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ABSTRACT 

Based on the three dimensional potential theory and finite 

element method (FEM), this paper presented a method for 

time-domain hydroelastic analysis of a floating bridge in 

inhomogeneous waves. A floating bridge in both regular and 

irregular waves, is taken as a numerical example. This 

method is firstly validated by the comparisons of the results 

between frequency domain method and presented time 

domain method under regular wave condition. Then the 

hydroeleastic responses of the floating bridge in waves with 

spatially varying significant wave height/peak period are 

presented, with the purpose to illustrate the feasibility of the 

proposed method. The primary results at this stage indicate 

that the inhomogeneity of the waves might affect the 

structure dynamic responses of the floating bridge in waves.  

 

Key words: frequency domain; time domain; hydroelastic 

analysis; inhomogeneous waves 

 

1. INTRODUCTION 

The Norwegian Public Roads Administration (NPRA) is 

planning to build floating bridges in the fjords to connect the 

E39. Compared with the traditional underwater tunnel 

concept, the surface crossing concept is supposed to be 

economically better. The surface crossing concept is mainly 

made up by pontoons and bridge girders with a typical 

crossing distance of 4000 m and become very flexible 

compared with those of the traditional ocean structures, 

which is normally named as very large floating structures 

(VLFS).  

 

VLFS features a larger size while relatively lower structural 

stiffness and the coupling effect between its structural elastic 

deformations and wave motions must be considered, which 

should be solved by hydroelasticity method. Frequency 

domain hydroelasticity theories have been developed from 

two-dimensional [1, 2] to three- dimensional [3, 4], from 

linear [5, 6] to nonlinear [7-9] models.  

 

When it comes to time domain hydroelasticity, normally the 

Fourier transform method is utilized where the 

hydrodynamic coefficients by frequency domain analysis are 

taken as its main inputs [10-12].   

 

On the other hand, based on three dimensional time-domain 

Green function, and Price-Wu condition [3] at the interface 

between flexible structures and the surrounding fluid, a 

direct time domain hydroelasticity method has been 

developed [13]. Liu and Sakai [14] analyzed the 2D time 

domain hydroelastic responses of flexible floating structures 

in regular, random and solitary waves by utilizing BEM for 

fluid and FEM for structures. Qiu [15] evaluated the 

dynamic responses of a floating girder under the impulsive 

and moving loads based on FEM method in a linear system. 

Although the direct time domain method is beneficial in 

strong nonlinear problems, it is still time-consuming and 

requires a large amount of computer resources compared 

with the Fourier transform method.  

 

In this paper, a time-domain numerical method for the 

prediction of the hydroelastic responses of the floating 

bridge in waves is presented by using Fourier transform 

method. The connecting bridge girder is simulated by 

equivalent beam stiffness considering Euler-Bernoulli beam 
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theory together with the St. Venant’s torsion theory.By 

introducing convolution theorem, the frequency-domain 

wave exciting forces and hydrodynamic coefficients on each 

pontoon are transformed into the time-domain hydroelastic 

equation. A floating bridge in both regular and irregular 

waves, is taken as a numerical example. This method is 

firstly validated by the comparisons of the results between 

frequency domain method and presented time domain 

method under regular wave condition. Then the 

hydroeleastic responses of the floating bridge under waves 

with spatially varying significant wave height/peak period 

are presented. 

2. THEORETICAL BACKGROUND 

2.1. The coordinate system 

Floating pontoons supported continuous bridge girder, from 

the hydrodynamicsvpoint of view, can be looked as a beam 

connected multi-floating-body system, and the 

hydrodynamics can be solved by traditional multi-body 

hydrodynamic theores. Three right-handed coordinate 

systems are adopted in this paper to describe the wave-

induced motions, which includes global coordinate 

system OXYZ , body-fixed coordinate system 
m m m mo x y z  

and reference coordinate system 
m m m mo x y z    as shown in 

Fig.1. The global coordinate system ( OXYZ ) stays still in 

space with the OXY at still water surface and axis Z straight 

up. 

