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Abstract: We present our experiences from developing a decision model to support risk-based
decisions on offshore installations. The model was developed using the DEXi tool for multi-
criteria decision modeling. We report on the method we employed, the efforts spent, and the
evaluation of the resulting model, including feedback from domain experts representing the
target group. In our view the results are promising, and we believe that the approach can be
fruitful in a wider range of risk-based decision support scenarios.
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1 INTRODUCTION

During the autumn of 2016, we developed a computerized model to support decisions based
on operational safety risk offshore. The model automatically provides a decision advice based
on 28 input parameters, and was developed using DEXi [4], which is a tool for multi-criteria
decision modeling. The choice of DEXi was made based on early experience two of the authors
had from using DEXi in the domain of cyber-risk [7].

The contribution of this paper is a report on our experiences, the efforts spent on the
model development, and an initial evaluation of the results. The aim is to help others who face
related challenges to consider whether a similar approach may be suitable for them. We start
by explaining the challenge and our success criteria.

During major maintenance projects on offshore installations, flotels are often used to ac-
commodate the personnel. A flotel (“floating hotel”) is a vessel providing sleeping quarters
and other facilities. A gangway connects the flotel to the installation. The flotel needs to keep
its position in a very limited area close to the installation. This can be done by means of Dy-
namic Positioning (DP), thruster assisted mooring or mooring systems. DP implies employing
a computer-controlled system that allows the flotel to automatically keep its position by using
its own thrusters. However, keeping the position is highly challenging due to the weather,
waves, and other conditions offshore.

If conditions are unfavorable, the responsible offshore operatives need to decide whether
to lift (disconnect) the gangway from the installation. If this is not done, there is a risk that
an uncontrolled autolift (disconnection) occurs, causing harm to personnel and equipment.
The decision is difficult because many different factors affect the risk. Moreover, lifting the
gangway has high economic cost, as workers will be prevented from performing their tasks on
the installation. Currently, the offshore operatives make use of paper-based Location Specific
Operational Guidelines (LSOG), along with a number of other sources of information, e.g. the
prevailing weather conditions and the weather forecast, to guide the decision.

To provide alternative decision support, ease the information handling and reduce depen-
dency on the experience, competence and mental state of the individuals on duty at any given
time, we envision a solution where advice is automatically generated based on a wider range of
input parameters compared to the LSOG. This solution is illustrated in Figure 1. The Input
Collector collects all the data for the input parameters, such as weather forecasts and sensor
readings. The Decision Support Model aggregates these data to compute an advice. This
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Figure 1: Vision for overall decision support solution.

advice is presented in the End User Interface, which should be tailored to the human offshore
operatives making the decision.

The work presented in this paper concerns the Decision Support Model. We identified the
following success criteria for the model:

C1: The model should provide advice that correspond with expert expectations.

C2: The model should capture all aspects that are important for the assessment.

C3: The model should be comprehensible for domain experts.

C4: The expected benefit should justify the effort required to develop the model.

The rest of this paper is structured as follows. First, in Section 2 we introduce the DEXi
tool, before explaining the method used for the development in Section 3. Section 4 presents
the decision support model, as well as expert feedback on the model. In Section 5 we discuss
and evaluate the model with respect to criteria C1-C4. In Section 6, we present related work,
before concluding in Section 7.

2 THE DEXi TOOL

DEXi [4] is a computer program for the development of multi-criteria decision models and the
evaluation of options. Multi-criteria (also called multi-attribute) models are a class of models
used for decision analysis that evaluate options according to several, possibly conflicting, goals
or objectives. In this section, we introduce DEXi, focusing on the parts needed to understand
the rest of this paper. For a detailed description, we refer to the DEXi User Manual [1].

A multi-attribute model decomposes a decision problem into a tree (or graph) structure.
The overall problem is represented by the top attribute. All other attributes in the tree
represent sub-problems, which are smaller and less complex than the overall problem. Each
attribute is assigned a value. The set of values that an attribute can take is called the scale of
the attribute. DEXi supports definition of discrete ordinal scales; typically, each step consists
of a textual description. An example of an ordinal scale is {Unacceptable; Acceptable; Good;
Excellent}.

Every attribute is either a basic attribute or an aggregate attribute. Basic attributes rep-
resent the inputs to the multi-attribute model. They have no child attributes. The value of a
basic attribute is determined solely by the input to (or selected value for) the attribute.

