that the scalability require-
ment will be specified to. Secondly, there will be variations
in the amount of information that is available. For devel-
opment projects using agile methods, flexibility in precision
can allow requirements with sufficient levels of precision for
the specific context. The following list of aspects can be
adjusted according to specific needs:

• Can we cope with one critical operation? Qual-
ity threshold, implicit quality metric (e.g. average re-
sponse times) and maximum load required. No work
parameters specified.

• Can we cope with several critical operations as
well as critical work? Above plus: Individual qual-
ity thresholds for all critical operations, operation mix
and work parameters.

• What is the resulting cost of the critical op-
erations? Above plus: mapping from workload to
amount of lower-level services (a coarse model or based
on measuring a running system — both options may
require considerable manual effort in practise). Hard-
ware costs (bare metal or IaaS) and costs of lower level
software resources (licences or costs for PaaS/SaaS).
We may be satisfied if the cost grows approximately
linear with the load and work, assuming the cost of
the initial configuration is acceptable.

4. STATE OF THE ART
Among our Norwegian partners, use of reactive perfor-

mance tools is widespread. The tools are predominantly sup-
porting application load testing and performance monitor-
ing. Prolonged stress testing is also used to identify memory
leaks, etc. that potentially could create performance prob-
lems during use. When testing scalability, load generation
tools (JMeter, LoadRunner etc.) are heavily used. Load
generators depend on precise specifications of work, load,
quality metrics and quality thresholds. Profiling tools are
used, but less frequently. Our partners do not make models
of software and hardware.

Still, there are fundamental problems with this reactive
approach. Scalability is a quality that transcends the con-
cerns of the individual user. It is an aggregate quality that
can best be observed at high workloads when many users
compete for resources.

There has been significant research interest in the ability
of agile methods to accommodate ‘technical requirements’
in a balanced manner to avoid the accumulation of techni-
cal debt [3]. However, to our knowledge, scalability has not
yet been addressed specifically by researchers in agile meth-
ods. Nevertheless, relevant insight from this field suggests

that agile practises are able to accommodate non-functional
requirements as long as certain considerations are taken seri-
ously [2]. Nord et al. [6] suggested the merging of both func-
tional and architectural requirements incrementally during
development. This was coined ‘the zipper model’ to agile
architecting.

Duboc et al. [4] describe a general framework for scalabil-
ity requirements, while we focus only on scalability related
to software and hardware resources. We make our scalability
assumptions explicit by describing them as operations, load
profile, work, load and quality thresholds. In contrast to
Duboc, we make the granularity trade-off explicit and focus
on the usefulness of our approach in a practical, industrial
setting.

5. CONCLUSIONS AND FURTHER WORK
In this paper, we have outlined a conceptual framework for

capturing scalability requirements. Going forward, we seek
to address the following research questions: (1) Is the pre-
sented conceptual model of scalability requirements useful
for software organisations in practice? (2) What processes
are necessary to effectively support the generation of scala-
bility requirements? (3) To which extent are our scalability
requirements testable? (4) How do we manage the evolution
of scalability requirements for long-lived systems?

Much work remains to be done. Agile developers are ac-
customed to capture requirements in user stories. We need
worked out examples where we apply our concepts and de-
scribe the challenges met and how we deal with them, for
example, by detailing our scalability requirement concepts.
If our conceptual model of scalability requirements is effec-
tive, tailored tools should be developed further to streamline
an agile development process.

6. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the Norwegian Research Council under grant #256669
(ScrumScale).

7. REFERENCES
[1] ScrumScale. www.scrumscale.com. Visited: 20 February

2017.

[2] M. A. Babar. Agile Software Architecture. Morgan
Kaufmann, 2014.

[3] W. N. Behutiye, P. Rodriguez, M. Oivo, and A. Tosun.
Analyzing the Concept of Technical Debt in the
Context of Agile Software Development: A Systematic
Literature Review. Information and Software
Technology, 82:139–158, 2017.

[4] L. Duboc, E. Letier, and D. Rosenblum. Systematic
Elaboration of Scalability Requirements through
Goal-Obstacle Analysis. Transactions on Software
Engineering, 39(1):119 – 140, 2013.

[5] S. Lehrig, H. Eikerling, and S. Becker. Scalability,
Elasticity and Efficiency in Cloud Computing: a
Systematic Literature Review of Definitions and
Metrics. In Conf. on Quality of Software Architectures.
ACM, 2015.

[6] R. L. Nord, I. Ozkaya, and P. Kruchten. Agile in
Distress: Architecture to the Rescue. In XP
Workshops. Springer, 2014.