 
Fig.1 Coordinate system of multiple floating body system 

2.2. Motion equations in frequency domain 

Based on three dimensional potential theory and linearized 

Bernoulli equation, the wave excitation forces, added mass 

and damping coefficients of the multi-body system can be 

obtained in frequency domain [16]: 
       
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n n ni t

wj j I D j
S S
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where 
 n

wjF is the j
th

 mode wave excitation force on the n
th

 

pontoon; A  and C refer to the added mass and damping 

coefficients, respectively; when n q , they refer to the 

added mass and damping coefficients caused by the motion 

of pontoon n itself, otherwise they are caused by the motion 

of other pontoon q; n and q is the number of the pontoons, k 

and j is the motion mode number. 

 

The motions of a pontoon will not only be influenced by the 

hydrodynamic interactions with adjacent pontoons, but also 

restricted by the motion displacement of adjacent pontoons 

through the deformations of the connecting beams between 

them, which ensures the continuous of the whole floating 

bridge in waves. Under this circumstance, the floating 

bridge system could be treated as a flexible beam system 

with concentrating forces from the rigid pontoons acting on 

the jointing points between the girder and the pontoons 

along the whole bridge [17]. Then the dynamic motion 

equations of the elastic beam system with totally N finite 

element nodes supported by M floating pontoons in waves 

can be written as, 

             
6 1 6 1 6 1 6 16 6 6 6 6 6N N N NN N N N N N

m x D x k x F
     
  

    (3) 

where  m is the mass matrix of the beam system itself, 

 D is the structural damping matrix within beam system, 

 k  is the structural stiffness matrix of the beam,  x  is 

the displacement vector of the nodes of the beam, as shown 

in Fig.2.  F  is the external force vector, which is related 

to the displacement  x  and only has non-zero values on 

the nodes connecting the girder and the pontoons, as 

illustrated by Fig.2. In accordance with the potential theory, 

 F  includes the wave excitation force wF , hydrostatic 

restoring force   K x , inertial force of the floating 

pontoon   M x  and wave radiation force composed by the 

added mass force   A x  and damping force   C x , where 

 K  and  M  is the hydrostatic restoring coefficient and 

mass matrix of the pontoons respectively.  

 

In the above equation, various variables are functions of 

space and time,  x  and  wF which will periodically vary 

with stable frequency , which can be re-written as, 

            ,i t i t

w wx x e F f e                (4) 

where  x  is the amplitude of the displacements, and  

 wf is the wave excitation forces vector with non-zero 

values on the beam nodes connecting with the pontoons. 

 

Consequently, Eq.(3) can be rewritten by separating time 

variable: 
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where all of the symbols keep the same meaning as 

foregoing descriptions.  

 
 

Fig.2 The deformation of the beam 

2.3. Motion equations in time domain in inhomogeneous 

waves 

Based on the linear assumption and impulse response 

function, the time-domain hydrodynamic analysis theory has 

been established by Cummins [18], which is known as 

Cummins Equation. For the multi-body system connected by 

elastic beams, this time-domain motion equations in the 

global coordinate system can be expressed as:  
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where  A     is the added mass coefficient matrix in the 

infinite wave frequency;  H t    is the retardation function 

matrix; and its integral     
t

H t u d  


   represents 

the fluid memory effect;   wF t  is the first-order time-

domain wave exciting force; just like Eq.(3), the three terms 

related to waves motions have non-zero values only on the 

beam nodes connecting with the pontoons; 

        , ,x t x t x t  are the displacement, velocity and 

acceleration of the nodes with respect to the inertial 

reference frame, respectively; other terms have the same 

meanings as forgoing descriptions.  

 

According to Kramer-Kronig relations based on Fourier 

transform by Ogilvie [18], the retardation function can be 

expressed by the frequency results of the added mass or 

damping coefficients. 
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        (7)  

where  A    and  C     denote the added masse and 

damping coefficients in the frequency domain, respectively. 