Aggregate attributes are characterized by having child attributes (which may be basic or
aggregate). The value of an aggregate attribute is a function of the values of its child attributes.
This function is called the utility function of the attribute. The utility function of each aggre-
gate attribute is defined by stating, for each possible combination of its child attribute values,
what is the corresponding value of the aggregate attribute.

In summary, developing a DEXi model implies the following: (i) define the attributes and
tree structure, (ii) define the scale for each attribute, and (iii) define the utility function for
each aggregate attribute. For any given set of values for the basic attributes, the value assigned
to the top attribute represents the overall aggregated evaluation.
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Figure 2: Overview of method.

3 METHOD FOR MODEL DEVELOPMENT

As illustrated in Figure 2, we developed the model in four steps. In the first step, we established
the context by identifying the purpose and scope, as well as deciding which tool to use. In the
second step, we developed the decision support model by carrying out points (i)–(iii) described
in Section 2. This was primarily done during video meetings where the analysis leader shared
his screen and edited the DEXi model based on input and comments from the domain experts,
while the analysis secretary took notes about the reasoning and discussions. Some modifications
and corrections where also done offline, through email interaction.

In the third step, we tuned the decision support model by first defining a set of six scenarios
based on the following criteria: 1) All scenarios should be realistic, i.e. represent conditions
that might actually occur. 2) The set should include scenarios that cover all the possible
decision alternatives defined in the LSOG. After describing the scenarios textually, each of the
identified scenarios was translated to an assignment of a value to each basic attribute, referred
to as an option in the DEXi tool. This allowed us to compare the advice produced by the
model for each scenario with the guidelines provided by the LSOG. In cases of mismatch, we
updated the DEXi model. In the fourth step, we collected feedback on the model, with focus
on model structure and outcome for the six scenarios defined in the preceding step.

As shown in Table 1, the above steps were carried out in 12 meetings held within a period
of three months (from August 2016 to November 2016). All the authors took part in the
model development. Of these, three are domain experts with technical experience within ship
technology and marine systems in the petroleum industry, as well as software systems to support
the petroleum industry with respect to risk-based decision-making. The remaining two (from
SINTEF) served as analysis leader and secretary. The fourth step, i.e. feedback on the model,
took place in meeting 12 (with preparations in meeting 11). The feedback was collected from
three offshore operatives who represented the target group and who had not participated in
developing the model or been involved in any other way before meeting 12. The feedback is
explained further in Section 4. All meetings except meeting 12 were video meetings, while the
12th meeting was a combined physical and video meeting where one of the offshore operatives
participated remotely from an offshore location.

Although the steps are presented chronologically, they were sometimes revisited to make
updates and adjustments or to capture new factors that were brought forward by the domain
experts. Roughly speaking, the first step took place in meeting 1 and meeting 2, the second
step took place from meeting 3 to meeting 7, the third step took place from meeting 8 to
meeting 10, and the fourth step took place in meeting 11 and meeting 12.

4 RESULTS FROM APPLYING THE METHOD

In this section, we first provide an overview of the decision support model, and then we present
the feedback on the model.

The decision support model consists of 16 aggregate attributes including the top attribute
and 28 basic attributes. It is beyond the scope of this paper to explain all details of the model.
Instead we focus on a fragment.

Figures 3(a)–3(c) illustrate parts of the model, as shown in DEXi, starting from the top
attribute and ending at three of the basic attributes. Aggregate attributes are labeled by a



Table 1: Overview of meetings. M=Meeting, D=Duration, S=Step in method.

M Date D S Activity

1 25.08.16 1.5 h 1 Establish context

2 16.09.16 2.5 h 1 Finalize context establishment, present DEXi and progress
plan, and develop initial model structure

3 22.09.16 2 h 2 Continue developing model structure

4 06.10.16 2 h 2 Complete model structure, define scales for attributes and
utility functions for aggregate attributes

5 13.10.16 3 h 2 Continue defining attribute scales and utility functions

6 25.10.16 3 h 2 Continue defining attribute scales and utility functions

7 27.10.16 2 h 2 Complete defining attribute scales and utility functions

8 02.11.16 2 h 3 Perform model tuning

9 11.11.16 2.5 h 3 Perform model tuning

10 24.11.16 2 h 3 Complete model tuning

11 28.11.16 1 h 4 Prepare feedback collection

12 30.11.16 6 h 4 Collect feedback from offshore operatives

(a) (b) (c)

Figure 3: A small fragment of the decision support model.

small rectangle in front of their name, while basic attributes are represented by a triangle
pointing horizontally to the left as illustrated in Figures 3(b) and 3(c). As can be seen in
Figure 3(a), the top attribute is Gangway operational risk, which represents the operational
risk for the gangway between the flotel and the installation.