 

The inhomogeneous wave filed along the floating bridge is 

divided into p isolated sub-regions. Each sub-region is 

assumed to be homogeneous, modelled by a 3-parameter 

JONSWAP spectrum, as shown in Fig.3. And then the wave 

excitation forces acting on the n
th

 pontoon within k
th

 sub-

region could be written as:  

              
1

2 cos
L

n n n

wj wj l k l l j l

l

F t f S t      


    (8)  

where the superscript n denotes the n
th

 pontoon, k denotes 

the k
th

 sub-region, l denotes the l
th

 discrete wave frequency,  

j denotes the j
th

 mode wave excitation force (j=1,..,6). The 

same random phase series of 
l  is adopted in different sub-

regions.    n

wjF t  represents the j
th

 DOF wave excitation 

force on the n
th

 pontoon whose position of sub-region is 

accordingly allocated according to its coordinates;    n

j l   

is the position related phase angle of the wave excitation 

force on the n
th

 pontoon in the j
th

  mode at wave frequency 

of 
l .  

 
Fig.3 The description of inhomogeneous sea environment 

 

Consequently, the time history of the wave excitation force 

  wF t  in Eq.(6) in an inhomogeneous wave can be 

expressed in the form of array: 

                       1

1 1 6 6= ..., ,..., ,..., ,..., ...
T

n n M

w w w w wF t F t F t F t F t  (9)   

The wave excitation forces on pontoon n have six DOFs and 

locate on the nodes connecting with the pontoons. 

 

Then Eq.(6) can be solved numerically by Newmark 

method, and the hydroelastic response in inhomogeneous 

sea environment can be obtained. 

3. NUMERICAL MODEL 

The concept of a floating bridge supported by descret 

pontoons has been proposed in Norway. The bridge girder is 

a Viererendel beam consisting of two parallel steel boxes 

spaced sufficiently apart in order to provide adequate 

bending stiffness about vertical axis and sufficient buckling 

capacity.  

 

The overall original bridge model is shown in Fig.4, where 

the bridge girder could be modelled as a single center beam. 

In this paper, we just choose the right part of the whole 
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bridge (marked with the red line in Fig.4) as the analysis 

model, as illustrated in Fig.5, where total 19 floating 

pontoons with the same geometries are involved along the 

extension of the bridge girder. The properties of the pontoon 

are illustrated in Table.1, and the geometry is shown in Fig.6. 

Two ends of the bridge model are simplified as pin joints as 

shown in Fig.7.  

 

The connecting beam between each two pontoons has a 

length of 196.96m, including three segments with different 

cross sections. The parameters of the first and last section 

are the same (Section S1) with a length of 24.62m, and the 

length of the middle section (Section F1) is 147.74m, as 

listed in Table.1.   

 

Table.1 General Parameters of the Pontoons and Bridge 

Girder 

 Properties Number 

Bridge 

Girder 

Section F1 S1 

EA (kN) 3.89E8 5.25E8 

EIy (kN*m
2
) 2.76E9 3.85E9 

EIz (kN*m
2
) 1.55E11 2.18E11 

GIt (kN*m
2
) 2.9E9 3.7E9 

Translation Mass (te/m) 26.71 31.8 

Rotation Mass (te*m
2
/m) 8118 10507 

Pontoon 

Length (m) 62 

Width (m) 22 

Draft (m) 10.5 

 

 
Fig.4 Numerical model for the floating bridge concept [20] 

 
Fig.5 Simplified model 

Each pontoon is simplified as a rigid floating body with 6 

DOFs. Based on the three dimensional potential theory, the 

wave exciting forces, added mass and damping coefficients 

can be directly calculated by panel method in WAMIT in 

frequency domain. The hydrodynamic interactions between 

the pontoons are neglected due to the large spacing between 

them. Fig.6 illustrates the hydrodynamic meshes of the 

floating pontoon. 

 
Fig.6 Hydrodynamic Meshes of the Floating Pontoon  

 

 
Fig.7 Simplified model 

4. RESULTS AND DISCUSSIONS 

4.1. Results obtained from frequency-domain method 

To be concrete, distributions of the vertical displacement, 

horizontal displacement and torsional angle along the 

floating bridge under a regular wave of 0.6 rad/s are 

presented in Fig.8, all of which are derived from frequency 

domain method. Obviously, due to the non-symmetrical 

distribution of forces on the pontoons, the displacements of 

the bridge are causally not symmetrical along the 

longitudinal direction as well. As shown in Fig.8 (a), the 

maximum vertical displacement under inside waves (270deg 

wave direction) is slightly larger than that under outside 

waves (90deg wave direction). Similar tendencies can be 

discovered in Fig.8 (b) and Fig.8 (c). There are also some 

evident differences for different positions along the bridge, 

which are induced by different wave phases on pontoons and 

the continuity of the deformation owing to the connecting 

beams. 
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(b) Horizontal displacement 
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(c) Torsion angle 

Fig.8 The displacement of the floating bridge in the wave 

frequency of 0.6rad/s for different wave directions. 

4.2. Time-domain responses in regular waves 

In the time-domain simulation in regular waves, the time 

history of the first order wave exciting force can be obtained 

based on the amplitudes and phase angles of the wave 

exciting force in frequency domain, and it can be described 

as: 

   cosw wF t F t                    (10) 

where 1wF  denotes the amplitude of the wave exciting 

force obtained in frequency domain;   is the 

corresponding phase angle. In the numerical simulation, the 

time step is 0.1s and the initial displacement and initial 

velocity of the pontoons are both zero.  

 

Given the amplitudes and phase angles of wave exciting 

forces, responses obtained from the direct time-domain 

numerical simulation and those transformed from frequency 

domain ought to agree well with each other. It is an 

approach to validate the proposed method. Fig.9 illustrated 

the time history of the vertical displacement at the middle of 

the bridge under the regular wave with a frequency of 

0.6 /rad s  and a direction of 90°. As can be seen, after a 

period of time, the response will become stable in terms of 

the amplitude in time domain results. And the amplitudes 

shown in time history are found to match well with the 

harmonic vertical displacement from frequency domain 

method. Therefore, the proposed time-domain hydroelastic 

method is validated.  
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Fig.9 Time series of vertical displacement in the wave 

frequency 0.3 /rad s   in the wave direction of 90°. 

 

The transformation method used in this paper is based on 

FFT theory and it also needs to be validated. Fig.10 

illustrates the comparison between the direct frequency-

domain results and the results transformed from the time 

series. It can be found that two curves agree well, indicating 

that the reliability of present time domain method. 
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(b) Torsion Angle 

Fig.10 The vertical displacement and torsion angle along the 

longitudinal direction for 0.6 /rad s   in the wave 

direction of 90°.  

 

4.3. Time-domain responses in inhomogeneous irregular 

waves 

In this paper, the inhomogeneous wave field is divided into 4 

sub-regions. The irregular wave parameters at each sub-

region along the floating bridge are displayed in Table.2 and 

Fig.11. 

Table.2 Wave Parameters at each sub-region along the 

bridge length [19] 

Env. 

Number 

Regions(from 

West to East) 

Significant wave 

height(Hs/m) 

Peak 

period(Tp/s) 

Env.1 
Region A 

(0-1km) 
2.0 5 

Env.2 
Region B 

(1-2km) 
1.9 6 

Env.3 
Region C 

(2-3km) 
2.4 7.5 

Env.4 
Region D 

(3-4km) 
2.8 8.5 

 

 

 
Fig.11 Distribution of inhomogeneous wave field  

 

Irregular wave time series in each sub-region is generated 

from the defined wave spectrum ranging from 0.1 to 3rad/s 

in each sub-region. For all of the four irregular waves, wave 

frequencies and random phase angles are kept constant to 

guarantee the continuity of wave field. In addition, the wave 

frequency is randomly distributed to avoid the periodical 

repetition of the generated wave elevations.  