The top attribute has the following child attributes: Flotel criticality state, Gangway crit-
icality state, Weather, and Installation criticality state. In Figure 3(b) we have expanded the
child attribute Flotel criticality state, which in turn has three child attributes: two aggregate
attributes and one basic attribute. In Figure 3(c) we have expanded DP class status, which
has two basic attributes as child attributes.

The value assigned to the top attribute represents the advice to the decision makers. De-
pending on the combinations of values assigned to the 28 different basic attributes, the top
attribute is assigned one of following values {Abandon operation; Prepare to abandon opera-
tion; Advisory state; Normal state}. Abandon operation indicates that there are very strong
reasons for an immediate disconnection of the gangway, for example since an autolift of the
gangway may occur. Prepare to abandon operation indicates that there are strong reasons for
disconnecting the gangway. Preparations for disconnection should be considered. Advisory
state indicates an attentive state; the responsible offshore operatives need to hold an advisory
meeting to assess if one or more states may be changed in order to improve the current or
future operating conditions of the flotel and the gangway. Finally, Normal state indicates that
the gangway may safely be (or remain) connected. Notice that these four values correspond di-
rectly to four risk levels, where Abandon operation corresponds to the highest risk and Normal
state corresponds to the lowest risk.

Regarding feedback on model structure, the offshore operatives were asked to consider the



following three questions: Are there any important attributes that are omitted? Are there any
attributes that should be removed? Are the attributes properly organized? Everyone agreed on
the overall model structure. At the detailed level, we received three suggestions for additional
attributes to be considered as descendants of one of the four existing attributes under Gangway
operational risk shown in Figure 3(a). In addition, there was one suggestion for an attribute
that could be removed, as it was judged to have little impact. Finally, there was one attribute
for which a refinement of the scale was proposed in order allow a more fine-grained distinction
between states.

With respect to feedback on outcomes for selected scenarios, the offshore operatives were
asked whether they agreed with the advice produced by the model for the scenarios. They
unanimously agreed for five of the six scenarios. For the sixth scenario, two expressed doubt or
disagreement, even though the advice was consistent with the LSOG. The offshore operatives
emphasized that the LSOG represents guidelines, rather than a set answer.

5 DISCUSSION AND EVALUATION

Based on our experience, we now discuss and evaluate the fulfillment of criteria C1-C4 defined
in Section 1.

C1: In our context, expert expectations are represented by the opinions of the offshore
operatives taking part in the evaluation in the final meeting, as well as the LSOG, which is based
on expert knowledge. As explained in Section 3, we made sure that the advice produced by the
model were consistent with the LSOG for the identified scenarios. DEXi proved to have the
expressive power to achieve this without any problems. For the one scenario where the offshore
operatives did not agree with the model, the disagreement was due to a discrepancy between
the guidelines in the LSOG and the opinions of the offshore operatives. Hence, the contended
scenario is actually an issue of resolving discrepancy between different experts. We consider
our results promising, although a thorough evaluation of criterion C1 requires a more extensive
validation, preferably using more scenarios based on historical data, as well as involving more
domain experts.

C2: The feedback on the model showed that the offshore operatives agreed with the overall
structure and attributes. Incorporating their proposed modifications would not be a problem.
Hence, we are confident that all the factors that the domain experts identified can be captured
in the model. The aspects covered by the LSOG, which represent the current solution, is a
proper subset of the aspects covered by the model.

However, one aspect not captured by the model is uncertainty. For example, input pa-
rameters, such as the weather forecast, are more or less uncertain. Even though the weather
services provide an assessment of the uncertainty, this is ignored by the model. We considered
including and aggregating uncertainty in the model, so that the advice offered as output could
be accompanied by an aggregated assessment of the uncertainty. However, we saw no way to
achieve this without significantly complicating the model, and the LSOG does not address the
uncertainty of its guidelines. We therefore decided not to include uncertainty in the model.