 

Fig.12 shows the comparisons of the significant values of 

the vertical displacement, horizontal displacement and 

torsion angle along the longitudinal direction between the 

inhomogeneous wave and the homogeneous waves for the 

wave direction of 270°. The boundaries between each sub-

region have been marked by lines as shown in the figures. 

As can be seen, the responses along the longitudinal 

direction in inhomogeneous waves are always smaller than 

that in homogeneous wave with the maximum wave height 

of Hs=2.8m, especially in region A, B and C, where the 

significant wave height is smaller than 2.8m. In region B, 

the vertical displacement of the pontoon near region C is 

obviously larger than those pontoons in region B, which is 

due to the continuous conditions of the displacements. The 

horizontal displacement and torsion angle are rather smaller 

in the inhomogeneous wave, indicating that the 

inhomogeneous effect is not obvious on the torsional 

deformations.  
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(a) Vertical displacement for =270   
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(b) Horizontal displacement for =270   
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Fig.12 The significant displacements along the 

longitudinal direction in the homogenous and 

inhomogeneous waves for the wave direction of 270°. 

 

The distribution of the vertical bending moment, 

horizontal bending moment and torsion of each 

connected beam between the two pontoons under their 

local coordinate systems along the floating bridge are 

illustrated in Fig.13. It can be found that the maximum 

vertical bending moment on each segment always 

appears around the positions of pontoons. Similar with 

the trends of displacements, the vertical bending 

moment, the horizontal bending moment and torque in 

the inhomogeneous waves are always smaller than those 

in the highest homogeneous wave of Hs=2.8m. The 

maximum horizontal bending moment in homogeneous 

wave of Hs=2.8m is almost 3 times of those in the 

inhomogeneous wave for some positions.  

 

Consequently, as for the wave loads applied to the 

floating pontoons, if the highest wave parameters are 

adopted, the bending moments of the structure will be 

over-estimated. If the lowest homogeneous wave 

parameters are adopted, safety design cannot be 

guaranteed. Therefore, wave inhomogeneity should be 

taken into account in the bridge design. 
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(a) Vertical bending moment for =270   

0.0 0.2 0.4 0.6 0.8 1.0
0

300

600

900

1200

1500

1800

Region DRegion CRegion BRegion A

 = 270 

Hs = 2.8m, Tp = 8.5sHs = 2.4m, Tp = 7.5sHs = 1.9m, Tp = 6.0sHs = 2.0m, Tp = 5.0s

S
ig

n
if

ic
a
n

t 
H

o
r
iz

o
n

ta
l 

B
e
n

d
in

g
 M

o
m

e
n

t 
( 

M
N

.m
 )

x/L

  Inhomogeneous wave    

  Hs = 2.0m, Tp = 5.0s         Hs = 1.9m, Tp = 6.0s  

  Hs = 2.4m, Tp = 7.5s         Hs = 2.8m, Tp = 8.5s  

Pontoon position

 
(b) Horizontal bending moment for =270   
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(c) Torsion for =270   

Fig.13 The significant moments of each connected beam in 

their local coordinate system in the homogenous and 

inhomogeneous waves for the wave direction of 270°. 
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5. CONCLUDING REMARKS 

A time-domain approach is proposed for hydroelastic 

analysis of a curved floating bridge in inhomogeneous wave 

conditions. The method is firstly validated against 

frequency-domain results，and then applied to investigate 

the effect of the inhomogeneous waves on the hydroelastic 

responses a curved floating bridge, including both spatial 

varying wave heights/periods and incident wave directions. 

The results show that the inhomogeneity of the waves might 

have effects on the dynamic responses of a floating bridge. 

The responses will be greatly overestimated if only the 

maximum homogeneous wave conditions are used as the 

environment input, while it cannot guarantee a safe design if 

only the small homogeneous wave is applied. 

This paper is mainly focusing on the validation and 

feasibility of the newly developed methods. The 

inhomogeneous waves used are measured data from another 

fjord in Norway [19], not specifically for the current floating 

bridge site. Regarding the effect of the inhomogeneity of the 

waves, further studies need to be carried out to make more 

general conclusions.    
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