While discussing C2, it is also interesting to touch on the issue of scalability. The most
important aspect in this respect seems to be the size of the utility function for each attribute,
i.e. number of possible combinations of values for its child attributes. This is determined by
the number of child attributes and the granularity of their scales. The DEXi manual states
that defining a utility function is quite hard for a size of 100 [1, p. 19]. In our model, the
largest utility function, which belongs to the top attribute Gangway operational risk, has size
144. For this attribute, it was not acceptable to reduce the number of the child attributes,
as the structure illustrated by Figure 3(a) was considered most appropriate. We found the
size 144 to be manageable, due to functionality that DEXi offers for checking consistency of
a utility function and automatically suggesting possible values for missing entries based on



already inserted entries. Still, we believe that utility functions larger than ca. 150 would be
highly impractical.

C3: This criterion implies that the domain experts should be able to understand the
algorithm by inspecting the model. This increases trust in the outputs from the model, and
means that the model can also facilitate knowledge sharing and learning. None of the domain
experts had any knowledge about DEXi before the process. Even so, after a brief introduction,
they quickly grasped the DEXi concepts and were able to contribute to the model development.
Throughout the process, the comments, suggestions and discussions demonstrated that all
participants were able to understand the details of the evolving model. Thus, we avoided
the misunderstandings and problems typically encountered when an executable algorithm is
implemented in a language not understood by the domain experts. Basically, the DEXi model
served as a combined specification and implementation of the assessment algorithm that was
fully transparent for all participants.

C4: Our estimate indicates that the model development amounts to ca. 150 person hours
in total. This includes ca. 100 hours spent on meetings 2 to 11. The estimate does not include
meetings 1 and 12, as no model development or updates were done in these meetings. Ca.
50 hours was spent on work between meetings. Of the latter, ca. 16 hours was spent by the
domain experts on checking the model and defining scenarios, while the remaining 34 hours
was spent by the analysis leader and secretary on taking notes and correcting the model. We
are not aware of other works reporting on the effort required to develop this type of model.
However, for the model-based risk analysis method CORAS [5], the authors state that the
expected effort required to carry out a CORAS analysis is typically from 150 to 300 hours.
This gives at least an indication that the amount spent on developing our decision support
model is reasonable.

Of course, a thorough evaluation of criterion C4 would require that we quantify the benefit,
as well as the cost. This is very hard, and we have not attempted to do so. Still, we believe
that the benefit justifies the effort. First, the model produces consistent advice which may be
a valuable supplement to a largely experience based decision making process. There is also a
potential for reuse of (parts of) the model to support related decisions. Second, the process
of developing the model collectively in a group creates learning and raises the awareness of
those taking part. Third, the resulting model codifies and documents knowledge from all those
taking part in the development, thus serving as a vehicle for knowledge transfer throughout the
organization. While the first point was a central part of our motivation for initiating the work,
and known in advance, the added benefit of the last two points became clear to us during the
process.

6 RELATED WORK

DEXi is one of many approaches within the field of multi-criteria decision making (on which
there is huge literature [8]), and has been tried out in a wide range of domains such as health
care, finance, construction, cropping systems, waste treatment systems, medicine, tourism,
banking, manufacturing of electric motors, and energy [3, 4]. To the best of our knowledge,
DEXi has not been used to assess safety risks within offshore as reported in this paper. However,
it has been applied to assess safety risks within highway traffic [6] and ski resorts [2].

The aforementioned two approaches are similar to our approach in the sense that they
use DEXi models as the underlying algorithm to compute an advice based on relevant input
data. In particular, the approach provided by Omerčević et al. [6] use DEXi models in a
framework where input data is collected via sensors in the highway. This is in line with our
envisioned automated solution illustrated in Figure 1. The details of the End User Interface
and the Input Collector are beyond the scope of this paper and therefore not explained further.
However, we are confident that our envisioned solution is feasible as we have in fact taken



part in implementing a similar approach in a framework for real-time cyber-risk assessment [7]
developed by the WISER-project [9].

Unlike most of the existing publications on DEXi, we have focused on the overall approach,
rather than the details of the model. In particular, we address the efforts spent to develop the
model, the involvement of domain experts, and the comprehensibility of the model, as well as
the quality of the final result. These aspects are important for others who consider a similar
approach.

7 CONCLUSION

In this paper, we shared our experiences from using DEXi to develop support for risk-based
decisions for offshore flotels. Our motivation was to make others who face related challenges
aware of the possibilities, and help them to consider whether a similar approach is suitable for
their needs. Space restrictions have prevented us from going deep into all the details of the pro-
cess and resulting model. We have focused on the issues that we think are of general relevance.
Based on our experience and overall evaluation, we consider our results quite promising, and
believe that the approach can be fruitful for a wider range of risk-based decisions. In future
projects, we hope to explore these possibilities further.
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